
Introduction to R for Times Series Analysis

G.P. Nason

28th October 1994
Revised 7th November 1997, 28th September 2005.

1 Using R

About R. R is a increasingly popular statistical package. It has verygood graphics
facilities and is very flexible. The work I will set you duringthe time series course will
require no previous knowledge of R, however, you will have already encountered it at
sometime during your time here. R is a freeware package and soyou could download
it to your personal computer (versions for Linux and the Mac exist, as well as for
Windows). More help on R and downloads can be found at the comprehensive R
archive network (CRAN)

http://cran.r-project.org

Help on R. There is a large amount of information available about R. TheCRAN
website has a lot of help. Additionally, R has its own help system. Once in R all you
have to type is a question mark followed by the command you want help on, e.g. if you
want the help on hels command just type

> ?ls

and a help window will appear.
Using R in the lab. The easiest way is to locate the R icon on your desktop and

double-click it. After starting you will see a large window containing a smaller window
called the commands window where you type all your commands to R.

If you want to exit R at any time either type

> q()

in the commands window or selectExit off the File menu.
You can repeat and edit previous commands by using the up- anddown-arrow keys.
We have arranged for R to store its working files in the subdirectory R in yourcufs

filespace (the files are hidden but you can see them by changingthe view options if you
really want to). In particular, if yousave() , dump() or write() any information
from R to the filesystem it will appear in the R subdirectory. You can look at the R help
on these functions if you want).

1.1 Vector operations

R stores simple data in vector and matrices and performs mostoperations directly on
these. Therefore looping operations that process individual array elements are rare. For

1

example, the following FORTRAN1 code computes the mean of 10 data points in the
arrayX

XBAR = 0.0
DO 10 I=1,N

XBAR = XBAR + X(I)
10 CONTINUE

XBAR = XBAR/N

can be written in R using the succinct notation

> xbar <- sum(x)/n

Many common statistical operations are already coded into Rfunctions. Themean()
function is one of these and so the previous R code can be replaced by

> xbar <- mean(x)

You’ve probably noticed by now that the assignment is made using <- (not=, although
it can be used) and that the> symbol is S-Plus’s prompt.

2 Time-series analyses

We are going to use R is to perform time-series analyses. We will give several struc-
tured examples.

2.1 Fitting an AR model

The lynx data set is already available to you. The data set refers to the number of
Canadian lynx trapped each year from 1821 until 1934. Type

> lynx

to see the data. Notice how R puts the reference dates down theleft hand-side. To plot
this data type

> ts.plot(lynx)

You will see a strongly periodic pattern with sharp peaks every 10 years or so. To
confirm this periodic period have a look at the autocorrelation function of the lynx
data. This is performed by the

> acf(lynx)

command. What do you think? The time-series plot indicates that the data is not
stationary. Try taking logs of the lynx data and then plotting it.

> ts.plot(log(lynx))

and then do the same for the acf

> acf(log(lynx))

1Even if you don’t know FORTRAN you should be able to work out what this code segment does

2

Use the help facility to find the help page for theacf() function (just type?acf) and
try changing some of the arguments to the function. In particular, try

> acf(log(lynx), type="partial")

What picture do you get? Is there a cut-off value past which the partial autocorrelation
coefficients are zero? What do the dotted lines on the plot mean (look at the help page)?

Now fit an AR model usingar.yw()

> llynx.ar <- ar.yw(log(lynx))

The functionar.yw() returns acomposite object which we put intollynx.ar . The
object contains many pieces of information about the fitted AR model. You can get the
names of all the components in thellynx.ar object by typing

> names(llynx.ar)

In particular, theorder.max component specifies the maximum order model that is
considered in the fit. To look at the value of this type

> llynx.ar$order.max

and you will see that in this case it was 20 (this can be changedas an argument to
ar.yw()). The$ character is used to access parts of a composite object.

By default thear.yw() function uses Akaike’s information criterion to decide
which model to fit. This information is stored in thellynx.ar object and you can
view the AIC for all values ofp, the order of all the AR models considered, by typing

> ts.plot(llynx.ar$aic, main="AIC for Log(Lynx)")

From the plot you will see that the lowest part is atp = 11. This is also the value stored
in theorder component ofllynx.ar (check this by typing

> llynx.ar$order

and seeing that it is indeed 11.
Type

> llynx.ar$ar

and you will see a list of the coefficients that we fitted for theorder 11 model. Therefore
the model fitted was

Xt = 1.14Xt−1 − 0.51Xt−2 + . . . − 0.31Xt−11 + Zt

where I have rounded the coefficients to 2 d.p. R makes it very easy to see the fit. Type

> ts.plot(log(lynx) - llynx.ar$resid)
> lines(log(lynx), col=2)

The black line is the fit (achieved by removing the residuals from the original data
because

residual= data− fit)

and the coloured line is the original data (thecol=2 argument causes the line to be
drawn in blue).

3

3 Fitting an ARIMA model in R

The data described in this section are held in a matrix but in my web space. R makes it
very easy to access data in other places. To enable access forthis data type the follow-
ing (all on one line, there should not be a new line betweenmagpn/ andTeaching ,
it is there so I can fit it on the page)

> load(url("http://www.stats.bris.ac.uk/˜magpn/
Teaching/TimeSeries/Data/wool.RData"))

Feel free to use the help facility to obtain information about load(), url() and
related functions.

The data you have just loaded is held in a matrix calledwool . This is a matrix
containing 310 separate observations on 10 variables. Thedim() function tells you
this:

> dim(wool)
[1] 310 10

The variables are described in Table 1. You can see the variable names in R by typing

Variable No. Description
1 Index number
2 Calendar year (1976-84)
3 Calendar week (1-52)
4 Weeks since 1.1.76
5 Floor price (cents per kg)
6 Actual price (cents per kg)
7 Ratio of Actual to Floor price
8 Log(Floor price)
9 Log(Actual price)
10 Log(Actual price/Floor price)

Table 1: Variables in the wool data set

> dimnames(wool)

The wool data set contains prices monitored by the Australian Wool Corporation
from June 1976 to June 1984. The prices are monitored weekly with some breaks
for public holidays, for example over the Christmas period there is a break of several
weeks. Before the start of each week the Corporation sets a floor price for the week.
The Corporation guarantees that it will pay this price for the wool during the week.
The actual price of the wool is an average taken over the following week and is never
less than the floor price (otherwise they could have sold it tothe Corporation and made
more money). You can see this for yourself from a plot of the 5th and 6th variables
listed in Table 1. A plot of these two variables appears in Figure 1. The figure was
created using the R command

> ts.plot(wool[,5:6], lty=1:2)

Note the method of accessing data in the matrix. To access the(i, j)th element of
a matrix use[i,j] , to obtain thejth column use[,j] . We will denote the actual

4

0 50 100 150 200 250 300

30
0

40
0

50
0

60
0

70
0

80
0

Figure 1: Weekly wool prices. The upper series represents the average weekly price set
by the market, the lower series is a floor price set by the Australian Wool Corporation

price byAt and the floor price byFt in both casest = 1, . . . , 310. The interest in this
series centres around the Corporation’s intervention policy and so it is the relative price
movements that we are interested in. Therefore we can look atthe ratio of actual to floor
price as this will compensate for trends such as those causedby currency fluctuations
and inflation. The ratio of actual price to floor price is plotted in Figure 2, we denote
the ratio by

Rt =
At

Ft

t = 1, . . . , 310.

Another point to consider is that price movements are often multiplicative in nature (so
price increases/decreases tend to be discussed in percentage terms rather than absolute
terms). We can then feel justified in working with the log of the series which we denote

Lt = log(Rt) t = 1, . . . , 310

rather than the series itself. This is illustrated in Figure3. The first thing to notice
about Figure 3 is that it does not look very different to Figure 2 — it is.

3.1 Fitting an ARIMA model

In this section we investigate the possibility of fitting an ARIMA model to the se-
ries. We will ignore all the “missing days” in the series and assume that the data are
recorded daily with no gaps. To do this we simply follow our ARIMA fitting model
order flowchart (from the lecture notes). The first step is to see whether{Lt} looks sta-
tionary. Figure 3 shows that{Lt} is clearly not stationary, the mean appears to change
over time (more precisely you might guess that the mean is piecewise constant, for
example you might guess that

µ(t) =

µ1 = 0.15 for 1 ≤ t ≤ 110
µ2 = 0.25 for 111 ≤ t ≤ 285
µ3 = 0.46 for the rest of the series

5

0 50 100 150 200 250 300

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Figure 2: Weekly wool prices. The series represents the ratio of average weekly price
set by the market to a floor price set by the Australian Wool Corporation

0 50 100 150 200 250 300

0.
1

0.
2

0.
3

0.
4

Figure 3: The series represents the log-ratio of average weekly price set by the market
to a floor price set by the Australian Wool Corporation

6

0 50 100 150 200 250 300

-0
.0

4
-0

.0
2

0.
0

0.
02

0.
04

Figure 4: First differences ofLt

approximately). Following the flowchart we difference the series. This is achieved in
R by the command

> ts.plot(diff(wool[,10]))

and produces the series in Figure 4. The striking feature in Figure 4 is that the appears
to have been a systematic change in variance of the data afterabout 100 observations.
If we were seriously interested in modelling the series we would have to model the
first 100 observations differently to the rest. For this example, we are interested in
forecasting future behaviour so we will simply discard the first 100 and model the
remaining 209. To simplify matters we will create a new vector calledwoolly that
contains the last 209 differenced observations

> tmp <- diff(wool[,10])
> woolly <- tmp[101:309]

The: operator constructs a vector so thata:b returns the vector(a, a+1, a+2, . . . , b−
1, b). Note also that althoughwool is a matrix bothtmp andwoolly are vectors
because the[,10] construct extracts a column from the matrix.

The next stage of the flowchart procedure was to produce a correlogram of the
differenced data. This is shown in Figure 5. From this it can be seen that only the
second and the fourth autocorrelations might possibly be significant. Later we might
find it useful to take account of these autocorrelations and fit more complicated models,
but in the interests of parsimony we want to fit the simplest model possible. Also, there
is no other pattern in the autocorrelations so we conclude that the differenced data is
consistent with white noise.

3.2 First model for the wool data

Therefore our first model is
Lt − Lt−1 = µ + Zt

7

Lag

A
C

F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : woolly

Figure 5: Correlogram of the last 209 first differences ofLt. The dashed horizontal
lines correspond to the significance limit±2/

√
n

.

We have a assumed a non-zero mean for this model. Can we do this? Well, the R
command

> mean(woolly)
[1] 0.001555981

suggests that the differences have a non-zero mean. Since wehave assumed that the
differences are uncorrelated we are justified in using a one-samplet-test to test the
hypothesis

H0 : µ = 0

against the alternative
HA : µ 6= 0

This too can be carried out with R by

> t.test(woolly)
One-sample t-Test

data: woolly
t = 1.6318, df = 208, p-value = 0.1042
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

-0.0003238799 0.0034358416
sample estimates:

mean of x
0.001555981

The p-value suggests that we cannot reject the null hypothesis at the 10% level. So we
will assumeµ = 0. The R commandvar() allows us to find an estimate ofσ2

Z
the

variance of{Zt}

8

0 50 100 150 200

0.
2

0.
3

0.
4

Figure 6: Forecasts for the log-wool-price-ratio. The two horizontal lines are the fore-
casts for up to 40-steps ahead. The two bowl shapes represent90% tolerance intervals
for ther-step ahead forecasts fromt = 150 andt = 200. The first 100 observations
have been discarded.

> var(woolly)
[1] 0.0001900347

Therefore our second model is

Lt = Lt−1 + Zt

where{Zt} is a purely random process with mean zero and varianceσ̂2

Z
= 0.00019.

3.3 Forecast errors

The lecture notes give a tolerance interval for forecast errors. Ther-step ahead forecast

l̂(t, r) = lt

is just the last observation at timet. The tolerance level computed in the lecture notes
is

Lt ± 0.0227
√

r

Two of these are plotted in Figure 6 The figure was produced with the R commands

> ts.plot(wool[100:310,10])
> lines(50:89, rep(1,40) * wool[150, 10], col=2)
> lines(50:89, wool[150, 10] + 0.0227 * sqrt(1:40), col=2)
> lines(50:89, wool[150, 10] - 0.0227 * sqrt(1:40), col=2)
> lines(100:139, rep(1,40) * wool[200, 10] , col=2)
> lines(100:139, wool[200, 10] + 0.0227 * sqrt(1:40), col=2)
> lines(100:139, wool[200, 10] - 0.0227 * sqrt(1:40), col=2)

9

Note that after about 30-steps ahead the first tolerance limit is broken by the series
going through a steeply declining phase, although the series remains in the bounds of
the second tolerance interval. This is to be expected for such a large number of steps
ahead.

10

