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An efficient and low complexity frequency estimation method based on the discrete
Fourier transform (DFT) samples is described. The suggested method can operate with an
arbitrary window function in the absence or presence of zero-padding. The frequency
estimation performance of the suggested method is shown to follow the Cramer–Rao
bound closely without any error floor due to estimator bias, even at exceptionally high
signal-to-noise-ratio (SNR) values.
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1. Introduction

Frequency estimation of complex exponential signals is
a fundamentally important non-linear parameter estima-
tion problem arising in several applications. Recently, an
efficient frequency estimation technique based on the
samples of Discrete Fourier Transform (DFT) has been
proposed in [1,2]. An important restriction of this techni-
que and several others such as [3–7] is the requirement of
DFT calculation with the rectangular window without any
zero-padding. The present work aims to remove both of
these restrictions by adapting the bias correction factor in
[2] to the window of interest.

The frequency estimation method given in [1,2] con-
sists of two stages. In the first stage (coarse frequency
estimation), N-point Discrete Fourier Transform (DFT) of
the N-point input is calculated. In the second stage (fine
frequency estimation), the DFT bin with the maximum
magnitude (kp) and its immediate left (kp�1) and right
neighbors (kpþ1) are used to estimate the fine part of the
frequency:

bδ ¼ cN Real
R½kp�1��R½kpþ1�

2R½kp��R½kp�1��R½kpþ1�

� �
: ð1Þ

Here cN is tan ðπ=NÞ
π=N for the rectangular window. The final

frequency estimate is formed by combining the results of
both stages, bω ¼ 2πðkpþbδÞ=N radians/sample. The first stage
of this estimator works with the rectangular window in the
absence of zero-padding. Further details on this method can
be found in [1,2].

In many applications, the DFT calculation is implemented
with a properly selected window to suppress the interfer-
ence caused by undesired spectrum components [8–10]. For
example, in pulse Doppler radars, the desired signal (target
echo at a specific Doppler frequency) coexists with other
echos such as clutter signal, undesired target echos and
jamming signal. With the application of windowing, the
impact of interfering components on the desired signal is
reduced. Due to emergence of the same problem in many
applications, a number of frequency estimation methods
with windowed data are given in the instrumentation and
measurement literature [11–14]. A particularly well known
estimator is the one utilizing Rife–Vincent class-I windows
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Fig. 1. DTFT and DFT spectrum of the complex exponential waveform
with the frequency kpþδ bins using rectangle and Hamming windows.
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is [12,13]

bδ ¼ Mþ1ð Þ jRw½kpþ1�j�jRw½kp�1j�
2jRw½kp�jþjRw½kp�1�jþjRw½kpþ1�j: ð2Þ

Here jRw½kp�j is the peak value of the windowed DFT output
where the applied window is the Rife–Vincent class-I win-
dow having the parameter M¼ f0;1;2;…g. Rife–Vincent
class-I windows are equivalent to the rectangular and Hann
windows for M¼0 and M¼1, respectively. Due to the wide-
spread usage of Hann window M¼1 case of this estimator is
important for many applications.

In an analogy with (1), the window specific correction
factor for the estimator in (2) is ðMþ1Þ. It should be clear that
the estimator (2) and its correction factor are specific to a
particular window. To the best of our knowledge, apart from
Duda's work [14], all other estimators in the literature are also
derived for specific windows [9–11]. In [14], Duda presents a
novel approach based on compensating the window specific
estimator bias through a high order polynomial interpolation.
The approach presented in this paper is very similar, in
principle, to the one of Duda's. Here, we only adapt the bias
compensation factor cN in (1) to the window. The main
advantage of the proposed method is its improved perfor-
mance in spite of its low computational complexity.
2. Preliminaries

A complex exponential signal with the normalized fre-
quency f in ½0;1Þ and with the complex amplitude A is
observed under additive white Gaussian noise:

r½n� ¼ Aejð2πfnþϕÞ þv½n�; n¼ f0;…;N�1g: ð3Þ

The frequency f can also be denoted in terms of the DFT bins,
f ¼ ðkpþδÞ=N where kp is an integer in ½0;N�1� and δ is a
real number in �1=2oδo1=2 [2]. The noise v½n� is circu-
larly symmetric complex valued Gaussian noise with zero
mean and σv

2
variance, v½n� � CN ð0;σ2

v Þ. The signal-to-noise
ratio is defined as SNR¼ A2=σ2

v .
In many applications, the complex exponential signal is

observed in the presence of interfering signals. For such
applications, the DFT is calculated with a proper a window
function to reduce the interference on the frequency esti-
mate. Fig. 1 shows the spectrumwith the Hamming window.
The Hamming window with its low side-lobes reduces
the interference leakage at the cost main-lobe widening
[8, Chapter 6]. It can be also seen that the curvature around
the peak changes significantly with the applied window. This
is the main reason that an interpolation based frequency
estimation method for a specific window does not work for
any other window.

As noted in the introduction section, the first stage of the
method described in [1] calculates the N-point DFT of r½n� and
then a peak search in the magnitude spectrum is conducted.
This stage aims to estimate the coarse part of the frequency
(kp) as shown in Fig. 1. In the second stage, the fractional part
of the frequency (δ) is estimated. For the rectangular wind-
owed signal, δ is estimated through the relation (1) with
cN ¼ tan ðπ=NÞ

π=N . Our goal is to use the same relation for δ
estimation, but select the bias-correction coefficient cN accord-
ing to the window function.
3. Main results

In the first stage of the proposed method, the input signal
is transformed to the DFT domain after the application of the
real valued window w½n�,

R½k� ¼
XN�1

n ¼ 0

w½n�r½n�e� jð2π=N2Þkn; k¼ f0;1;2;…;N2�1g ð4Þ

where N2 is the number of DFT points, which is possibly larger
than N with the application of zero-padding. In the absence of
noise, we may take, without any loss generality, A¼1 in (3)
and write r½n� as r½n� ¼ ej2πðkp þδÞ=N2 . Then, the spectrum
samples R½kpþ l� (l: integer) can be written as follows:

R½kpþ l� ¼
XN�1

n ¼ 0

w½n�ejð2πn=N2Þðδþ lÞ ¼ f wðδþ lÞ: ð5Þ

The window dependent f wðαÞ function appearing on the right
hand side of (5) is explicitly defined as

f wðαÞ ¼
XN�1

n ¼ 0

w½n�ejð2πnN2Þα: ð6Þ

For the case of zero-padding (N24N), the window function
w½n� in (6) can be considered as the zero-padded version of
N-point window and f wðαÞ for integer valued α values is its
N2-point inverse DFT.

3.1. Bias correction factor

An estimate for δ can be produced through the proces-
sing of the samples R½kp�1� ¼ f wðδþ1Þ;R½kp� ¼ f wðδÞ and
R½kpþ1� ¼ f wðδ�1Þ via the relation (1), provided that cN is
made available. Our goal is to set the bias correction factor
cN according the windowing function.

To facilitate the calculation of cN, we expand the function
f wðδþ lÞ into the Taylor series around α¼ l:

f wðδþ lÞ ¼ f wðlÞþ f 0wðlÞδþOðδ2Þ ð7Þ
Here f 0w αð Þ ¼ j2π

N2

PN�1
n ¼ 0 nw n½ �ejð2πn=N2Þα is the first deriva-

tive of the function given in (6). Upon the substitution of
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Fig. 3. Residual bias value of the estimator in (1) for different windows
after the bias-correction by cN.
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R½kp�1�-f wðδþ1Þ, R½kp�-f wðδÞ and R½kpþ1�-f wðδ�1Þ
into (1); we get the following relation for bδ:
bδ ¼ cN Real

f wðδþ1Þ� f wðδ�1Þ
2f wðδÞ� f wðδþ1Þ� f wðδ�1Þ

� �
: ð8Þ

By substituting the series expansion of f wðδþ lÞ around
l¼ f�1;0;1g from (7) into (8), we get

bδ ¼ cN Real
jA0þA1δþOðδ2Þ
B0þ jB1δþOðδ2Þ

( )
ð9Þ

where A0;A1 and B0;B1 are real valued constants with the
following definitions:

A0 ¼ Imagff wð1Þ� f wð�1Þg
A1 ¼ f 0wð1Þ� f 0wð�1Þ
B0 ¼ 2f wð0Þ� f wð1Þ� f wð�1Þ
B1 ¼ Imagf2f 0wð0Þ� f 0wð1Þ� f 0wð�1Þg: ð10Þ

Once the real part of the ratio given in (9) is calculated, we
reach

bδ ¼ cN
A1B0þA0B1

B2
0

δþO δ2
� �

: ð11Þ

Hence, by selecting cN as

cN ¼ B2
0

A1B0þA0B1
; ð12Þ

the bias for sufficiently small δ values can be reduced.
It can be verified that the result given in (12) exactly

matches the closed formula of cN ¼ tan ðπ=NÞ=ðπ=NÞ for the
rectangular window [1]. Even though it can be possible to
find closed form expressions for somewindows, such as Rife–
Vincent class windows; the multiplicity of windows and the
simplicity of the numerical calculation of cN from (12) render
such an effort of limited reward. We do not present any
analytical formulas for cN; but present a MATLAB function for
its numerical calculation [15]. The bias correction factors for
different windows are shown in Fig. 2. As a further assistance,
polynomial fitting operation is applied to cN values shown in
Fig. 2 and the resulting approximating polynomial is given
below each curve.
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Fig. 2. Bias correction factor cN for different windows (N2 ¼N).
Fig. 3 shows the effect of bias correction for the noiseless
case. As expected, for sufficiently small values of δ, such as
jδjo0:01, the correction, practically, removes the bias. Stated
differently, the bias after correction becomes so small that the
mean square estimation error is not affected by the bias
unless operating SNR is extremely large. (The numerical
results, given in the following sections, examines this claim
in more detail.) Yet, as jδj-1=2, the small δ assumption is
challenged and the value of the bias correction by simple
scaling depreciates. A remedy to this problem is the applica-
tion of a non-linearity on bδ as in [2]. Unfortunately, it is
difficult to find the “right” non-linear function for each
window. Here we follow an alternative route for bias reduc-
tion enforcing the operation around δ� 0 for all δ values as
explained in the next section.

3.2. Proposed method

Previously it has been noted that the bias-correction
through the correction factor cN works well when the true
δ magnitude is smaller than 0.01. We suggest to use bδ
relation in (1) twice to reduce (virtually eliminate) the bias
for all δ values.

The suggested approach is given in Table 1. The first 3 steps
of the suggested approach are identical to the bias-corrected
operation described earlier. In the 4th step, the input is
modulated such that the frequency of the signal after modula-
tion (r2½n�) becomes kpþðδ�bδ1Þ ¼ kpþδ2 in bins. An inspec-
tion of Fig. 3 may suggest the smallness of resulting δ2 after
this operation, jδ2jo0:01. Steps 5 and 6 are conducted to
estimate the residual component after modulation (δ2). Since
the true value of δ2 is expected to be small, the estimate bδ2 is
expected to be an accurate representation of δ2. At the last
step, the final frequency estimate is produced. The overall
implementation cost is the calculation of N2 point DFT,
calculation of bδ1 (1 complex division and 1 real multiplication),
re-calculation R2½kp�;R2½kp�1�;R2½kpþ1� in the second itera-
tion (3N2þN complexmultiplications) and calculation of bδ2 (1
complex division and 1 real multiplication). A detailed imp-
lementation is available in [15]. In contrast, Duda's method



Table 1
Proposed method.

1 Calculate the windowed N2ZN point DFT of the input r½n� (R½k�)
2 Detect the index (kp) of the maximum in the DFT spectrum

(0rkprN2�1)
3 Estimate bδ1 from (1) using R½kp�1�;R½kp�;R½kpþ1� and cN from (12)
4 Construct r2 n½ � ¼ r n½ � exp � j2πN2

bδ1n� �
;n¼ f0;1;…;N�1g

5 Calculate the windowed N2ZN point DFT of r2½n� (R2½k�)
6 Estimate bδ2 from (1) using R2½kp�1�;R2½kp�;R2½kpþ1� and cN from (12)
7 Output bδ ¼ bδ1þbδ2 and bω ¼ 2π

N2
kpþbδ� �

radians/sample

Fig. 4. Performance comparisons for the suggested estimator. (a) RMSE
comparison and (b) SNR gap comparison.
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requires, in addition to the first stage DFT calculation, the
calculation of at least 5th degree polynomial (10th degree
polynomials are used in [14]) for each window function; 3
magnitude calculations (2 real multiplications and 1 square
root operation each) and evaluation of at least 5th degree
polynomial. The calculation of large degree polynomials and
their evaluation are the main disadvantage of Duda's method
in comparison to the suggested one.

The main idea of the proposed approach is to use the
suggested estimator twice at different operating points.
The same idea also appears in the frequency estimator
proposed by Aboutanios and Mulgrew for the rectangular
windowed data, [4]. The goal of both methods is the same,
that is to reduce the estimator bias by moving the
“operating point” to an advantageous location.

4. Numerical experiments

Three sets of numerical results are provided to examine
the performance of the suggested method. The first set
examines the effectiveness of the suggested method over a
wide range of SNR values. The second set presents a root
mean square error (RMSE) comparison of the estimator for
different windows. The third set examines the effect of zero-
padding, i.e. N2-point DFT (N24N). In all three experiments,
the number of input samples is N¼16 and the true value of
δ is 0.45. Hence, the true frequency is 2πðkpþ0:45Þ=N
radians/sample where kp is an arbitrary integer in ½0;N�1�
with no effect on the fine frequency estimation. The choice
of large δ (δ� 1=2) and small N leads to a difficult opera-
tional scenario, challenging several small δ assumptions in
the estimator development. The expression for the Cramer–
Rao bound shown in figures is available in [2, Eq. (3)].

Experiment 1: This experiment examines the perfor-
mance of the method whose steps are given in Table 1 for
16-point DFT (N2 ¼N¼ 16) with Hamming window. The
correction factor cN for this experiment is 1.9427.

Fig. 4(a) shows the RMSE of the suggested estimator for
the cases of bδ ¼ bδ1 and bδ ¼ bδ1þbδ2 where bδ1 and bδ2 are the
estimates produced at steps 3 and 6 of Table 1. The goal of
this experiment is to examine the effectiveness of the
proposed method for two different choices of bδ over a wide
range of SNR values.

It can be noted from Fig. 4(a) that the RMSE of the
estimator with bδ ¼ bδ1 is limited by the estimator bias at
high SNR. Since MSE¼ ðbiasÞ2þvarðerrorÞ, where varðerrorÞ
is the variance of the estimation error; the MSE is limited by
the estimator bias at sufficiently high SNR. From Fig. 3, the
bias of Hamming window at the true δ¼ 0:45 can be read as
2�10�3, which is identical to the RMSE floor observed forbδ ¼ bδ1 in Fig. 4(a) at high SNR. As can be noted from
Fig. 4(a), the suggested estimator with bδ ¼ bδ1þbδ2 does
not suffer from RMSE floor even at high SNR values, such
as 140 dB, indicating the effectiveness of the suggested
method in the removal of estimator bias. Results for higher
N values are similar. In fact, doubling of N or SNR has almost



Fig. 5. Performance of the suggested scheme for three different win-
dows. (a) Effect of windowing on RMSE in the absence of interference and
(b) effect of windowing on RMSE in the presence of interference.
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the same effect in the high SNR region which is the
reduction of RMSE by

ffiffiffi
2

p
.

In the same figure the performance of other estimators
is also illustrated. The Aboutanios and Mulgrew estimator
is an iterative estimator similar to the one presented here
[4]. Since the working assumption of Aboutanios and
Mulgrew estimator is the utilization of the rectangular
window, this estimator works poorly in the presence of
any other window. Recently, Aboutanios has extended this
work and presented an exact bias compensation which is
shown to be only effective at very high SNR values, again
for the rectangular windowed data [5]. The performance of
the estimator developed in [5] is identical to [4] in the
examined scenario.

Duda's estimator operates with arbitrary windows [14].
It can be noted from Fig. 4(a) that the performance of
Duda's estimator is almost identical to the first iteration of
the proposed estimator; but has a poorer performance
than the second iteration by more than 2 dB. This can be
most clearly seen from Fig. 4(b) where SNR gap values
(required SNR increase to reach the Cramer–Rao bound at
a given input SNR) of Duda's and proposed method is
given for different true δ values at SNR¼30 dB. We further
discuss SNR gap of other windows in the next experiment.

Experiment 2: The second experiment compares the
estimator performance for three different windows in the
absence of zero-padding (N2 ¼N). The windows used in
this experiment are Blackman, Hamming and rectangle
windows.

Before the discussion of the experiment results, we would
like to emphasize that the application windowing results in
the loss of output SNR, which is also denoted as the loss of
coherent integration gain in the literature [8, Chapter 6]. The
amount of SNR loss for the window of w½n� can be expressed

as SNRwindowing
loss ¼ 10 log10

PN� 1

n ¼ 0
w½n�

� �2
N
PN� 1

n ¼ 0
w2½n�

 !
dB [8, p. 188]. This

loss occurs due to the deviation from SNR maximizing
matched filtering type operation. The SNR loss for Hamming
and Blackman windows for N¼16 is 1.54 and 2.65 dB,
respectively.

Fig. 5(a) shows the RMSE of the estimators for three different
windows. It can be noted that all estimators do not have an
error floor and track the Cramer–Rao bound. From high SNR
region plot, it can be more easily seen that the estimators are
lined up according the incurred SNRwindowing

loss value.
An analytical expression for the MSE can be derived by

following the approach in [2]. The black dashed lines in
Fig. 5(a) show the analytical expression, given below,
which is reached by treating cδ1 as a random variable
independent of noise.

MSE¼ 2c2N
B2
0 SNR

XN�1

n ¼ 0

w n½ � sin 2πn
N

	 
���� ����2 ð13Þ

For the rectangle window, cN ¼ tan ðπ=NÞ
π=N � 1, B0 ¼ð10Þ2N, the

summation in (13) is N=2 and MSE becomes MSE¼
1=ð4 SNRÞ, which is identical to the expression in [2, Eq. (11)].

Fig. 5(b) shows a typical scenario illustrating the advan-
tages of windowed operation. Here a second complex expo-
nential signal is interfering with the desired signal. The power
of interfering signal is 10 dB higher than the desired signal
power, i.e interference-to-signal ratio (ISR) is 10 dB. The
frequency of interfering signal is 4.5 bins higher than the
signal of interest, i.e the frequency difference between desired
and interfering signals is 2π � 4:5=N radians/sample. Fig. 5(b)
shows that SNR loss shown in Fig. 5(a) due to windowing is
compensated with the suppression of the interfering signal
and windowed operation yields better results at high SNR. In
general, the trade-off between SNR loss due to windowing and
suppression of interference depends on ISR, frequency of the
interfering signal and operating SNR values. (Readers can
examine [8, Chapter 6] for details.).

In the absence of interference (ISR¼ 0), the rectangular
windowed data (no windowing) certainly yields the best
results. For this case, the ratio of MSE, given in (13), and
Cramer–Rao bound at high SNR is 1.68, 3.51 and 5.72 for
rectangle, Hamming and Blackman windows, respectively.
This loss is partially due to the SNR loss due to windowing
and partially due to the estimator. We anticipate that the
development of better frequency estimators for arbitrarily
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windowed data, as the Aboutanios and Mulgrew method
for the rectangular window, in the near future.

Experiment 3: This experiment shows the effect of zero-
padding, N2-point DFT (N24N), on the frequency estima-
tion. As can be seen from Fig. 6, 2N-point DFT with
Hamming window is closer to the Cramer–Rao bound by
1 dB in comparison to the N-point DFT result. Higher point
DFT calculations do not seem to yield any additional benefit.
Hence, it can be concluded that 2N-point DFT is sufficient to
capture the best estimation performance of the suggested
method.
5. Conclusions

The present study extends an earlier fine frequency
estimation method, given in [2], limited to the rectangle
windowed data to the case of windowing with or without
zero-padding. Different from many methods in the literature,
the suggested method is readily applicable for any window
function and results in an estimation performance closely
tracking the Cramer–Rao bound without any apparent bias,
even at exceptionally high SNR values. A possible future work
can be the inclusion of higher order δ terms in the estimator
design to develop a non-iterative algorithm.
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