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1 UsingR

About R. R is a increasingly popular statistical package. It has gergd graphics
facilities and is very flexible. The work | will set you durirtige time series course will
require no previous knowledge of R, however, you will haveady encountered it at
sometime during your time here. R is a freeware package agdisoould download
it to your personal computer (versions for Linux and the Maiste as well as for
Windows). More help on R and downloads can be found at the ceingmsive R
archive network (CRAN)

http://cran.r-project.org

Help on R. There is a large amount of information available about R. TRAN
website has a lot of help. Additionally, R has its own helptegs Once in R all you
have to type is a question mark followed by the command you tvalp on, e.qg. if you
want the help on hks command just type

> ?ls

and a help window will appear.

Using R in the lab. The easiest way is to locate the R icon on your desktop and
double-click it. After starting you will see a large windowrttaining a smaller window
called the commands window where you type all your commamés t

If you want to exit R at any time either type

> q0

in the commands window or sele€kit off the File menu.
You can repeat and edit previous commands by using the up@mad-arrow keys.
We have arranged for R to store its working files in the sulotiiny R in yourcufs
filespace (the files are hidden but you can see them by chatiggngew options if you
really want to). In particular, if yosave() ,dump() orwrite() any information
from R to the filesystem it will appear in the R subdirectorgu¥an look at the R help
on these functions if you want).

1.1 Vector operations

R stores simple data in vector and matrices and performs apesations directly on
these. Therefore looping operations that process indiigiuray elements are rare. For



example, the following FORTRANcode computes the mean of 10 data points in the
arrayX

XBAR = 0.0
DO 10 I=1,N
XBAR = XBAR + X(I)
10 CONTINUE
XBAR = XBAR/N

can be written in R using the succinct notation
> xbar <- sum(x)/n

Many common statistical operations are already coded irft;mmBtions. Thanean()
function is one of these and so the previous R code can becexplay

> xbar <- mean(x)

You've probably noticed by now that the assignment is madegus (not=, although
it can be used) and that thesymbol is S-Plus’s prompt.

2 Timeseriesanalyses

We are going to use R is to perform time-series analyses. Wewe several struc-
tured examples.

2.1 Fittingan AR model

Thelynx data set is already available to you. The data set referstadimber of
Canadian lynx trapped each year from 1821 until 1934. Type

> lynx

to see the data. Notice how R puts the reference dates dovieftihand-side. To plot
this data type

> ts.plot(lynx)

You will see a strongly periodic pattern with sharp peaksgud® years or so. To
confirm this periodic period have a look at the autocorretafunction of the lynx
data. This is performed by the

> acf(lynx)

command. What do you think? The time-series plot indicates the data is not
stationary. Try taking logs of the lynx data and then plattin

> ts.plot(log(lynx))
and then do the same for the acf

> acf(log(lynx))

1Even if you don’t know FORTRAN you should be able to work outawthis code segment does



Use the help facility to find the help page for thef() function (just type?acf ) and
try changing some of the arguments to the function. In paldic try

> acf(log(lynx), type="partial")

What picture do you get? Is there a cut-off value past whielpidrtial autocorrelation
coefficients are zero? What do the dotted lines on the plotrfieak at the help page)?
Now fit an AR model usingr.yw()

> llynx.ar <- ar.yw(log(lynx))

The functionar.yw()  returns acomposite object which we putintdlynx.ar . The
object contains many pieces of information about the fitt®model. You can get the
names of all the components in tiynx.ar object by typing

> names(llynx.ar)

In particular, theorder.max component specifies the maximum order model that is
considered in the fit. To look at the value of this type

> llynx.ar$order.max

and you will see that in this case it was 20 (this can be chaagesh argument to
aryw() ). The$ characteris used to access parts of a composite object.

By default thear.yw()  function uses Akaike’s information criterion to decide
which model to fit. This information is stored in thignx.ar object and you can
view the AIC for all values op, the order of all the AR models considered, by typing

> ts.plot(llynx.ar$aic, main="AIC for Log(Lynx)")

From the plot you will see that the lowest partigat 11. This is also the value stored
in theorder component oflynx.ar (check this by typing

> llynx.ar$order

and seeing that it is indeed 11.
Type

> llynx.ar$ar

and you will see a list of the coefficients that we fitted fordinder 11 model. Therefore
the model fitted was

X =114X;, 1 —-051X; o+ ... —031X;_11 + Z;

where | have rounded the coefficients to 2 d.p. R makes it \v&sy & see the fit. Type

> ts.plot(log(lynx) - llynx.ar$resid)
> lines(log(lynx), col=2)

The black line is the fit (achieved by removing the residuatenfthe original data
because
residual= data— fit)

and the coloured line is the original data (tt@=2 argument causes the line to be
drawn in blue).



3 Fittingan ARIMA model in R

The data described in this section are held in a matrix butyinveb space. R makes it
very easy to access data in other places. To enable accdbisfdata type the follow-
ing (all on one line, there should not be a new line betwaagpn/ andTeaching

it is there so | can fit it on the page)

> load(url("http://www.stats.bris.ac.uk/"magpn/
Teaching/TimeSeries/Data/wool.RData"))

Feel free to use the help facility to obtain information ablead(), url() and
related functions.

The data you have just loaded is held in a matrix callaabl . This is a matrix
containing 310 separate observations on 10 variables.dith@ function tells you
this:

> dim(wool)
[1] 310 10

The variables are described in Table 1. You can see the \@names in R by typing

VariableNo. Description
Index number
Calendar year (1976-84)
Calendar week (1-52)
Weeks since 1.1.76
Floor price (cents per kg)
Actual price (cents per kg)
Ratio of Actual to Floor price
Log(Floor price)
Log(Actual price)

0 Log(Actual price/Floor price)
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Table 1: Variables in the wool data set

> dimnames(wool)

The wool data set contains prices monitored by the Australi@ol Corporation
from June 1976 to June 1984. The prices are monitored weeittyssme breaks
for public holidays, for example over the Christmas periogré is a break of several
weeks. Before the start of each week the Corporation set®agtice for the week.
The Corporation guarantees that it will pay this price far thool during the week.
The actual price of the wool is an average taken over theviitig week and is never
less than the floor price (otherwise they could have soldttiécCorporation and made
more money). You can see this for yourself from a plot of the &td 6th variables
listed in Table 1. A plot of these two variables appears iruFégl. The figure was
created using the R command

> ts.plot(wool[,5:6], Ity=1:2)

Note the method of accessing data in the matrix. To acces&i tligh element of
a matrix usHi,j] , to obtain thejth column usd,j] . We will denote the actual



300 400 500 600 700 800

T T

0 50 100 150 200 250 300

Figure 1: Weekly wool prices. The upper series represeatavthrage weekly price set
by the market, the lower series is a floor price set by the Aliatr Wool Corporation

price by A, and the floor price by, in both case¢ = 1,...,310. The interest in this
series centres around the Corporation’s interventiortpalnd so it is the relative price
movements that we are interested in. Therefore we can labk aatio of actual to floor
price as this will compensate for trends such as those cdnsedrrency fluctuations
and inflation. The ratio of actual price to floor price is pdattin Figure 2, we denote
the ratio by

R,==L t=1,...,310.

Another point to consider is that price movements are ofteltiplicative in nature (so
price increases/decreases tend to be discussed in peredetas rather than absolute
terms). We can then feel justified in working with the log of #eries which we denote

Lt = 10g(Rt) t= 1,.. ,310

rather than the series itself. This is illustrated in Fig@reThe first thing to notice
about Figure 3 is that it does not look very different to Fey@r— it is.

3.1 Fittingan ARIMA model

In this section we investigate the possibility of fitting aiRWA model to the se-
ries. We will ignore all the “missing days” in the series arsdw@me that the data are
recorded daily with no gaps. To do this we simply follow our IMR\ fitting model
order flowchart (from the lecture notes). The first step ie®whethef L, } looks sta-
tionary. Figure 3 shows thdt., } is clearly not stationary, the mean appears to change
over time (more precisely you might guess that the mean isepiise constant, for
example you might guess that

w1 =015 for1 <t<110
p(t) =< pe =025 forlll <t <285
3 = 0.46 for the rest of the series
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Figure 2: Weekly wool prices. The series represents the cditiiverage weekly price
set by the market to a floor price set by the Australian WoolGaation
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Figure 3: The series represents the log-ratio of averagklypéece set by the market
to a floor price set by the Australian Wool Corporation
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Figure 4: First differences df;

approximately). Following the flowchart we difference tlegiss. This is achieved in
R by the command

> ts.plot(diff(wool[,10]))

and produces the series in Figure 4. The striking featurégarE 4 is that the appears
to have been a systematic change in variance of the dateahfbet 100 observations.
If we were seriously interested in modelling the series welldidnave to model the
first 100 observations differently to the rest. For this eglenwe are interested in
forecasting future behaviour so we will simply discard thetfil00 and model the
remaining 209. To simplify matters we will create a new vecalledwoolly that
contains the last 209 differenced observations

> tmp <- diff(wool[,10])
> woolly <- tmp[101:309]

The: operator constructs a vector sothdi returnsthe vectofa, a+1,a+2,...,b—
1,b). Note also that althougtvool is a matrix bothtmp andwoolly are vectors
because thg10] construct extracts a column from the matrix.

The next stage of the flowchart procedure was to produce &logram of the
differenced data. This is shown in Figure 5. From this it caensben that only the
second and the fourth autocorrelations might possibly ppeifstant. Later we might
find it useful to take account of these autocorrelations amadie complicated models,
but in the interests of parsimony we want to fit the simplestiedpossible. Also, there
is no other pattern in the autocorrelations so we concluaettte differenced data is
consistent with white noise.

3.2 First modd for the wool data

Therefore our first model is
Li—Li v =p+ 2
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Figure 5: Correlogram of the last 209 first differenced.gf The dashed horizontal
lines correspond to the significance limi2//n

We have a assumed a non-zero mean for this model. Can we o Wl the R
command

> mean(woolly)
[1] 0.001555981

suggests that the differences have a non-zero mean. Sinbewgeassumed that the
differences are uncorrelated we are justified in using asameplet-test to test the
hypothesis

Hy:p=0

against the alternative
Hp :pn#0
This too can be carried out with R by

> t.test(woolly)
One-sample t-Test

data: woolly
t = 1.6318, df = 208, p-value = 0.1042
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.0003238799 0.0034358416
sample estimates:

mean of X
0.001555981

The p-value suggests that we cannot reject the null hypisthethe 10% level. So we
will assumeu = 0. The R commandar() allows us to find an estimate of, the
variance of{ 7, }
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Figure 6: Forecasts for the log-wool-price-ratio. The tvavibontal lines are the fore-
casts for up to 40-steps ahead. The two bowl shapes rep@3¥ntiblerance intervals
for the r-step ahead forecasts fram= 150 and¢ = 200. The first 100 observations
have been discarded.

> var(woolly)
[1] 0.0001900347

Therefore our second model is
Li=Li 1+ 2

where{Z,} is a purely random process with mean zero and variagce: 0.00019.

3.3 Forecast errors

The lecture notes give a tolerance interval for forecastrerTher-step ahead forecast

l(t,T) = lt

is just the last observation at timie The tolerance level computed in the lecture notes
is
Ly +0.0227+/r

Two of these are plotted in Figure 6 The figure was produceld thit R commands

> ts.plot(wooI[100:310,10])

> lines(50:89, rep(1,40) *WwoolI[150, 10], col=2)

> lines(50:89, wool[150, 10] + 0.0227 *sqrt(1:40), col=2)
> lines(50:89, wool[150, 10] - 0.0227 *sqrt(1:40), col=2)
> lines(100:139, rep(1,40) *wool[200, 10] , col=2)

> lines(100:139, wool[200, 10] + 0.0227 *sqrt(1:40), col=2)
> lines(100:139, wool[200, 10] - 0.0227 *sqrt(1:40), col=2)



Note that after about 30-steps ahead the first tolerance isntiroken by the series
going through a steeply declining phase, although the segimains in the bounds of
the second tolerance interval. This is to be expected fdn auarge number of steps

ahead.
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