
IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 10, OCTOBER 2007 699

On Higher Order Approximations for
Hermite–Gaussian Functions and Discrete

Fractional Fourier Transforms
Çagatay Candan

Abstract—Discrete equivalents of Hermite–Gaussian functions
play a critical role in the definition of a discrete fractional Fourier
transform. The discrete equivalents are typically calculated
through the eigendecomposition of a commutator matrix. In this
letter, we first characterize the space of DFT-commuting matrices
and then construct matrices approximating the Hermite–Gaussian
generating differential equation and use the matrices to accurately
generate the discrete equivalents of Hermite–Gaussians.

Index Terms—Commuting matrices, fractional Fourier trans-
forms, Hermite–Gaussian functions.

I. INTRODUCTION

ACCURATE and efficient discretization of operators de-
fined in a continuum is a necessity with the advent of

digital computational tools. A successful discretization should
inherit as many operational properties of the continuous oper-
ator as possible and at the same time should have an efficient
means of calculation. The prime example for a successful dis-
cretization is the discrete Fourier transform (DFT). Following
the Fourier transform, the cosine transform and other related
transforms such as sine, Hartley, etc. have been discretized in
the 1970s. In the late 1990s, attention focused on the discrete
version of the fractional Fourier transform [1].

The discretization of a fractional Fourier transform is par-
ticularly challenging due to the difficulties with its highly os-
cillatory kernel. To date, various methods have been proposed.
Among these methods, discretization by the commutator matrix
has been found useful since this method preserves many prop-
erties of continuous transform and approximates the transform
quite closely.

In this letter, we present a set of commuting matrices that
provide finer approximations to Hermite–Gaussian functions.
The commuting matrices here have been first discussed in [2]
by mentioning that some higher order matrices can be utilized
when it is desired to simulate the continuous transforms very
accurately. In this letter, we show that higher order commuting
matrices indeed provide much better approximations than the
original matrix [2] and also outperform some other proposed
matrices recently reported in the literature [3], [4].
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This letter is organized as follows: Section II introduces Her-
mite–Gaussian functions and briefly establishes the connection
between these functions and the fractional Fourier transform.
Section III characterizes the space of matrices commuting with
the DFT matrix. The results of this section help us to conduct
a search on DFT-commuting matrices whose eigenvectors are
good approximations to the samples of Hermite–Gaussians.
Section IV is on the derivation of commuting matrices gener-
ating discrete equivalents of Hermite–Gaussians. Section IV
compares the method with the existing schemes in the literature.

II. HERMITE–GAUSSIAN FUNCTIONS

AND FOURIER TRANSFORM

Discretization of a differential equation requires a careful
practice since the choice of sampling locations (meshpoint
or midpoint), boundary conditions, and approximation
order may lead to very different finite dimensional equiva-
lents. For example, the solution of the differential equation

, with the boundary conditions
and , results in functions, which form a set
of orthonormal functions in , . By replacing the
second derivative with second differencing and substituting
the suitable boundary conditions for chosen discretization, we
can form a difference equation whose eigenvectors would be
the discrete equivalents of functions. In [5], it has
been illustrated that the multiplicity of ways in expressing
boundary conditions leads to four different discrete equivalents
for (each of which is formed by differently sampling

in ). The most important equivalent among the
four is the DCT-2, which is used in JPEG image compres-
sion. The multiplicity of discrete equivalents for a continuous
problem is an inherent difficulty of the discretization process
and should be carefully examined.

The differential equation generating Hermite–Gaussian func-
tions is given as follows:

(1)

We prefer to express the left-hand side of (1) in the operator
notation as

(2)

where corresponds to the eigenfunction of the operator .
In [2], it has been shown that , where
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is the derivative operator and is the Fourier transformation
operator defined as . The im-
portance of Hermite–Gaussians stems from their eigen-relation
with the Fourier transform. The Hermite–Gaussian functions
form a complete, orthogonal eigenfunction set of the Fourier
transform. This result has been shown by the commutation prop-
erty of and in [2].

In this letter, we would like to find matrices approximating
operator and commuting with the DFT matrix. To this end,
the matrix first proposed in [6] has been utilized in [2]. Re-
cently, the matrix first proposed in [7] has been suggested in
[3]. Here, we present additional matrices with higher approxi-
mation powers and show that these matrices provide much more
accurate representations. To illustrate the performance of these
matrices, we study the general structure of matrices commuting
with the DFT matrix first.

III. SPACE OF COMMUTING MATRICES

Matrices commuting with the DFT matrix form a linear
space [8, p. 416]. Some elements of this space are the identity
matrix, the all zero matrix, the matrix (and its powers), the
matrix of [6], and the matrix of [7].

In the present section, we show that any matrix commuting
with can be expressed as follows:

(3)

where is a matrix of matching dimensions, generating the
commutator matrix .

Theorem 1: The matrix and DFT matrix commute.
Proof: Multiplying from left and right by and ,

we get

(4)
where we have used in the last line.

Next, we use the fact that is a simple matrix (since it is uni-
tary); therefore, can be diagonalized or block diagonalized
in case of repeated eigenvalues. Since has only four different
eigenvalues, , can be block-diagonalized into
four blocks, each block having the size matching the multiplicity
of the associated eigenvalue. Two matrices are said to commute
if they have the same eigenspaces and the eigendecomposition
of the matrices coincides in the same block diagonal-structure.
Then the total degrees of freedom in the selection of DFT-com-
muting matrices is , where is the mul-
tiplicity of the eigenvalue , [8, p. 419].

We now present a theorem showing that the degrees of
freedom in the generation of matrices according to (3)
matches the total degrees of freedom in the generation of
DFT-commuting matrices.

Theorem 2: The degrees of freedom in the generation of ma-
trix is , where is the multiplicity of
the eigenvalues of the DFT matrix.

Proof: By stacking the columns of into a vector,
, we get

(5)

where denotes the Kronecker product. The rank of matrix
determines the degrees of freedom in the construction of the

matrix. We shall determine the rank of through its eigen-
values.

It is known that the matrix has
the eigenvalues , where and are
any eigenvalues of and matrices, [8, p. 411]. The asso-
ciated eigenvector for the eigenvalue is ,
where and are eigenvectors of and corresponding
to the eigenvalues and , respectively.

Then the eigenvalues of are with
the associated eigenvector . Since , is limited to
the primitive fourth roots of unity, i.e., , the eigen-
values of are zero unless . The only nonzero
eigenvalue of is four and it occurs when both and

are associated with the same eigenvalue, i.e., when both
vectors belong to the same eigenspace. The number of indepen-
dent eigenvectors in each invariant sub-space is the eigenvalue
multiplicity number, . Therefore, the total number eigenvec-
tors with nonzero eigenvalue, or the rank of , is

.
We now further simplify the structure of commuting matrices.

Let be the cyclic coordinate inversion operation. That is, with
the application of to vector

, we get . We know
that , replacing with in (3), we get:

(6)

This leads to the following structure for the commuting matrix
:

(7)

where is a scalar, are row and column vectors of
length , and is a centro-symmetric matrix of size

.
In the literature, there are two well-known DFT-commuting

matrices. The commuting matrix introduced in [6] has a gen-
erating matrix that is a circular convolution matrix of second
differencing operation. The commuting matrix introduced in
[7] has a non-Toeplitz structure, but it has also been shown to
be related to second differentiation [3]. Both matrices are in
the described structure, as expected. In [2], eigendecomposi-
tion of the commuting matrix has been studied in detail; this
study can be extended by using eigendecomposition properties
of centro-symmetric matrices [9].
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IV. MATRICES

In the classical text of Hildebrand, [10, p. 125], some approx-
imations to second derivative have been given as follows:

(8)

(9)

where represents the second cen-
tral differencing. In [2], (8) has been employed for the second
derivative approximation to generate an approximation
to the Hermite–Gaussian generating differential equation. Finer
approximations have also been suggested. For an approx-
imation, we can use

(10)

Expressing convolution of (10) in matrix form, we get a finite di-
mensional operator approximating the second derivative as fol-
lows:

(11)
Inserting the circular convolution matrix in (11) into the
defining relation for DFT-commuting matrices, which is in (6),
we get a DFT-commuting matrix . The important fact is that
the resulting matrix not only commutes with DFT but also
is an approximation to the Hermite–Gaussian generating
differential equation. This is true since and
reduces to , an approximation of
the Hermite–Gaussian generating differential equation (2).

The method for the fourth-order approximation can now
be immediately generalized to higher orders. The formula for

approximation to second derivative can be derived as
follows [11]:

(12)
The approximation formulas given above used to-

gether with the commuting matrix structure in (6) result in DFT
commuting, Hermite–Gaussian approximating matrices that are
called matrices.

We note that utilization of higher order matrices comes at no
additional computational cost, since the commuting matrices ,

, and do not have any known fast eigenvector calculation

Fig. 1. Comparison of twelfth Hermite–Gaussian with its discrete equivalents
using different approximation techniques.

Fig. 2. Comparison of error norms with different approximation techniques.

methods. The general methods for the banded matrices are used
for eigenvector calculation.

V. NUMERICAL COMPARISONS

In this section, we present some numerical comparison results
to show the approximation power of higher order matrices and
compare them with the matrices proposed in the literature.

Fig. 1 shows the twelfth Hermite–Gaussian function and its
32-point discrete representations calculated using different ma-
trices. The representations shown are obtained through the
matrix [2]; the matrix [3], [7]; the matrix [3]; and
higher order approximation matrices and . As can be
observed from Fig. 1, the matrix combined with produces
remarkably good approximations almost at the approximation
level of . However, clearly produces uniformly better
approximations, much closer to the true samples at every sam-
pling point. The approximation error norm is 0.0596 and 0.0056
for and matrices, respectively.

In Fig. 2, the approximation error between true samples of
Hermite–Gaussians and their discrete equivalents are plotted for



702 IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 10, OCTOBER 2007

. As expected, the higher order matrices produce much
finer approximations. The performance of all methods degrade
as the order Hermite–Gaussian functions increase. We also note
from Fig. 2 that matrix produces good approxima-
tions, at times better than the ones of to Hermite–Gaussian
functions for higher order Hermite–Gaussians. Therefore, the

matrix can be used to approximate higher order Her-
mite–Gaussian functions when these functions are discretized
individually. Additional comparisons for
can be found in [11].

VI. CONCLUSIONS

In this letter, we have showed that higher order approximation
matrices suggested earlier in [2] provide much better approxi-
mations than the approximations recently suggested for the im-
provement of fractional Fourier transform calculation. Here, we
present an analysis on the space of DFT-commuting matrices.
In the space of commuting matrices, we isolate matrices
and show that they can be used to accurately approximate Her-
mite–Gaussian functions and therefore fractional Fourier trans-
forms.
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