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This study examines the effect of peak-to-average power ratio (PAPR) constraint on the transmit 
beamformer design problem with the goal of establishing a trade-off between the power efficiency 
(maximizing the average transmitted power) and other metrics such as the power level fluctuation 
in mainlobe, peak-sidelobe level (PSL), etc. Typically, unimodular weights are utilized in transmit 
beamforming to maximize the average transmitted power. Yet, unimodular weights maximize the power 
efficiency at the expense of other performance metrics. It is shown that even a slight relaxation of the 
design problem from the unimodular condition (PAPR = 1), say setting PAPR� 1.1, results in a significant 
improvement in other performance metrics at a negligible loss of power efficiency. To achieve the trade-
off between the metrics, an alternating direction method of multipliers (ADMM) based solution to the 
transmit beamformer design is given. The suggested solution is applicable to both narrowband and 
wideband beamformers and also to some other related problems such as the unimodular radar waveform 
design (code design) problem.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

In a conventional narrowband transmit beamformer, each an-
tenna element transmits the same low-pass equivalent signal 
scaled by a chosen complex-valued weight. The problem of trans-
mit beampattern design is to determine the weights such that 
several requirements such as flat-top beampattern, low sidelobes, 
power efficiency, etc. are satisfied. Typically, unimodular weights 
(weights with a constant magnitude) are used in transmit beam-
forming to maximize the transmission power. The power maxi-
mization is important to extend the instrumented range of the 
sensor, which is proportional to (average power × aperture)1/4 [1], 
and also to improve the signal-to-noise ratio (SNR) affecting the 
accuracy of estimation operations conducted by the sensor. In ad-
dition to the transmit power maximization, a beampattern with 
a flat mainlobe and low sidelobes is highly desirable for the reli-
ability of the sensing system, [1]. Considerations on the sidelobe 
level such as the peak sidelobe level (PSL) and integrated sidelobe 
level (ISL) are main considerations for receive beamforming sys-
tems for which several efficient methods exist for their optimiza-
tion [2,3]. Unfortunately, the power maximization requirement, 
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which is unique to the transmit beamforming application, con-
flicts with other requirements (sidelobe suppression, flat mainlobe) 
and an engineering trade-off has to be made in the construction 
of transmit beamformers. In this paper, we examine the trans-
mit beamforming problem under a peak-to-average power ratio 
(PAPR) constraint to enable such a trade-off for the design of flat-
top beampatterns with low sidelobes at high power efficiency.

The problem of transmit beamforming under a PAPR constraint 
have been studied for the MIMO systems in the radar signal 
processing literature [4–9]. For instance, the waveform diversity 
feature allowing each antenna element to transmit independent 
waveforms is taken into account for the solution of transmit beam-
forming problem under PAPR constraint, in [5]. Several methods in 
the literature such as [4,5,7,10] ignore the PAPR constraint at the 
initial design stage and project the solution obtained without the 
PAPR constraint onto the set of vectors satisfying the constraint 
via the operation given in [11]. These methods have been shown 
to provide a good performance in spite of the decoupling of the 
problem into two stages. Different from these methods, the se-
quence design problem under a PAPR constraint is transformed 
to an unconstrained problem which can be solved via a gradient-
based numerical search in [12].

The mathematical formulation of the waveform design for ac-
tive sensing (transmit code design) is very similar to the transmit 
beamforming problem. As in transmit beamforming, the waveform
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energy is known to be maximized with the choice of unimodu-
lar sequences for the code design problem. Unimodular sequences 
also maximize the achievable sensitivity by maximizing the energy 
incident upon and reflected from the targets [13]. Thus, the design 
of periodic or aperiodic unimodular sequences with low autocorre-
lation sidelobes is a major goal for active sensing systems, see [4,
14–19]. Since the problem of low autocorrelation sidelobes is di-
rectly related with the flatness of the spectral shape of the signal, 
the spectral shaping problem with unimodular sequences has been 
examined in several works including [15,17,20,21]. In [20], SHAPE 
algorithm is presented to design the sequences satisfying the tem-
poral envelope and spectral constraints by introducing auxiliary 
variables. In [15], Lagrange programming neural network (LPNN) 
is employed to design unimodular sequences satisfying the spec-
tral constraints. The ANSLM described in [21] minimizes the ratio 
of the peak stopband level to the minimum of passband level at 
the cost of higher ripple in the passband of the spectrum associ-
ated with a unimodular sequence.

In this study, we utilize the alternating direction method of 
multipliers (ADMM) for the solution of transmit beamforming 
problem under a PAPR constraint. ADMM is known to converge 
to the unique global optimum for convex problems, [22]. Yet, for 
nonconvex problems, it is not possible to ensure the optimality of 
the solution or even the convergence of the ADMM iterations. In 
spite of this setback, ADMM has been successfully used in many 
problems. In [17], unimodular sequences with low autocorrelation 
sidelobe are designed by ADMM after introducing auxiliary vari-
ables to separate the linear and quadratic terms of objective func-
tion and impose the nonconvex unimodularity constraint only on 
the linear term. Furthermore, the spectrally shaped waveform de-
sign problem is solved by ADMM via controlling the passband rip-
ple and peak stopband level. In [19], an ADMM-based approach is 
proposed to solve optimization problems with nonconvex magni-
tude constraints for frequency/angular domains and several exam-
ples including array pattern synthesis, waveform design and robust 
beamforming are given to demonstrate the effectiveness of pro-
posed method. In [18], an ADMM-based algorithm PhareADMM is 
presented to solve the phase retrieval problem by introducing aux-
iliary magnitude and phase variables to circumvent the absolute 
value operator in the objective function. By a simple modification 
exploiting the unitary property of discrete Fourier transform (DFT), 
PhareADMM is used to design unimodular periodic sequences hav-
ing low autocorrelation sidelobe, [18]. The successful application 
of ADMM in many optimization problems have also initiated the 
generalized studies on its convergence, [23].

In this study, we use a formulation similar to the PhareADMM 
formulation in [18]. The main difference is the inclusion of the 
PAPR constraint to the problem. The inclusion of PAPR con-
straint requires the introduction of distinct penalty parameters 
for the beampattern shape and PAPR constraints. More specif-
ically, the augmented Lagrangian function, which is the objec-
tive function minimized in primal and auxiliary variable update 
steps of ADMM, is defined by using distinct penalty parame-
ters for the beampattern shape and PAPR constraints. We also 
suggest a simple relation to set the penalty parameters specifi-
cally for this problem. The suggested multiple penalty parameters 
are to control the constraint violations individually, as in [24,25], 
[26, pg. 292].

The main contributions are as follows:

• We examine the transmit beamformer design problem un-
der PAPR constraint to design a flat-top beampattern with 
low sidelobes at a small sacrifice from the power efficiency. 
We use the phrase power efficiency to denote the deviation 
of the average transmitted power from its maximum value. 
The transmit power is maximized with the unimodular codes 
(PAPR = 1). The ratio of average transmitted power of an arbi-
trary weight vector to the maximum transmitted power is the 
power efficiency (see Peff (wσ ) in Table 1).

• We formulate an ADMM-based solution with multiple penalty 
parameters for individually controlling the mismatches in the 
beampattern shape and PAPR constraints. Different from ear-
lier approaches (finding a solution without the PAPR con-
straint and then projecting the solution onto a set satisfying 
the PAPR constraint), the suggested method generates a so-
lution via “mixing” the optimization outputs for the spectral 
processing (i.e., beampattern shape) and temporal processing 
(i.e., PAPR constraint), where the mixture is controlled via the 
penalty parameters. The presented results are valid for both 
narrowband and wideband beamforming problems and can be 
extended to the waveform design problem.

Notation: Scalars, column vectors and matrices are denoted by 
italic lowercase, boldface lowercase and boldface uppercase letters, 
respectively. The real and complex fields are denoted by R and 
C, respectively. The nonnegative orthant is denoted as R+ , i.e., 
R+ = {a|a ∈ R, a � 0}. The transpose, conjugate transpose and in-
verse operators are denoted by (·)T, (·)H and (·)−1, respectively. 
The Hadamard (element-wise) product, �2-norm (Euclidean norm), 
absolute value and phase angle (in radians) are denoted by �, ‖·‖2, 
|·| and � (·), respectively. The nth entry of w is denoted as wn . 
The RN (CN ) denotes the set of the real-valued (complex-valued) 
N-dimensional column vectors. The IN denotes the N × N identity 
matrix and j = √−1. The R {·} and I {·} denote the real and imag-
inary parts of a complex valued scalar/vector/matrix, respectively. 
The iteration number is denoted by parenthesized superscript.

2. System model and problem formulation

We consider a phased array system with N isotropic elements 
whose positions are denoted with pn = pn,xux + pn,yuy + pn,zuz , 
n = 1, . . . , N . Here, pn is a three-dimensional vector denoting the 
position of the nth sensor in the Cartesian coordinate system with 
the unit vectors of ux , uy and uz .

The peak-to-average power ratio (PAPR) of the beamforming 
weight vector w ∈CN is defined as

PAPR(w) =
max

n∈{1,...,N}
|wn|2

1

N

N∑
n=1

|wn|2
, (1)

where the numerator and denominator of the ratio are the max-
imum and average power, respectively. It is clear that PAPR(·) :
CN → [1, N], where the lower bound of range corresponds to 
the case that all entries have the same magnitude, and the up-
per bound of range corresponds to the case that only one of the 
entries is nonzero.

For spatial processing, we take L direction samples {φ�, θ�} ∈
[−90◦, 90◦], where φ� and θ� correspond to azimuth and elevation 
angles, respectively. Typically, we have L 
 N , e.g., L � 20N . We 
denote the wavenumber vector corresponding to the �th direction 
sample as

k� = 2π/λ
(
cosφ� cos θ�ux + sinφ� cos θ�uy + sin θ�uz

)
,

where λ is the wavelength of the transmitted signal. We form an 
N × L matrix A,

A = [a1|a2| . . . |aL] ,

by concatenating the array steering vectors a� ∈CN ,
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a� =
[

e jkT
�p1 , e jkT

�p2 , . . . , e jkT
�pN

]T
,

for � = 1, . . . , L.
The goal is to approximate the magnitude of the desired trans-

mit beampattern b = [b1, . . . ,bL]T ∈ RL+ by using the transmitter 
weight vector w that satisfies the PAPR constraint PAPR(w) � σ . It 
can be observed from the PAPR definition in (1) that PAPR is in-
variant to the scaling of w, that is PAPR(w) = PAPR(cw) for any 
c ∈C and |c| �= 0. Hence, to disambiguate the PAPR constraint, we 
introduce an equality constraint ‖w‖2

2 = P . The goal is to optimize 
w by minimizing the weighted least squares error under the PAPR 
constraint:

minimize
w∈CN

L∑
�=1

h�

(
b� −

∣∣∣aH
� w

∣∣∣)2

subject to PAPR(w) � σ ,

‖w‖2
2 = P .

(2)

Here h� � 0 denotes the weight of the squared error term corre-
sponding to the �th direction pair.

The main difficulties of the formulation are as follows: The 
term 

∣∣aH
� w

∣∣ makes the objective function of (2) nondifferentiable 
and nonconvex. In addition, the total power constraint ‖w‖2

2 = P
also specifies a nonconvex feasible set. Furthermore, the PAPR con-
straint is highly nonlinear and difficult to characterize. The PAPR 
constraint is examined more closely in Appendix A.

3. Proposed method

The ADMM is a distributed convex optimization method, [22]. 
According to [22], a well-defined projection onto nonconvex sets 
can also assist the convergence for nonconvex problems with a 
convex objective function and nonconvex constraints. Inspired by 
this observation, we re-express the objective function of the prob-
lem formulation in (2) so as to avoid the nonconvex magnitude 
function (|·|).

In [18], the auxiliary magnitude and phase variables are used to 
circumvent the magnitude operator in the objective function. We 
define the auxiliary variables α� ∈R+ and β� ∈R as

aH
� w = α� e jβ� , (3)

where α� = ∣∣aH
� w

∣∣ � 0 and β� = � (
aH
� w

)
for � = 1, . . . , L. After 

replacing 
∣∣aH

� w
∣∣ with α� , (2) becomes

minimize
w∈CN ;{α1,...,αL}∈R+,

{β1,...,βL}∈R

L∑
�=1

h� (b� − α�)
2 (4)

subject to aH
� w = α� e jβ� ,

PAPR(w) � σ ,

‖w‖2
2 = P .

Thus, in (4), the problem formulation in (2) has been converted to 
one with a convex objective function and nonconvex constraints.

We suggest to introduce an auxiliary vector v to prevent the 
appearance of the weight vector w in the PAPR constraint. With 
this suggestion, a solution of (4) can be generated by imposing the 
beampattern and PAPR constraints as the individual subproblems 
of ADMM:
minimize
w,v∈CN ;{α1,...,αL}∈R+,

{β1,...,βL}∈R

L∑
�=1

h� (b� − α�)
2

subject to aH
� w = α� e jβ� ,

w = v,

PAPR(v) � σ ,

‖v‖2
2 = P .

(5)

In (5), the beampattern shape {α�}L
�=1 and PAPR(v) constraints are 

coupled through the equality constraint w = v.
The augmented Lagrangian for the application of ADMM on (5)

requires the definition of penalty parameters. We present the aug-
mented Lagrangian as

LρL ,ρN (w,α,β,v,y,λ)

=
L∑

�=1

h� (b� − α�)
2 +

L∑
�=1

R {y�}R
{

aH
� w − α� e jβ�

}

+
L∑

�=1

I {y�}I
{

aH
� w − α� e jβ�

}
+ ρL

2

L∑
�=1

(
R

{
aH
� w − α� e jβ�

})2

+ ρL

2

L∑
�=1

(
I

{
aH
� w − α� e jβ�

})2 +
N∑

n=1

R {λn}R {wn − vn}

+
N∑

n=1

I {λn}I {wn − vn} + ρN

2

N∑
n=1

(R {wn − vn})2

+ ρN

2

N∑
n=1

(I {wn − vn})2, (6)

where ρL > 0 and ρN > 0 are two distinct penalty parameters 
for beampattern shape and PAPR constraints, respectively, y =
[y1, . . . , yL]T ∈ CL and λ = [λ1, . . . , λN ]T ∈ CN are the dual vari-
ables, α = [α1, . . . ,αL]T ∈ CL , β = [β1, . . . , βL]T ∈ CL and v ∈ CN

are the auxiliary variables. In (6), the real and imaginary parts are 
separately considered owing to the nature of ADMM, which is built 
on the real-valued and convex functions.

In many ADMM applications, the augmented Lagrangian func-
tions are defined with a single penalty parameter used for all 
constraints [24,27,28]. However, we utilize two different penalty 
parameters ρL and ρN in this application. The use of a different 
penalty parameter for every equality constraint provides a means 
of individually scaling the constraint violations, as suggested in 
[25]. Further details on this approach can be found in [29, ch. 9].

We apply ADMM on minimizing (6) under PAPR constraint with 
respect to variable sets w and {α, β, v} separately. We describe the 
ADMM steps involved in each iteration as follows:

Step 1: For given w(k) , y(k) and λ(k) , the auxiliary variables at 
k + 1 can be found by solving

{
α(k+1),β(k+1),v(k+1)

}
=

arg min
α∈RL+,β∈RL ;v∈CN

LρL ,ρN (w(k),α,β,v,y(k),λ(k))

subject to PAPR(v) � σ ,

‖v‖2
2 = P .

(7)

In the scaled form of ADMM, for z = [z1, . . . , zL]T = y/ρL ∈ CL

and τ = [τ1, . . . , τN ]T = λ/ρN ∈CN , (7) is equivalent to
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{
α(k+1),β(k+1),v(k+1)

}

= arg min
α∈RL+,β∈RL ;

v∈CN

L∑
�=1

h�(b�−α�)
2+ ρL

2

L∑
�=1

∣∣∣aH
� w(k)+ z(k)

� − α� e jβ�

∣∣∣2

+ ρN

2

∥∥∥w(k)+τ (k)−v
∥∥∥2

2

subject to PAPR(v) � σ ,

‖v‖2
2 = P ,

(8)

as shown in Appendix B.
In (8), v appears only in the last term of objective function. 

Hence, v(k+1) can be determined by solving the equivalent problem

v(k+1) = arg min
v∈CN

∥∥∥w(k) + τ (k) − v
∥∥∥2

2
(9)

subject to PAPR(v) � σ ,

‖v‖2
2 = P ,

which is in the form of (A.1), and the solution can be found by 
following the steps given in [11], as discussed in Appendix A. 
The main role of v in this step is to control the PAPR of w. By 
the residual convergence feature of ADMM, we should observe 
that the primal residual converges to zero for PAPR constraint, 
i.e., w(k) − v(k) → 0 as k → ∞, and hence, the PAPR and norm 
of w will be too close to that of v after some iterations. How-
ever, this residual convergence depends on P . Because P affects 
the objective function value of (9), as discussed in Appendix A.2. 
According to Lemma 1 of Appendix A.2, the objective function 
value of (9) can take zero only when σ � PAPR(w(k) + τ (k)) and 
‖v‖2

2 = ∥∥w(k) + τ (k)
∥∥2

2. As a consequence, to eliminate the possi-
bly undesired effect of P on the residual convergence, we suggest 
replacing P in (9) with 

∥∥w(k) + τ (k)
∥∥2

2 as follows:

v(k+1) = arg min
v∈CN

∥∥∥w(k) + τ (k) − v
∥∥∥2

2
(10)

subject to PAPR(v) � σ ,

‖v‖2
2 = ∥∥w(k) + τ (k)

∥∥2
2.

It is clear that the feasible set of (10) varies with k unlike that 
of (9). Hence, w(k) can converge to a point which is not feasible 
for (2) due to violation of total power constraint, e.g., 

∥∥w(k)
∥∥2

2 �= P , 
when w(k) − v(k) → 0 as k → ∞. By scaling w(k) , we can obtain 
a point 

√
P w(k)/

∥∥w(k)
∥∥

2 satisfying the total power constraint of 
(2). As seen from the PAPR definition in (1), the scaling of a vector 
does not change its PAPR, and we have PAPR(

√
P w(k)/

∥∥w(k)
∥∥

2) =
PAPR(w(k)). Moreover, after the scaling, only the transmit beampat-
tern shape is shifted up or down in dB scale and the performance 
metrics such as PSL and mainlobe ripple are not affected.

Similarly, β appears only in the middle term of the objective 
function of (8), and the equivalent problem for determining β(k+1)

is

β(k+1) = arg min
α∈RL+,β∈RL

(
L∑

�=1

∣∣∣aH
� w(k) + z(k)

� − α�e jβ�

∣∣∣2
)

. (11)

Let γ = [γ1, . . . , γL]T ∈ CL , where γ� = α� e jβ� for � = 1, . . . , L. 
Then, the objective function of (11) can be expressed as

L∑∣∣∣aH
� w(k) + z(k)

� − α�e jβ�

∣∣∣2 =
∥∥∥AHw(k) + z(k) − γ

∥∥∥2

2
. (12)

As 

β(k

wh

obt

α(k

wh

spe

0 =
Sin
as 

α
(k
�

for

tha
sim

α
(k
�

for

w(k

Acc
the
fixe
γ (k

w(k

wh
in 

0 =

and

w(k

z(k

τ (k

�=1
β = � γ , the solution of (11) is found as

+1) = �
(

AHw(k) + z(k)
)

, (13)

ere A = [a1|a2| . . . |aL] ∈CN×L .
Replacing β� with β(k+1)

� in the objective function of (8), we 
ain the equivalent problem to find α(k+1) as follows:

+1) = arg min
α∈RL+

(
L∑

�=1

h� (b� − α�)
2 + ρL

2

L∑
�=1

(r� − α�)
2

)
, (14)

ere r� =
∣∣∣aH

� w(k) + z(k)
�

∣∣∣ for � = 1, . . . , L.

Taking the derivative of the objective function in (14) with re-
ct to α� and zeroing at α(k+1)

� , we get

2h� b� − 2h� α
(k+1)
� + ρL r� − ρLα

(k+1)
� .

ce α� denotes the magnitude, i.e., α� � 0, the solution is given 
follows:

+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρL r� + 2h� b�

ρL + 2h�

,
ρL r� + 2h� b�

ρL + 2h�

� 0 and

ρL + 2h� �= 0

0, otherwise

(15)

 � = 1, . . . , L.
For our application, ρL > 0, r� � 0, h� � 0 and b� � 0 satisfy 
t ρL r� + 2h� b� � 0 and ρL + 2h� > 0, and hence, (15) can be 
plified as

+1) = ρL r� + 2h� b�

ρL + 2h�

(16)

 � = 1, . . . , L.
Step 2: We update w by solving

+1)= arg min
w∈CN

LρL ,ρN (w,α(k+1),β(k+1),v(k+1), z(k),τ (k)). (17)

ording to (17), all variables except w are fixed in (6). Thus, 
 objective function of (8) that is modified from (6) due to the 
d z(k) and τ (k) can be manipulated further by using the fixed 
+1) = α(k+1) � e jβ(k+1)

, as in (12). Then, (17) is equivalent to

+1) = arg min
w∈CN

(∥∥∥AHw + z(k) − γ (k+1)
∥∥∥2

2

+ ρN

ρL

∥∥∥w + τ (k) − v(k+1)
∥∥∥2

2

)
, (18)

ich is quadratic in w. Setting gradient of the objective function 
(18) equal to zero for w(k+1) [30], we get

A
(

AHw(k+1)+ z(k) − γ (k+1)
)

+ ρN

ρL

(
w(k+1)+ τ (k)− v(k+1)

)
,

 find

+1) =
(

AAH + ρN

ρL
IN

)−1(
A

(
γ (k+1) − z(k)

)

+ ρN

ρL

(
v(k+1) − τ (k)

))
. (19)

Step 3: The dual updates are

+1) = z(k) + AHw(k+1) − γ (k+1), (20)
+1) = τ (k) + w(k+1) − v(k+1). (21)
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Algorithm 1 PAPR-ADMM, algorithm for computing the transmitter 
weights having PAPR between 1 and σ , also see [31].
Input: w(1) , A, b, h, ρL , σ , P and kmax

Initialization: w(0) = 2w(1) , y(1) = 0, λ(1) = 0, and k = 1
compute ρN from (22)
compute z(1) = y(1)/ρL and τ (1) = λ(1)/ρN

while k � kmax and 
∥∥w(k) − w(k−1)

∥∥
2 > 10−6

∥∥w(k−1)
∥∥

2 do
// Step-1
compute v(k+1) from (10)
compute β(k+1) from (13)
compute α(k+1) from (16)
form γ (k+1) , where γ� = α� e jβ� , � = 1, . . . , L
// Step-2
compute w(k+1) from (19)
// Step-3
compute z(k+1) from (20)
compute τ (k+1) from (21)
k = k + 1

end while
assign w f = w(k+1)

compute w
 from (23)
return w


We have described the steps to compute the transmitter 
weights satisfying the PAPR constraint. Then, we have a sugges-
tion for penalty parameters selection. The suggested method has 
two distinct penalty parameters ρL and ρN , and they are jointly 
used only in (19). To keep a balance between A(γ (k+1) − z(k)) and 
ρN/ρL

(
v(k+1) − τ (k)

)
in (19), we suggest ρN/ρL = ‖A‖2 which is 

also equal to the largest singular value of A. Hence, ρN can be set 
as

ρN = ρL‖A‖2. (22)

The suggested method is referred to as PAPR-ADMM and is out-
lined in Algorithm 1. The PAPR-ADMM requires an initial condition 
vector w(1) ∈CN , which can be a unimodular vector for the trans-
mit beamforming application. After initializing dual variables as 
y(1) = 0, λ(1) = 0, the steps described in this section are iteratively 
applied until the condition∥∥w(k) − w(k−1)

∥∥
2∥∥w(k−1)

∥∥
2

� 10−6

or the maximum iteration number k = kmax is satisfied. Note that 
after the final iteration, PAPR(w(k+1)) � σ may not hold due to 
the update equation (19). The final transmitter weights w f after 
termination of iterations may require an adjustment to meet the 
PAPR constraint of (2). We suggest to implement the PAPR update 
again on w f :

w
 = arg min
w∈CN

∥∥∥w f − w
∥∥∥2

2
(23)

subject to PAPR(w) � σ ,

‖w‖2
2 = P .

Note that w
 is simply the Euclidean projection of w f onto the 
feasible set of (2) that is given by [11].

Conventionally ADMM is built on the real-valued and convex 
functions. In this study, we have given the formulation by sepa-
rating the real and imaginary parts of complex variables, see (6). 
Then, we have utilized the complex-valued vector-matrix calcula-
tions to get an equivalent form, see the primal and dual updates. 
Depending on the application, e.g., when AHw is the DFT of w, 
we can apply DFT and inverse DFT and simplify the matrix inverse 
calculation in (19).

Next, we present an extension of the formulation to the wide-
band transmit beamformer design.
3.1. Wideband beamforming

In wideband beamforming, the goal is to set the sensor weights 
that give the desired beampattern within the negligible difference 
for different operating frequencies/wavelengths. The wavelengths 
of interest correspond a limited bandwidth around the center fre-
quency of the transmitter. Considering the well known quality fac-
tor definition,

Q f = fc

� f
, (24)

where fc is the center frequency, � f is the bandwidth of the 
transmitting elements for the definition of frequency samples f i ∈[

fc − � f /2, fc + � f /2
]
, we can express the matrix Ai , as in Sec-

tion 2, for each frequency sample i = 1, . . . , F . Concatenating Ai

matrices, we define

Awb � [A1|A2| . . . |AF ] ,

which is an N × F L matrix of array steering vectors. Similarly, we 
can obtain the desired beampattern vector bwb ∈ RF L+ by concate-
nating the desired beampatterns for frequency samples.

Thus, the wideband beamforming problem with PAPR con-
straint is given as

minimize
w∈CN

F L∑
�=1

h�

(
b� −

∣∣∣aH
� w

∣∣∣)2

subject to PAPR(w) � σ ,

‖w‖2
2 = P ,

(25)

where a� is the �th column of Awb, b� is the �th entry of bwb, 
and h� � 0 is the weight of the squared error term corresponding 
to the �th direction pair for � = 1, . . . , F L. This problem has the 
form of (2), and it can be solved simply by replacing A and b in 
Algorithm 1 with Awb and bwb, respectively.

3.2. Algorithm convergence

The convergence of ADMM for nonconvex problems is an im-
portant theoretic problem of the optimization literature, [23]. Al-
gorithm convergence depends on the initial primal and dual points, 
the penalty parameter and also on the formulation of update steps, 
[22]. Unfortunately, the PAPR constraint (due to its nonlinearity) 
does not lend itself to further analysis. In our experience, PAPR-
ADMM with the suggested settings has converged at all runs that 
we have implemented. The main difficulty that we face is not the 
convergence, the need of running PAPR-ADMM repeatedly with dif-
ferent initial conditions to avoid local optima. The sensitivity to the 
initial conditions is expected given the multimodal nature of the 
beampattern matching problem, as discussed in [5]. To improve 
the performance, we suggest to use the formulation (10) instead 
of (9) and examine this suggestion with some common parameter 
settings in Section 4. Readers are also invited to conduct Monte-
Carlo trials of PAPR-ADMM with randomized initial conditions by 
running a ready-to-use MATLAB code at [31].

3.3. Computational complexity considerations

We are able to present closed-form expressions for the solution 
of all steps in Algorithm 1 except (10) and (23), which is provided 
in [11]. Equations (10) and (23) have the form of (A.1) that requires 
a sorting operation with the complexity of O (N log N) operations 
and a processing of a vector with the worst case computational 
complexity of O

(
N2

)
. Here, (10) is evaluated in Step-1 of each 
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Fig. 1. For narrowband transmit beamforming with 32 elements ULA, the augmented Lagrangian function (6) versus iteration number, LρL ,ρN (w(k), α(k), β(k), v(k), y(k), λ(k)): 
(a) PAPR = 1 using (9), (b) PAPR = 1 using (10), (c) PAPR = 2 using (9), and (d) PAPR = 2 using (10).
iteration, whereas (23) is evaluated once after the termination of 
iterations.

In Step-1 of Algorithm 1, the required updates are implemented 
through the equations (13) and (16) requiring O (LN) multiplica-
tions. In Step-2, (19) requires O

(
LN2

)
. In Step-3, (20) and (21) re-

quire O (LN) and O (N), respectively. Therefore, the computational 
complexity of each iteration is O

(
LN2

)
, which can be reduced fur-

ther by computing the matrix inverse in (19) offline and storing 
the result. With the storage option, the computational complexity 
of Step-2 is reduced to O

(
N2

)
, and the overall complexity of each 

iteration becomes O
(
N2 + LN

)
multiplications.

4. Numerical comparisons

Unless otherwise is stated, we set ρL = 25, kmax = 10000, 
h = [h1, . . . ,hL]T is constructed with h� = δm if the �th direction 
sample corresponds to the mainlobe (or passband), and h� = δs
otherwise, where δs/δm = 100. Initial condition weight vector is 

set as w(1) =
[

w(1)
1 , w(1)

2 , . . . , w(1)
N

]T
, where w(1)

n = e j2πμn for n =
1, . . . , N and μ1, . . . , μN are i.i.d. random variables uniformly dis-
tributed on (0, 1).

We assume a sonar system having N = 32 elements uniform 
linear array (ULA). The distance between neighboring sensors is 
λ/2 for the center frequency 150 kHz, where λ is determined by 
using the speed of sound in water, which is taken as 1500 m/s.

4.1. Effect of fixed total power

Our goal is to study the algorithm performance when (9) is uti-
lized instead of (10) in Step-1. We have 10 realizations for the 
initial weight vector. For each realization, we apply PAPR-ADMM 
by setting PAPR, σ ∈ Sσ = {1, 2}, and P = N with the formulation 
given by (9) (fixed total power), or (10) (varying total power). In 
Fig. 1, the augmented Lagrangian function (ALF) value (6) versus it-
eration number k is shown. Comparing Fig. 1(a) and (b), we notice 
that the fixed total power formulation prevents the monotonicity 
of ALF when PAPR = 1. For PAPR = 2, both formulations provide 
the monotonous ALF values after some iterations, as shown in 
Fig. 1(c) and (d). Hence, we suggest the usage of formulation (10)
in Step-1 of Algorithm 1 for the performance improvement.

4.2. Mainlobe average power versus PAPR

We consider the sonar system given for the previous experi-
ment. Setting PAPR, σ ∈ Sσ = {1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.1, 
1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 1.9, 2, 3, 4, 5, 6}, we de-
sign a 1-D flat-top beampattern by using PAPR-ADMM initialized 
with the same initial vector w(1) . The PSL of the desired beam-
pattern is 30 dB. The mainlobe is centered at (0◦, 0◦) in (azimuth, 
elevation). The desired half-beamwidth and transition width are 
45◦ and 8◦ in azimuth, respectively. The direction samples are 
taken by using a uniform grid spacing of 0.1◦ .

The experiment is conducted to observe the mainlobe average 
power versus PAPR for narrowband transmit beamforming. As a 
strategy for maximizing the total transmitted power, transmitter 
weights are normalized so that the peak (or maximum) power is 
always fixed to the maximum allowed power that can be transmit-
ted from an antenna. Thus, each weight wσ for σ ∈ Sσ is scaled 
to have entries with the maximum magnitude of 1 before com-
puting the mainlobe average power. Consequently, the numerator 
of (1) is fixed to 1 for each wσ , and only ‖wσ ‖2

2 is affected from 
the changed σ . Owing to the power conservation, we increase the 
average power of the designed beampattern by increasing ‖wσ ‖2

2. 
Our method actually solves a constrained LS problem by trying to 
keep the ratio of the average power in mainlobe and sidelobe at 
some level. Hence, we observe that the mainlobe average power is 
decreased when PAPR(wσ ) is increased, as shown in Fig. 2. Ow-
ing to the same initial point, we can observe the achievable PAPR 
to which PAPR(wσ ) converges. This value is less than 5 for our 
parameters and initial point, and the results are not affected any 
more if we increase σ from 5 to 6.

For some PAPR values, the performance metrics of the designed 
beampatterns are given in Table 1, where P m

avg is the mainlobe av-
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Table 1
Performance Metrics for Narrowband Transmit Beamforming with 32 Elements ULA and PAPR � σ .

σ 1 1.01 1.02 1.05 1.4 1.6 1.75 1.9 2 3 4 5, 6

P m
avg (dB) 16.3609 16.3205 16.2850 16.2237 14.9758 14.3975 13.9638 13.5994 13.3865 11.6160 10.3677 9.6810

P m
p-p (dB) 9.7083 8.8528 8.5463 7.6724 3.6882 1.9813 1.0921 0.6956 0.5755 0.5489 0.5364 0.5470

PSL (dB) 19.9537 21.6018 21.7920 22.4198 24.1667 26.5034 27.3493 27.6373 28.7691 28.8939 28.6532 28.7207
PAPR(wσ ) 1 1.01 1.02 1.05 1.4 1.6 1.75 1.9 2 3 4 4.6884
Peff (wσ ) (%) 100.00 99.01 98.04 95.24 71.43 62.50 57.14 52.63 50.00 33.33 25.00 21.33
P m

min (dB) 9.9636 10.8448 11.1819 11.8114 12.5919 13.3165 13.3591 13.2474 13.0861 11.2791 9.9710 9.2830
P m

max (dB) 19.6719 19.6976 19.7282 19.4837 16.2801 15.2978 14.4512 13.9430 13.6616 11.8280 10.5074 9.8300
P s

avg (dB) −13.164 −13.295 −13.535 −13.620 −14.898 −15.525 −16.010 −16.385 −16.608 −18.382 −19.631 −20.318

P m/s
avg (dB) 29.5250 29.6155 29.8201 29.8441 29.8736 29.9225 29.9742 29.9845 29.9943 29.9984 29.9992 29.9993

Rmax (%) 100.00 99.77 99.56 99.21 92.34 89.31 87.11 85.30 84.26 76.10 70.82 68.08
Fig. 2. For narrowband transmit beamforming with 32 elements ULA, mainlobe av-
erage power versus PAPR (base-2 log scale is used for the PAPR axis).

erage power, P m
p-p is the peak-to-peak power variation in mainlobe, 

Peff (wσ ) = 100 · ‖wσ ‖2
2/‖w1‖2

2 is the power efficiency, P m
min is the 

minimum and P m
max is the maximum power in mainlobe, P s

avg is 
the sidelobe average power, P m/s

avg is the ratio of the average power 
in mainlobe and sidelobe, see Appendix C for the computation of 
average power, and Rmax is the maximum range ratio defined as

(Rmax)σ = 100 ·
(

(P m
avg)σ

(P m
avg)1

)1/4

by using the relation that the maximum range is proportional to 
(average power × aperture)1/4 [1].

The beampatterns corresponding to σ ∈ {1, 1.6, 2, 5} are 
shown in Fig. 3. As a comparison, σ = 1 design (PAPR = 1 case) 
presents maximum average power over the illuminated sector 
(P m

avg = 16.3609 dB) at the expense of large peak-to-peak power 
swing (P m

p-p = 9.7083 dB). While σ = 1.6 design has about 2 dB 
less average power in the mainlobe (P m

avg = 14.3975 dB), yet has 
a peak-to-peak power swing of 1.9813 dB in the mainlobe. Fur-
thermore, σ = 1.6 design has a better PSL than σ = 1 design by 
6.5 dB. On the other extreme, when PAPR constraint is ignored, 
which the case of σ = 5 or σ = 6; power swing in the mainlobe 
is minimized to 0.5470 dB and PSL is improved 28.7207 dB, yet 
the average power over the illuminated region is only 9.6810 dB 
which is about a quarter of σ = 1 design. The maximum range is 
decreased to 89.31% (about 10% range loss) and 68.08 (about 30%
range loss) for σ = 1.6 and σ = 5 (or σ = 6) design, respectively.

As noted previously, the goal of the present study is to let the 
designer trade-off between several metrics, as shown in Table 1, 
with a proper choice of PAPR value.

4.3. Radar waveform design with unimodular sequence

The second experiment is related to a radar application, where 
a unimodular periodic sequence is required to communicate 
Fig. 3. For narrowband transmit beamforming with 32 elements ULA, beampattern 
versus PAPR.

Table 2
Comparison of Peak-to-Peak Power Variation in Passband and PSL Values for Radar 
Waveform Design.

Method SHAPE [20] LPNN [15] ADMM [17] PAPR-ADMM

P m
p-p (dB) 2.7351 9.9479 1.7607 1.4021

PSL (dB) 15.1515 13.5066 19.0311 19.2167

through a crowded channel. While the beamforming applications 
are our main concern, we also give this example to put forward 
the feasibility of the method in other applications.

We compare the proposed method PAPR-ADMM with the uni-
modular sequence design methods SHAPE [20], LPNN [15], ADMM 
[17] for radar waveform design experiment described in [17]. 
The radar has the sample rate 810 kHz and the pulse duration 
200 μs, and therefore, the sequence length is N = 162. With re-
spect to the normalized frequency, the stopband intervals are 
[0, 0.0617], [0.0988, 0.2469], [0.2593, 0.2840], [0.3086, 0.3827], 
[0.4074, 0.4938], [0.5185, 0.5556], and [0.9383, 1.0000], and the 
rest of intervals correspond to the passband. The SHAPE1 and 
ADMM require upper and lower masks for passband specified by 
the ripple constraint 0.2, whereas LPNN and PAPR-ADMM require 
the unity passband mask. The peak stopband level is η = 0.01 or 
η = −20 dB. The spectrum of each sequence is shown in Fig. 4, 
and the corresponding peak-to-peak power variation in passband, 
P m

p-p, and PSL values are given in Table 2. Each sequence has com-
parable autocorrelation sidelobe levels, as shown in Fig. 5.

Next, we compare our method with ANSLM [21]. For PAPR-
ADMM, η = −29 dB, and the ratio of stopband and passband 
sample weights is δs/δm = 1000 to increase the power variation in 
passband. The spectra of sequences designed by using ANSLM and 
PAPR-ADMM are shown in Fig. 6. For ANSLM, PSL and P m

p-p values 
are 24.1653 dB and 9.2059 dB, respectively. With PAPR-ADMM, we 

1 MATLAB code is available on www.sal .ufl .edu /shape.

https://www.sal.ufl.edu/shape
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Fig. 4. Comparison of spectra for radar waveform design with η = −20 dB.

Fig. 5. Comparison of autocorrelation functions for radar waveform design with η =
−20 dB.

Fig. 6. Comparison of spectra for radar waveform design with ANSLM.

observe PSL as 25.7239 dB and P m
p-p as 6.7645 dB. Both sequences 

have comparable autocorrelation sidelobe levels, as shown in Fig. 7.

4.4. Wideband transmit beamforming

We consider a sonar system having N = 144 elements uniform 
rectangular array (URA). The distance between neighboring sensors 
is λ/2 for 150 kHz with the propagation speed of 1500 m/s. For 
wideband beamforming, the center frequency fc is 140 kHz and 
Fig. 7. Comparison of autocorrelation functions for radar waveform design with 
ANSLM.

the quality factor Q f is 14. Using (24), we compute � f as 10 kHz. 
Then, we take frequency sample f i ∈ {135, 137.5, 140, 142.5, 145}
kHz for i = 1, . . . , 5. Setting PAPR, σ ∈ Sσ = {1, 2, 8, 36}, and us-
ing PAPR-ADMM initialized with the same vector w(1) , we find 
the transmitter weights wσ that can be used to compute the 2-D 
flat-top beampatterns corresponding to these frequencies. The PSL 
of the desired beampattern is 15 dB. The mainlobe is inside of 
an elliptical region centered at (0◦, 0◦) and having semi-major 
and semi-minor axis of 35◦ and 15◦ , respectively. The sidelobe 
is outside of an elliptical region centered at (0◦, 0◦) and having 
semi-major and semi-minor axis of 43◦ and 20◦ , respectively. The 
direction samples are taken by using a uniform grid spacing of 
1◦ . Since the array has uniform grid and the desired beampattern 
is symmetric in azimuth and elevation, we can assume that the 
transmitter weights are symmetric in horizontal and vertical direc-
tions. Therefore, we decrease the search space dimension from 144
to 36 and set σ as 36 at most.

The beampatterns on cutting-planes, i.e., (φ, 0◦) and (0◦, θ)

planes, are shown in Fig. 8. For σ ∈ {1, 2}, the mainlobe has higher 
ripple than that of beampatterns corresponding to σ ∈ {8, 36}. The 
maximum of achievable PAPR is observed as PAPR(wσ ) = 12.3071
for σ = 36.

5. Summary and conclusions

The main goal of the study is to examine the transmit beam-
former design problem under the peak-to-average-power-ratio 
(PAPR) constraint. The PAPR constraint is included in the problem 
setting to provide a trade-off mechanism between the beampat-
tern shape, average power in the mainlobe and other classical 
metrics such as PSL, ISL, etc. Typically, a flat-top beampattern and 
maximum average power transmission over the sector of interest 
are jointly desired. Unfortunately, these two objectives are con-
tradictory and the introduced PAPR constraint provides a mean of 
trading one objective with the other. For example, the choice of 
PAPR = 1 (unimodular transmitter weight design) maximizes the 
average transmitted power in the mainlobe at the expense of se-
vere power fluctuations in the mainlobe, low PSL values, etc. For 
the example in Table 1, relaxing the PAPR constraint to 1.6 im-
proves the mainlobe power fluctuations by about 8 dB, PSL about 
6.5 dB at the expense of 2 dB less average power transmission 
in the mainlobe. At the other extreme, setting PAPR = N , where 
N is the number of the transmitting elements, corresponds to a 
design problem without a PAPR constraint. Such a choice is suit-
able for the receive beamforming where the average power in 
the mainlobe region is not a concern at all. For the solution of 
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Fig. 8. For wideband transmit beamforming with 144 elements URA, beampattern on cutting-planes versus PAPR, (a) σ = 1, (b) σ = 2, (c) σ = 8 and (d) σ = 36.
the problem, we use the alternating direction method of multi-
pliers (ADMM), which is capable of converging on a solution for 
the problems with convex objective function and nonconvex con-
straints. We combine the phase retrieval method PhareADMM [18]
and the alternating projection method [11] through an ADMM for-
mulation. For the beam shape and PAPR constraints, we make use 
of distinct penalty parameters in the augmented Lagrangian func-
tion. Thus, we can control the constraint violation of the beam 
shape and PAPR separately. Owing to the generality of formulation, 
the suggested method PAPR-ADMM can be applied both narrow-

band and wideband beamforming. Furthermore, depending on the 
application, a fast implementation with FFT can also be utilized. 
The method is not given specifically for the unimodular sequence 
design; but the results reveal that we can obtain competitive uni-

modular sequences by the suggested method PAPR-ADMM. Most 
importantly, the numerical results indicate that indeed a trade-

off between high power efficiency and a good approximation to 



10 Ö. Çayır, Ç. Candan / Digital Signal Processing 99 (2020) 102674
the desired beampattern can be achieved by tuning the PAPR con-
straint. Finally, a ready-to-use MATLAB code is provided at [31].
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Appendix A. On PAPR constraint

A.1. Example problem

Consider a problem of finding the nearest vector to a given vec-
tor s ∈CN under PAPR constraint. This problem can be stated as

minimize
w∈CN

‖w − s‖2 (A.1)

subject to PAPR(w) � σ ,

‖w‖2
2 = P ,

and can be solved efficiently with an alternating projection method 
given in [11].

Readers should notice that the optimal vector w
 and s always 
have the same phase independently of σ ; since PAPR(·) does not 
depend on the phase of its argument, see (1). As expected, the 
solution is unimodular

w
 =
√

P

N
e j � s (A.2)

for the lower bound of PAPR, i.e., σ = 1. When σ = N , i.e., when 
PAPR constraint is inactive, the solution becomes

w
 =
√

P

‖s‖2
s. (A.3)

Indeed, (A.3) is valid for PAPR(s) � σ � N .

A.2. Example problem extension: variable total power

Consider the extension of (A.1), where P is added as an opti-
mization variable as follows:

minimize
w∈CN ;P∈R

‖w − s‖2
2 (A.4)

subject to PAPR(w) � σ ,

‖w‖2
2 = P .

We can examine the effect of ‖w‖2
2 = P constraint on the objective 

function value of (A.1) by solving (A.4) for boundary PAPR values.
For the lower bound of PAPR, i.e., σ = 1, the solution w
 can be 

expressed as a function of P , w
 = √
P/Ne j � s , as given in (A.2). 

According to this solution, the objective function can be expressed 
as

‖w − s‖2
2 = ‖w‖2

2 − wHs − sHw + ‖s‖2
2

= P − 2

√
P

N

N∑
|sn| + ‖s‖2

2, (A.5)

n=1
By differentiating (A.5) with respect to P and equating the result 
to zero, we find the minimizer of (A.5) as

P = 1

N

(
N∑

n=1

|sn|
)2

. (A.6)

For the upper bound of PAPR, i.e., σ = N , the solution is w
 =√
P s/‖s‖2, as given in (A.3). Using this solution, we can express 

the objective function

‖w − s‖2
2 = P − 2

√
P‖s‖2 + ‖s‖2

2, (A.7)

and the minimizer of (A.7) is

P = ‖s‖2
2, (A.8)

which is actually valid for PAPR(s) � σ � N .
For the other values of PAPR, i.e., 1 < σ < PAPR(s), there is no 

closed-form expression for w
 . Hence, there is no closed-form ex-
pression for P either; but the interval for P can be given as

1

N

(
N∑

n=1

|sn|
)2

< P < ‖s‖2
2.

Furthermore, assuming that P1 and P2 are the minimizers for σ1
and σ2, respectively, if σ1 > σ2 then P1 > P2. It is obvious that 
(A.6) and (A.8) are equal only when PAPR(s) = 1. Moreover, the 
objective function of (A.4) is zero only for σ � PAPR(s).

Lemma 1. The achievable objective function value of (A.1) is zero if and 
only if σ � PAPR(s) and P = ‖s‖2

2 .

Proof. Let w
 be the solution of (A.1), then it is obvious that 
‖w
 − s‖2 � 0 and equality holds, i.e., the achievable objective 
function value of (A.1) is zero, only when w
 = s. Two vectors w


and s are linearly dependent if and only if PAPR(s) � σ � N , as 
given in (A.3). For (A.3), w
 = s if and only if P = ‖s‖2

2. The proof 
is completed.

Appendix B. Equivalence of problems for updating auxiliary 
variables

To show the equivalence of (7) and (8), we proceed as follows:

N∑
n=1

R

{
λ

(k)
n

}
R

{
w(k)

n − vn

}

+ ρN

2

N∑
n=1

(
R

{
w(k)

n − vn

})2 = − 1

2ρN

N∑
n=1

(
R

{
λ

(k)
n

})2

+ ρN

2

N∑
n=1

(
R

{
w(k)

n − vn

}
+ 1

ρN
R

{
λ

(k)
n

})2

= − 1

2ρN

N∑
n=1

(
R

{
λ

(k)
n

})2

+ ρN

2

N∑
n=1

(
R

{
w(k)

n − vn + τ
(k)
n

})2
, (B.1)

where the first term is fixed since λ(k) (and τ (k)) is given for (7)
in Step-1, and does not affect the arguments minimizing (7). Af-
ter using this approach, namely, completing square and ignoring 
the constant terms, for the imaginary counterpart in (7), we can 
combine the expressions including real and imaginary parts for the 
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equivalent problem and get the last term of the objective function 
in (8) as

ρN

2

N∑
n=1

(
R

{
w(k)

n − vn + τ
(k)
n

})2

+ ρN

2

N∑
n=1

(
I

{
w(k)

n − vn + τ
(k)
n

})2

= ρN

2

(
w(k) + τ (k) − v

)H (
w(k) + τ (k) − v

)
= ρN

2

∥∥∥w(k) + τ (k) − v
∥∥∥2

2
. (B.2)

By applying the same procedure on the remaining terms corre-
sponding to y(k) (and z(k)), the equivalence of (7) and (8) can be 

shown. It should be noted that 
ρL

2

∑L
�=1

∣∣∣aH
� w(k) + z(k)

� − α� e jβ�

∣∣∣2

in (8) can also be expressed in the form of (B.2) as

ρL

2

∥∥∥AHw(k) + z(k) − α � e jβ
∥∥∥2

2
.

Appendix C. Average power computation

Let the power function P corresponding to the sensor weights, 
w ∈ CN , and the directions of transmitted (or received) signal, 
(φ, θ), be

Pw(φ, θ) =
∣∣∣a(φ, θ)Hw

∣∣∣2
, (C.1)

where a(φ, θ) is the counterpart of a� for continuous variables 
(φ, θ). Let M = �m × �m = {(φ, θ)|φ ∈ �m, θ ∈ �m} and S =
�s ×�s = {(φ, θ)|φ ∈ �s, θ ∈ �s} be the set of directions for main-
lobe and sidelobe, respectively. Then, the mainlobe average power 
is defined as

P m
avg �

1

|M|
∫∫

(φ,θ)∈M
Pw(φ, θ)dφ dθ. (C.2)

The RHS of (C.2) can be expressed as P m
avg = wHRMw, where the 

N × N matrix RM is defined as

RM � 1

|M|
∫∫

(φ,θ)∈M
a(φ, θ)a(φ, θ)H dφ dθ (C.3)

and its (r, c) entry is

RM[r, c] = 1

|M|
∫∫

(φ,θ)∈M
e jk(φ,θ)T(pr−pc) dφ dθ (C.4)

for r, c = 1, . . . , N . Similarly, the sidelobe average power P s
avg can 

be defined by replacing M in (C.2) with S . Then, the ratio of 
the average power in mainlobe and sidelobe is defined as P m/s

avg �
P m

avg/P s
avg.
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