
www.ietdl.org

9
&

Published in IET Radar, Sonar and Navigation
Received on 20th February 2014
Revised on 16th May 2014
Accepted on 27th May 2014
doi: 10.1049/iet-rsn.2014.0085
2
The Institution of Engineering and Technology 2015
ISSN 1751-8784
Direction finding accuracy of sequential lobing under
target amplitude fluctuations
Çag̃atay Candan, Sencer Koç

Department of Electrical-Electronics Engineering, METU, 06531 Ankara, Turkey

E-mail: ccandan@metu.edu.tr

Abstract: Using recently developed statistical target fluctuation models, the accuracy of sequential lobing is analytically studied.
The study shows that the sequential lobing method suffers from a significant performance loss, in comparison with the monopulse
method, for the Rayleigh fluctuation model. For other fluctuation models, the performance loss gradually decreases as the
amplitude spread associated with the fluctuation gets smaller. The present study aims to analytically quantify the mentioned
accuracy loss because of target amplitude fluctuation and aims to assess the engineering utility of the sequential lobing
method for practical applications. To that aim, two operational regimes, namely the noise-limited and target-fluctuation-
limited operational regimes, are introduced and the boundary between regimes, separating acceptable and unacceptable
performance loss with respect to monopulse method, is analytically determined.
1 Introduction

Sequential lobing is a well-established direction finding
technique based on successively switching the transmitter
beam between two positions to obtain the target angular
position. This technique, with its modest calibration and
hardware requirements, is commonly adopted in early radar
systems and is still being preferred in some modern systems
because of its implementation advantages [1, p. 224]. The
goal of this paper is to quantify the direction finding
accuracy of the sequential lobing technique.
As noted by Skolnik [1, Fig. 4.16], the performance of

sequential lobing is expected to deteriorate for manoeuvring
targets. To the best of our knowledge, the amount of
deterioration, its variation with signal-to-noise ratio (SNR;
or equivalently target range) and a performance comparison
with other techniques, that is, monopulse methods, are not
quantitatively given in the literature. In this study, our goal
is to use recently suggested statistical target fluctuation
models to present a justification of the qualitative comments
given by Skolnik [1, Fig. 4.16].
Direction finding is one of the fundamental tasks of radar

systems. Early systems equipped with a single beam are
required to switch the beam in two different positions, that
is, illuminate the target once, switch the beam to a squinted
position and then illuminate the target once more, so as to
obtain information about the target angular position. The
described operation is illustrated in Fig. 1. The fundamental
assumption of the sequential lobing is the constancy of
target amplitude for the total duration comprising both
illuminations. The illumination times are indicated as T1
and T2 in Fig. 1. With this assumption, the target
angular position is estimated using the knowledge of
antenna patterns.
In contrast to sequential lobing, monopulse systems
simultaneously process the return with multiple receivers
and the target angular position is extracted from a single
radar pulse (possibly burst of pulses). The name
‘monopulse’ follows from the described mode of operation.
Owing to the instantaneous data gathering, the monopulse
systems are not affected by the target fluctuation. This is
the main advantage of monopulse systems. Unfortunately,
the hardware complexity and calibration requirements of the
monopulse systems are more demanding than sequential
lobing systems and this is the main reason that the
sequential lobing technique is still being utilised in spite of
its questionable performance for manoeuvring, that is,
fluctuating targets. One of the goals of this study is to
analytically evaluate the practical ‘value’ of sequential
lobing for manoeuvring targets.
The literature on the performance of sequential lobing

technique is quite limited. The most important study in this
line is the work of Lo [2], which presents an examination
of a practical implementation. This study focuses on a
system with a logarithmic amplifier in the radio frequency
(RF) chain and assumes that the output of the logarithmic
amplifier for two beams is statistically independent. The
independence assumption is based on the assumed target
model (non-fluctuating target) and independence of receiver
noise in two receptions.
A recent work of Cui et al. [3] extends the work of Lo to

the fluctuating targets and examines the sequential lobing
performance for a non-coherent receiver with a logarithmic
amplifier. In the present study, we examine the same
problem for a coherent receiver and place a particular
emphasis on the quantification of the performance loss
between monopulse and sequential lobing methods. More
specifically, the main goal of this study is to assess the
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Fig. 1 Illustration for the operation of sequential lobing technique
with manoeuvring targets
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practical value/utility of sequential lobing, in comparison
with the monopulse, for modern systems. To this aim, we
introduce two operational regimes namely the
target-fluctuation-limited and the noise-limited regimes and
establish the connection between the target fluctuation
models and the operational regimes. In contrast to the
sequential lobing literature, the monopulse literature is
significantly richer. One can consult [4–6] for various
aspects of monopulse systems. To the best of our
knowledge, the examined problem has not been studied in
the open literature apart from recent work of Cui et al. [3]
complementing the findings herein.
2 Statistical target fluctuation models

We use the generalised gamma distribution as the target
fluctuation model. The model encompasses some other
well-known fluctuation models such as Swerling, Weibull
models and can be considered as the generalised Swerling
model [7]. A number of target models and their connections
Fig. 2 Statistical models for target amplitude fluctuation and their con
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are presented in Fig. 2. Here, we use the bivariate
generalised gamma distribution to model the target
amplitude at time instants T1 and T2 of sequential lobing.
The bivariate generalised gamma distribution has the shape

parameters (also known as Nakagami fading parameter) m1,
m2; the scale parameters Ω1, Ω2; the correlation parameter ρ
and the exponent parameters v1, v2 as shown in Fig. 2. The
generality of the distribution results in fairly complicated
analytical expressions for its probability density function
and cumulative density function. The expressions for these
functions can be found in [8, eq. (2) and eq. (4)]. In this
work, we refrain from presenting these relations, but instead
emphasise the connections with more familiar distributions
to convey the process of target amplitude modelling.
We start with a brief review of some facts about the gamma

distribution. A gamma distributed random variable can be
considered as the summation of independent and identically
distributed (i.i.d.) zero-mean Gaussian random variables,
that is

∑2m
k=1 (xk)

2, where each xk is i.i.d. Gaussian
distributed with zero mean and variance s2

x [9, eq. (29)].
When the shaping parameter m is an integer multiple of
1/2, the gamma distribution is identical to the χ2

distribution with 2m degrees of freedom. The parameter m
(m≥ 1/2) relates to the fading of the signal and called as
the fading parameter or Nakagami-m parameter in the
communication studies [10]. As m→∞, the effect of
fading is monotonically reduced, that is, the variance of the
distribution reduces and the distribution gets concentrated
around the mean.
The generalised gamma distribution is related to the

standard gamma distribution through a simple ‘power
relation’. If y is gamma distributed, then the variable
r = y1/(2vi) for vi > 0 is said to be generalised gamma
distributed. It should be noted that when parameter vi is
taken as 1/2, the generalised gamma distribution reduces to
the standard gamma distribution. The power relation is
especially important for the Weibull model where
the exponent vi is adjusted to match the spikiness of the
nection with generalised gamma model
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collected data. In this study, we are interested in the
comparison of the amplitude or equivalently the power
(amplitude square) of two signals received in succession;
therefore the choice for the exponent vi is not critical for
the present study.
We would like to remark that in radar signal processing, the

m-parameter is related to the spread of the amplitude
fluctuation and the parameter Ωk represents the mean value
of the return power. Hence, the gamma variate characterises
the power return of the target. It should also be remarked
that the square root of gamma variate corresponds to the
Nakagami-m distribution and said to represent the ‘voltage
signal’ according to the electrical engineering terminology.
The bivariate gamma distribution encapsulates the standard

gamma distribution in the marginals; but has an additional
parameter, called the power correlation parameter ρ, (0≤
ρ≤ 1), denoting the correlation coefficient of two gamma
distributed variates

r = Cov(A2
1, A

2
2)�����������������

Var(A2
1)Var(A

2
2)

√ = Cov(p1, p2)�����������������
Var(p1)Var(p2)

√
In the equation above, A1, A2 denote the amplitude of the
signal at time T1 and T2, respectively, and pk = A2

k for k =
{1, 2} denotes the power of the signal. The average power
is defined as Vk = E{A2

k} = E{pk}, where E{·} is the
expectation operator. It should be remembered that our goal
is to study the sequential lobing accuracy when the target
amplitudes at times T1 and T2 are not fully correlated (ρ≠
1), that is, to quantify the performance loss when the main
assumption is violated.
With the presented target model, the return power is

modelled as the superposition of m power components. As
can be noted from Fig. 2, when m = 1 the general model
reduces to Rayleigh model and when m = 2, we have
Swerling 3/4 model. The models for higher values of m can
be considered as the generalised Swerling models as
suggested in [7].
According to the presented target model, the voltage value

of each component contributing to the total received power is
complex-valued and circularly symmetric Gaussian
distributed with zero mean, unit variance. The target power
at times t = {T1, T2} can be written as follows

p1 =
∑m
k=1

||x1,k ||2 =
∑m
k=1

xre1,k
( )2 + xim1,k

( )2{ }

p2 =
∑m
k=1

||x2,k ||2 =
∑m
k=1

xre2,k
( )2 + xim2,k

( )2{ }
(1)

In the equation above, the random variables x1,k = xre1,k + jxim1,k
and x2,k = xre2,k + jxim2,k denote the complex amplitude of the
kth component contributing to the total received power at
time instants T1 and T2, respectively. With the present
model, it is assumed that different components, that is,
components having different k indices in (1), are
independent from each other; but the return from each
component at times T1 and T2 are correlated, that is the
random variables x1,k and x2,k, having identical k indices,
are assumed to be correlated. The sequential lobing
technique assumes full correlation between x1,k and x2,k
leading to the conclusion that x1,k = x2,k. Our goal is to relax
this assumption and examine the performance loss incurred.
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For the application of sequential lobing, we may visualise a
manoeuvring target which is illuminated twice in a rapid
succession. In many systems, the time separation between
transmissions is typically a few milliseconds or less. Under
these conditions, unless the target is exceptionally agile, the
change in the aspect angles of the target reflecting surfaces
in between two illuminations is expected to be small. If we
assume that the correlation of return powers at two time
instants are related to the variations in the illuminated
surfaces, there should be a significant correlation between
received signals. We may argue that such an explanation is
only valid for slowly manoeuvring targets and the
performance of sequential lobing is questionable if the
manoeuvre is sufficiently rapid.
The correlation between received signal powers p1 and p2,

given in (1), can be expressed in terms of the correlation
between the individual voltage values x1,k and x2,k. If we
denote the covariance matrix of x1,k and x2,k with Cx, then
the covariance matrix of return powers p1 and p2, denoted
with Cp, can be expressed in a surprisingly compact form
[9, eq. (28)] [The eq. (28) in [9] contains an additional
factor of 2 which is not required in this paper because of
the definition of complex-valued random variables.]

Cx =
1��
m

√ Cp
⊙(1/2) (2)

Here, A⊙(p) denotes the matrix whose elements are the pth
power of the corresponding element of A, that is,

A⊙(p)( )
i, j

= Ai, j

( )p
. We would like to note that the power

correlation parameter ρ can be experimentally estimated by
recording the return power of a manoeuvring target. Once
the power correlation is estimated, one can make use of (2)
to generate synthetic data for realistic computer simulations.
Finally, we present the joint density of bivariate gamma

variables [8, eq. (5)]

f p1,p2 (p1, p2) =
mm+1

G(m)V1V2(1− r)

p1p2
rV1V2

( )(m−1)/2

× exp − m

1− r

p1
V1

+ p2
V2

( ){ }
× Im−1

2m

1− r

���������
r

p1p2
V1V2

√( )
u(p1)u(p2)

(3)

Here, Γ(·) is the gamma function, Ia(x) =
∑1

k=0
(x/2)a+2k/(G(a+ k + 1)k!) is the modified Bessel function
of order α and u(·) is the unit step function. It can be
verified that as ρ→ 0, the joint density for the random
variables p1 and p2 approach the product of univariate
gamma variables with the following density [8, eq. (3)]

fp(p) =
mm

VmG(m)
pm−1 exp −m

V
p

( )
u(p) (4)

As a cautionary remark, we would like to note that the
bivariate gamma density presented here is known as
Jensen’s bivariate gamma distribution in statistics literature
[12, p. 438]. There are several other definitions for the
bivariate gamma distribution extending the standard gamma
density of one random variable to two random variables
[12]. Jensen’s density is the natural extension for the radar
target modelling encompassing classical Swerling models.
IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 92–103
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3 Sequential lobing technique

The received signal for sequentially switched beam positions
can be written as follows

r1 = a1P1(Q)+ w1

r2 = a2P2(Q)+ w2 (5)

Here, a1 and a2 represent the complex-valued target
amplitude at time instants T1 and T2. The target amplitudes,
and therefore the target power values at T1 and T2, are
assumed to be correlated. The real-valued functions P1(Θ)
and P2(Θ) denote the antenna voltage patterns for two
looks. The random variables w1 and w2 represent the
receiver noise, which are assumed to be independent and
Gaussian distributed with zero mean and s2

w variance. The
SNR of kth observation is defined as SNRk = E{a2k}/s

2
w =

Vk/s
2
w. For target modelling, the average power at times T1

and T2 is assumed to be the same, that is Ω =Ω1 =Ω2,

where Ω refers to the average return power of the target and
therefore SNR = SNR1 = SNR2. The goal of direction
finding is to produce an estimate for the target angular
position, that is, Q̂, given the complex-valued
measurements r1 and r2.
Sequential lobing technique uses the magnitude of r1 and r2

for the estimation of angular position

P1(Q̂)

P2(Q̂)︸��︷︷��︸
fv (̂Q)

= r1
∣∣ ∣∣
r2
∣∣ ∣∣ ⇒ Q̂ = f −1

v

r1
∣∣ ∣∣
r2
∣∣ ∣∣

( )
(6)

In the absence of noise, the sequential lobing method
produces the true solution, but this technique does not have
any optimality properties in the presence of noise; yet it is
frequently used in practice. Its practical success can be
explained by its close relation with the maximum likelihood
(ML) method for non-random (deterministic) targets. The
non-random target amplitude does not change in time and
therefore can be considered as fully correlated target
amplitude (ρ = 1). The ML estimate for Θ given for
non-fluctuating and non-random target amplitudes can be
written as [13, eq. (5–70)]

P1( Q̂ML )

P2( Q̂ML )︸����︷︷����︸
fv( Q̂ML )

= 2Re{r1/r2}

1− r1/r2
∣∣ ∣∣2 + 1+ r1/r2

( )2∣∣∣ ∣∣∣︸����������������︷︷����������������︸
cr

⇒ Q̂ML = f −1
v (cr)

(7)

For sufficiently high SNR, that is when the noise variance s2
w

is sufficiently small in comparison with the average return
power from the target, the ML rule approaches

fv(Q̂) = Re{r1/r2} = r1
∣∣ ∣∣/ r2

∣∣ ∣∣cos((r1)− (r2)). Considering
high SNR conditions, this relation can be further

approximated as fv(Q̂) = r1
∣∣ ∣∣/ r2

∣∣ ∣∣, which is the rule for
sequential lobing given in (6). Therefore, under the
assumption of high SNR, the sequential lobing method
approaches ML method for non-fluctuating targets. Further
details about the high SNR behaviour of the sequential
lobing, ML method and the associated Cramer–Rao lower
bound are given in Section 5.
IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 92–103
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In the present paper, we refer to the ML estimator given in
(7) as the monopulse estimator. This monopulse estimator
uses both the magnitude and phase information of the
received data, and therefore its performance is expected to
be better than the sequential lobing method in general. The
estimator given in (7) can also be implemented by first
forming sum and difference of two receptions (r1 and r2),
which is in some sense equivalent to the formation of sum–
difference antenna patterns. Since the formation of sum–
difference patterns is an invertible operation, the ML
estimate with the sum–difference patterns is identical to the
estimate given in (7).
We would like to note that it is not possible to use the ML

estimator given in (7) with the sequentially switched beams;
since for moving targets, the range change of the target
during the beam-switching time causes a phase change
which cannot be reliably estimated even for the
non-fluctuating targets. This necessitates the use of only the
magnitude of the receptions r1 and r2 in the target angular
position estimation via the sequential lobing method.

4 Performance of sequential lobing
technique

The sequential lobing estimate Q̂ = f −1
v (|r1|/|r2|), given in

(6), can equivalently be written in terms of ratio of power
patterns fp(·) = [ fv(·)]

2

Q̂ = f −1
p

|r1|2
|r2|2

( )
(8)

Here, fp(Q) = fv(Q)
[ ]2 = P2

1(Q)/P2
2(Q) is the ratio of

antenna power patterns. It should be noted that the
estimates produced by the voltage or power patterns are
identical. Our preference of power patterns is due to the
emergence of simpler analytical expressions for the power
variables.
We define the random variable pr, which is the power ratio

of return signals, as follows

pr =
p1
p2

= |a1|2
|a2|2

(9)

In the absence of noise, the received signal model given in (5)
simplifies to r1 = a1P1(Θ) and r2 = a2P2(Θ) and the ratio of
powers at times T1 and T2 can be written as

|r1|2
|r2|2

= pr
P2
1(Qtrue)

P2
2(Qtrue)

= prfp(Qtrue) (10)

Here,Θtrue is the true value for the target angular position. For
the case of non-fluctuating targets, we have pr = 1 and

Q̂ = f −1
p (|r1|2/|r2|2) = Qtrue. For fluctuating targets, the

power ratio |r1|
2/|r2|

2 and therefore Q̂ are random variables.

The mean, variance and the distribution of Q̂ determines
the performance of direction finding system.

4.1 Distribution of power ratio for fluctuating
targets

The ratio of target powers given in (9), where p1 and p2 are
modelled according to the bivariate-correlated gamma
variates given by (3), can be expressed as
95
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f pr (pr) =
�1
0 zf p1,p2 (prz, z)dz [14, eq. (6–43)]. The analytical

expression for f pr (pr) for Ω1 =Ω2, can be written as follows
[15, eq. (10)] [The condition of Ω1 =Ω2 utilised in the
derivation of (11) relates to the target having the same
average power at the time instants of T1 and T2 in the
present context. Fast fluctuating targets (or equivalently a
large time gap between T1 and T2) may violate this
condition. For such targets, the sequential lobing
performance is expected to be further degraded.]

f pr (pr) =
22m−1��

p
√

(1− r)−m

G(m+ 1/2)

G(m)

× pm−1
r (pr + 1)

(pr + 1)2 − 4rpr
[ ]m+0.5 u(pr)

(11)

The mean and variance of pr can be expressed as follows [11,
eq. (2.6)]

E{pr} = 1+ 1r
m− 1

Var pr
{ } = 1r

2

m− 1
+ 12r

(5m− 4)

(m− 1)2(m− 2)
(12)

In the equation above, ερ = 1− ρ denotes the deviation of the
power correlation coefficient from the case of full correlation.
Hence, the parameter ερ denotes the amount of correlation
deficiency. It should be noted that for the fully correlated
case (ερ = 0), the target power values at times T1 and T2 are
identical and their ratio (which is 1) is not a random
variable, but a deterministic quantity. As can be noted from
(12), when ερ is not equal to 0, the mean value of the
power ratio is biased from the desired value of
1. Furthermore, the spread around the mean, that is the
variance of pr, can be infinite if the target is Rayleigh (m =
1) or Swerling-4 (m = 2) type. This mathematical fact can
be easily verified by noting that for large enough pr values,
the density given in (11) behaves as 1/pmr . Hence, the first
m− 1 moments are finite and the rest is unbounded. (The
probability distributions with unbounded moments are
considered as pathological distributions. The Cauchy
distribution, whose moments, including the mean, are
unbounded, is the most well-known example of the
pathological distributions [14].)
The general moment expression for the random variable pr,

E{psr}, which is valid not only for the integer values for s but
also for any non-negative real number, can be written as
follows [16]

F(s) = E{psr} = G(m+ s)(1− r)s

G(m)G(m)

×
∫1
o
zm−1−se−z

1 F1(−s, m; − r

1− r
z)dz, s ≥ 0

(13)

In the expression above, 1F1(a1, b1, z) is the hypergeometric
function [17, 9.100]. It can be verified that for integer
values of s the expression is identical to the one given in
[11, eq. (2.6)]. The general moment expression can be
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further simplified for s < m as follows [16]

F(s) = E{psr} =
G(m+ s)G(m− s)

G(m)G(m) 2F1(−s, s; m; r), s,m

(14)

The general moment function valid for real-valued moments
is utilised in the next section to calculate the moments of
the random variable ln(pr).

4.2 Performance for Gaussian beam patterns

To quantify the effect of target fluctuation on the sequential
lobing (the effect of random variable pr on Q̂), we use
commonly selected Gaussian beam patterns. It should be
noted that the Gaussian patterns are frequently used in
practice and many other practical patterns can be closely
approximated with the Gaussian patterns. Previously, we
have assumed an arbitrary pattern and expressed the
estimate as Q̂ = f −1

p (|r1/r2|2). With the adoption of
Gaussian patterns, the function fp(·) is written as follows

fp(Q) = [fv(Q)]2 = P1(Q)

P2(Q)

[ ]2

=
exp −a Q/QBW

( )2( )
exp −a [Q− bQBW]/QBW

( )2( )
⎡⎣ ⎤⎦2

(15)

The functions fp(Θ) and fv(Θ) are the ratio of power and
voltage patterns, respectively. The pattern at the second
look has a squint angle of βΘBW where ΘBW is the half
power beamwidth and a = 2ln2.
The estimate via sequential lobing, Q̂ = f −1

p (|r1/r2|2), can
be explicitly expressed as follows

Q̂ = QBW
b

2
− ln |r1|2/|r2|2

( )
4ab

( )
= cBW,b + dBW,bln

|r1|2
|r2|2

( )
(16)

Here, cBW,β and dBW,β are constants of the estimator
determined by the system beamwidth and the squint angle.
Substituting |r1|

2/|r2|
2 = prfP(Θtrue) from (10) into (16), the

angle estimate can be written in terms of Θtrue

Q̂ = Qtrue + dBW,b ln (pr)︸��︷︷��︸
1u

= Qtrue + dBW,b 1u (17)

Here, εθ = ln(pr) and the random variable pr is the ratio of
target power at times T1 and T2 whose density is defined in
(11). It is interesting to note that the random variable pr,
appearing as a multiplicative noise term in (10), acts as an
additive noise term on the final angle estimate in (17).

To study the effect of amplitude fluctuation on Q̂, we need
to examine the statistics of εθ = ln(pr). The density of εθ can
be expressed in terms of the density of pr as
f1u (1u) = f pr (e

1u )e1u . For the characterisation of the
sequential lobing accuracy, we need first two moments of
εθ. Unfortunately, the moments of εθ are difficult to
calculate directly and we utilise the moment function of pr,
denoted as Φ(s) in (14), to calculate the moments of εθ = ln
(pr).
IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 92–103
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The kth derivative of F(s) = E{psr} can be written as
follows

dk

dsk
F(s) = F(k)(s) = E psr ln (pr)

[ ]k{ }
(18)

By evaluating the expression above at s = 0, we can get the kth
integral moment of ln(pr). It should be noted that to evaluate
the derivatives of F(s) = E{psr} at s = 0, the function Φ(s)
should be expressed for a continuum of values around 0.
The first moment of εθ, which is the mean, is equal to

Φ(1)(0). It can be noted from (13) that Φ(s) is an even
function. Therefore all odd-order moments are equal to
zero. Since the first moment is zero, we can conclude that
the sequential lobe estimates are unbiased. For the variance
of εθ, the second derivative of Φ(s) should be calculated.
Care must be exercised to evaluate the second derivative,
since the differentiation is with respect to the parameters of
the hypergeometric function in (14), but not with respect to
its argument. After some algebra, we obtain the expression
for the variance as follows

Var(1u) = F(2)(0) = 2C(1)(m)+ d2

ds2 2 F1(− s, s; m; r)

∣∣∣∣∣
s=0

= 2 C(1)(m)− r

m 3 F2(1, 1, 1; 2, m+ 1; r)
[ ]

(19)

In the equation above Φ(1)(·) is the first derivative of the
Var(1u) =

p2

3
− 2di

2

m− 1
1r

2

m− 1
1r −

1

(m− 1)(
2

m− 1
1r −

1

(m− 1)(m− 2)
12r + 3(

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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digamma function, also known as the psi function. The
exact expressions given above are difficult to interpret
because of the appearance of special functions. An
approximation for the variance formulas around r ≃ 1 can
be given by expressing the hypergeometric function in (19)
as a power series at ρ = 1 (see (20))

The dilogarithm function, appearing in the first line of (20), is
a transcendental function with the definition
dilog(x) = �x

1 ( ln t/1− t)dt. The parameter ερ has the
definition of ερ = 1− ρ and shows the amount of correlation
deficiency. The phrase h.o.t. denotes higher order terms. It
should be noted that the case of m = 1 in (20) is exact, that
is, there are no higher order terms for this case.
Fig. 3 is generated to check the accuracy of suggested

approximation for the high correlation region. The high
correlation approximations are particularly valuable for the
analysis of the sequential lobing technique, since the power
correlation is expected to be high for this application.
Furthermore, the evaluation of hypergeometric function
appearing in the exact relation (19) converges slowly for ρ
values close to 1 and the approximate formulas can also be
preferred to speed up some numerical calculations.

5 Regimes of operation and numerical
results

Three sets of numerical results are provided to quantify the
effect of amplitude fluctuation on the accuracy of sequential
lobing. The first set shows the performance in the absence
log(1r), m = 1

+ h.o.t., m = 2

m− 2)
12r + h.o.t., m = 3

4

m− 1)(m− 2)(m− 3)
13r + h.o.t., m ≥ 4

(20)
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of receiver noise. This set solely shows the effect of target
fluctuation on the sequential lobe estimate; in other words,
this set examines the deviation from true value because of
target amplitude fluctuations. The second set contains
receiver noise in addition to the amplitude fluctuation and
examines the joint effect of noise and amplitude fluctuation
at different SNR levels. The third set illustrates different
regimes of operation. In the first regime, the performance is
limited by the target fluctuation, whereas in the second one,
the performance is limited by the noise. An analytical
expression for the SNR boundary between two regimes is
also given. Finally, a discussion is given to evaluate the
value of sequential lobing method for a target with known
fading parameter.
For numerical experiments, a Gaussian beam switched

between two positions having an offset angle of 0.5 × BW
(BW is the beamwidth) and a target with the angular
position of 0.25 × BW is assumed. The estimates for the
sequential lobing technique are generated using (16) where
|rk|

2 is the received signal power at the kth position of the
antenna. (For the described system, the parameters of the
estimator (16) are cBW,β = 0.25 and dBW,β =− 0.36).
5.1 Set 1: Sequential lobing performance in the
absence of receiver noise

Fig. 4 shows the performance of the sequential lobing
technique in the absence of noise. This figure and
subsequent figures show the root-mean-square (RMS)
value of the angle estimate error against the power
correlation parameter. The target is assumed to have a
fading parameter m = {1, 2, 4, 8}. The solid lines in Fig. 4
show the result of Monte Carlo simulations. The dashed
lines with square markers are the square root of the
analytical results given in (20). It should be noted from
this figure that the solid and dashed lines completely
overlap except for the case of m = 2. The deviation for this
Fig. 4 Performance degradation of sequential lobing technique becaus

Solid lines are the results of Monte Carlo simulations, the dashed lines with squar
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case is due to the approximate nature of (20). When the exact
variance formulas given in (19) are used instead of the
approximate ones, the solid and dashed lines completely
overlap for all cases. Here we use the approximate formulas,
with elementary mathematical functions, instead of the exact
relations with the special functions, to analytically examine
different regimes of operation.
In Fig. 4, the performance of the random pick system

producing the angle estimate by randomly picking an angle
within the beamwidth is also given. The random pick is
assumed to have a density which is uniformly distributed
density in [−BW/2, BW/2] and therefore the RMS error for
random pick is 1/

���
12

√ × BW ≃ 0.288× BW. The random
pick system acts as a worst-case benchmark for other
estimators. It must be noted that the estimates of the
sequential lobing algorithm defined by (16) are not confined
within the antenna beamwidth.
One can conclude from Fig. 4 that a Rayleigh fluctuating

target (m = 1) having the power correlation of ρ = 0.91 has
an RMS error identical to the random pick system. Hence,
targets having a power correlation smaller or equal to 0.91
are not estimated better than the random pick system with
the application of the sequential lobing. It should be
remembered that there is no receiver noise in the present set
of results. Hence, the observed performance degradation is
‘solely’ because of target fluctuation which is an effect not
accounted in the sequential lobing system model. The
present results for the Rayleigh model show that the
sequential lobing is not robust to this unaccounted effect.
The degradation can be more significant when noise is
present in addition to the amplitude fluctuation.
It can be observed from Fig. 4 that targets having larger

fading parameter (m) are more robust to the effects of
amplitude fluctuation. As noted before, the parameter m of
the target models shown in Fig. 2, essentially represents the
levels of amplitude spread because of target fluctuation.
Models with small m values are the classical Swerling
models and as m increases, the target is considered to
e of target fluctuation

e markers are the analytical results given by (20)
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Fig. 5 Performance degradation of sequential lobing technique because of target fluctuation for a wide range of correlation values

Solid lines are the results of Monte Carlo simulations, the dashed lines with square markers are the analytical results given by (20)
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approach the non-fluctuating state, making the sequential lobe
estimates more accurate.
Fig. 5 presents the results of a similar study for a wide

range of correlation values. As noted before, the sequential
lobing method operates with the implicit assumption of ρ =
1 (fully correlated echos); in this work, we examine the
performance degradation when this condition is violated. In
many scenarios, the correlation values smaller than 0.9 can
be considered as too low for the application of the
sequential method; yet, we present the results given in
Fig. 5 to further emphasise the importance of the power
correlation assumption.
The dashed lines with the square markers in Fig. 5 are the

results of analytical results given by (20); the solid lines are
the results of Monte Carlo simulations. For the case of m = 1,
the expression given in (20) is exact and the Monte Carlo
runs are in perfect accord with the analytical results. For the
other cases, the analytical results are approximations valid for
r ≃ 1, hence there is some deviation between dashed and
solid lines for small correlation values. Note that the exact
error variance relation valid for all cases is present in (19).
We prefer the approximate relation given by (20) because of
its simpler analytical structure. It should be noted that the
deviation is quite limited at high correlation, which is the
case of importance for the application of sequential lobing.
Furthermore, it can be noted that as target amplitude
becomes more stable, that is as m→∞, the impact of the
amplitude fluctuation on the RMS error is reduced.

5.2 Set 2: Sequential lobing performance in the
presence of receiver noise

The second set of results starts with Fig. 6. This figure shows
the performance of the system at SNR= 30 dB. SNR value
refers to the detection SNR which is the SNR value after the
completion of beamforming, slow- and fast-time processing.
In this figure, the performance of the monopulse system is
also given. The monopulse system is assumed to implement
IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 92–103
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the ML estimator given in (7). Monopulse system is not
affected by the amplitude fluctuation. The analytical
expressions for the performance of monopulse system is
rather complicated; but can be found for standard Swerling
models in [18]. The monopulse results are presented as lower
bounds for the sequential lobing results and they are
generated through Monte Carlo simulations.
In Fig. 6, the dashed lines with square markers are the

analytical results for the noiseless case. The solid lines in
this figure show the result of Monte Carlo runs having both
noise and amplitude fluctuation. Our goal in this figure is to
compare the effect of noise on the sequential lobe
estimates, that is, to examine the performance difference
between dashed and solid lines.
It can be argued from Fig. 6a that the performance of the

sequential lobing technique is not significantly deviated
from noise-free case for SNR = 30 dB. An important point
to note is that when noise is present, it is not possible to
reduce the error of sequential lobing method to arbitrarily
small values as ρ→ 1. The RMS error of the sequential
lobing estimates are lower bounded by the performance of
the monopulse system which has the error of 0.0228 units.
As ρ→ 1, the RMS error for the sequential lobe estimates
goes to this limit.
Fig. 6b shows the high correlation region of Fig. 6a, which

is the region of interest for the sequential lobing. One
important conclusion from Fig. 6b is that for m = 1
(Rayleigh fluctuating targets), the dominant error source
affecting the angle estimation is the target fluctuation. This
conclusion can be justified by noting the smallness of
deviation between dashed and solid lines and at the same
time, the significant deviation of both lines from the
monopulse bound for m = 1. Hence, in comparison with the
monopulse system, some performance loss is expected for
Rayleigh fluctuating targets even at SNR = 30 dB.
If we focus on the case of m = 2 in Fig. 6b and compare the

dashed curve (noiseless operation) with the monopulse bound,
we can note that the error cannot be reduced below a certain
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Fig. 6 Performance of sequential lobing technique because of target fluctuation and receiver noise

Dashed lines show noiseless performance, solid lines show the performance at SNR = 30 dB
a RMS Error vs. Power Correlation
b High Correlation Region (ρ ≥ 0.98)
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limit when ρ is > 0.998. Hence, the term dominating
the estimation error for ρ > 0.998 is the system noise. On the
other hand, for smaller values of ρ, say ρ = 0.99, the
performance for noisy (solid line) and noiseless (dashed line)
cases are very close and it can be said that the performance
loss is mainly because of the target fluctuation. This
discussion gives us a hint of different regimes of operation.
Fig. 7 repeats the same experiment for SNR = 20 dB. The

high correlation region given in Fig. 7b suggests that the
system performance is significantly affected by the noise.
The dashed curves (noise-free operation) are almost entirely
(expect for m = 1) below the monopulse bound indicating
that the actual performance cannot approach the noiseless
100
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case in the high correlation region. As a conclusion for this
case, we can say that at SNR of 20 dB and ρ > 0.98, the
system performance is dominated by noise (not by
amplitude fluctuation).

5.3 Set 3: Regimes of operation

Figs. 6 and 7 show the operation of the sequential lobing
system at two different SNR values. From Fig. 6, we note
that the performance of sequential lobing for a target with
the power correlation of ρ = 0.99 and SNR = 30 dB is
essentially determined by the amplitude fluctuation. This
result is contrary to the conclusion derived for the same
IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 92–103
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Fig. 7 Performance of sequential lobing technique because of target fluctuation and receiver noise

Dashed lines show noiseless performance, solid lines show the performance at SNR = 20 dB
a RMS Error vs. Power Correlation
b High Correlation Region (ρ ≥ 0.98)

www.ietdl.org
target at SNR of 20 dB. From the presented discussions, it
should be clear that there are two different regimes of
operation, namely the noise-limited and the target-
fluctuation-limited operation specific for the sequential
lobing method. In the third set of results, we examine these
regimes and determine the boundary between two regimes.
In Fig. 8, we present the RMS error for both sequential

lobing and monopulse techniques at different SNR values.
CRB(Qtrue) =
1

2SNR

d

dQtrue
P1(Qtrue)
{ }( )2

+ d

dQ

([
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This figure is generated for non-fluctuating targets (ρ = 1).
The associated Cramer–Rao lower bound is also given. An
analytical expression of the error variance for both methods
is difficult to express because of the non-linearities appearing
in the estimators, but the Cramer–Rao bound (CRB) for this
problem can be fairly easily calculated as follows (see (21)).

It can also be observed from Fig. 8 that the performance of
true
P2(Qtrue)
{ })2

]
,

no target fluctuation

only system noise

( )
(21)

101
& The Institution of Engineering and Technology 2015



Fig. 8 RMS error of monopulse, sequential lobing techniques and the associated Cramer–Rao lower bound
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both methods and CRB is almost identical for SNR > 15 dB.
This suggests to use the analytical relation for CRB, given
above, as a substitute for the error variance of the estimators.
We note that CRB given in (21) is derived in the absence of

target fluctuation and the system noise is the only term
affecting the estimation error. Hence, CRB result indicates
the performance of noise-limited operation.
For other operational regime, the error variance solely

because of target fluctuation is needed. The error variance
for this regime can be written, using the first-order
approximation in (20) as follows

Error variance= d2BW,b
2

m− 1
1r,

only target fluctuation

no system noise

( )
(22)

The presented approximation is valid for m≥ 2 and r ≃ 1.
The factor dBW,β is the scaling factor utilised in (16).
The boundary for the operational regimes can be set by

equating the analytical expressions given in (21) and (22) to
each other. It can be said that at the boundary point, the
effect of target fluctuation is identical to the effect of noise.
Equating these two equations, we obtain the following
relation (see (23)).

In this relation, the value of ερ (the correlation deficiency) is
compared with the quantity on the right-hand side of (23).
Depending on the pointing direction of the inequality sign,
the regime of sequential lobing, noise-limited or
target-fluctuation-limited, is determined. It is interesting to
note that for m = 1 (Rayleigh fluctuating targets), the
sequential lobing suffers from target fluctuation irrespective
of SNR value, confirming earlier findings in Set 2. For
m = 2 and at SNR values of 30 and 20 dB (as in Figs. 6
1r .,
Noise

Fluctuation

m− 1

4SNR d2BW,b

d

dQtrue
P1(Q
{([
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and 7), the formula accurately predicts the boundaries as ρ
as 0.9985 and 0.9846, respectively.

6 Summary and conclusions

The sequential lobing method operates with the implicit
assumption of fully correlated echos (ρ = 1). In this work,
we examine the performance degradation when this
assumption is violated. To this aim, a fairly comprehensive
statistical target fluctuation model, which can be denoted as
the generalised Swerling model, is utilised.
The insightful picture given by Skolnik [1, Fig. 4.16],

which is believed to be based on empirical observations,
has initiated the present work. With this picture, Skolnik
shows different error sources acting on the angle estimates
and compares the impact of these sources on the sequential
lobing and monopulse techniques. To the best of our
understanding, this figure is presented as a qualitative
description of the relations arising from the experience of
Skolnik. One of the major goals of this study is to quantify
this picture via recently suggested statistical target models.
Our findings closely agree with the conclusions of Skolnik.

One important result, which is absent in the Skolnik’s
descriptions, is for Rayleigh fluctuating targets (when
fading parameter m is equal to 1), the amplitude fluctuation
is the dominant component contributing to the error of the
sequential lobing technique. Hence, the sequential lobing
cannot yield a performance similar to monopulse techniques
at any SNR or power correlation coefficient for such
targets. For targets having less amplitude spread because of
the target fluctuation, that is, when m≥ 2, the situation is
more promising. For such targets, there are two regimes of
operation, namely the noise-limited regime and the
target-fluctuation-limited regime as described in the present
paper.
true)
})2

+ d

dQtrue
P2(Qtrue)
{ }( )2

]
(23)
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As an illustration of the quantitative results presented

herein, we can say that a target with an SNR of 20 dB and
having an amplitude fluctuation model with fading
parameter m = 2 has a direction finding error dominated by
the target amplitude fluctuation when its received power
correlation between two looks of sequential lobing is less
than 0.9846. Similar results can be produced for different
target fluctuation models. Furthermore, the boundaries
between noise-limited and amplitude-fluctuation-limited
regimes can be analytically expressed either in terms of
power correlation for a given SNR or in terms of SNR for a
given power correlation.
The present work can be useful to assess the engineering

utility of sequential lobing. It is clear that some amount of
target fluctuation is unavoidable for the sequential lobing. If
the performance of the sequential lobing system is
comparable with the performance of monopulse systems for
typical SNR and power correlation values, the system
designer may prefer the sequential lobing implementation
over the monopulse implementation because of its modest
hardware requirements.
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