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An Efficient Filtering Structure
for Lagrange Interpolation

Çag̃atay Candan

Abstract—A novel filtering structure with linear complexity is
proposed for Lagrange interpolation. The structure is similar to
the Farrow structure in principle, but it is more efficient and has
the additional feature of being order updatable on-the-fly. The
main application for the proposed structure is the implementation
of fractional delay filters to mitigate the symbol synchronization
errors in digital communications. Some other applications are
time-delay estimation, echo cancellation, acoustic modeling, and
arbitrary sampling rate conversion.

Index Terms—Farrow structure, interpolation, Lagrange inter-
polation.

I. INTRODUCTION

SYNCHRONIZATION of system parameters at transmitting
and receiving ends of a channel is critical to establish reli-

able communication. The mismatches in carrier frequency, car-
rier phase, or timing errors in signal sampling can significantly
degrade communication. In this letter, we propose an efficient
finite impulse response (FIR) interpolation structure that can be
used in digital receivers to mitigate the symbol synchronization
errors.

The proposed structure is an implementation for Lagrange in-
terpolation. Lagrange interpolation is based on determining the

th-order polynomial passing through sample points.
Zero-order hold, linear, and cubic interpolation are some spe-
cial cases of Lagrange interpolation. Lagrange interpolation has
found applications in digital-to-analog converters, image pro-
cessing, time-delay estimation, and communication problems.

In digital communications, the receiver clock may have time-
varying offset causing intersymbol interference at the channel
output. One way of compensating the error is to fractionally
delay the signal [1], [2]. An efficient filtering structure for frac-
tional delay generation is proposed by Farrow [3], [4]. The struc-
ture has an explicit parameter that can be adjusted during run
time, and it is suitable for the applications whose delay param-
eter is frequently varied, as in synchronization or time-delay
estimation problems. Farrow structure has been improved in
[5], leading to some additional computational savings for low
ordered interpolators. The structure has been extended to the
filterbanks for wide-band signals. The Farrow filterbanks are
optimal in the min-max error sense and designed to minimize
the implementation cost [6], [7]. The hardware optimization of
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Fig. 1. Farrow structure.

Farrow structure [8] and several other applications on multi-
channel signal sampling and reconstruction have been discussed
in [9]–[11].

In this letter, we present an alternative to the Farrow structure
for Lagrange interpolation. The proposed structure has linearly
growing computational complexity, while earlier proposals have
complexities growing with the square of the interpolation order.
Before the description of the proposed structure, we present a
brief review of the Farrow structure with some of its extensions.

II. FARROW STRUCTURE

Farrow has proposed a filterbank structure with intermittent
delay multipliers in [3]. The structure is shown in Fig. 1.

The interpolation output can be expressed as
, where is the adjustable delay param-

eter. For the structure to be interpolating, the output should
be the delayed versions of the input for = .
This constraint imposes equations in the form

for = . The unknown ’s can be
uniquely solved from these equations [3].

The computational needs of Farrow structure are
multiplications and additions per output sample. Note that

is equal to 1 for all delay values; therefore, the imple-
mentation cost of is discarded in this calculation. For low
interpolation orders such as second or third, it is possible to cus-
tomize the filter design by combining common multiplier fac-
tors together, resulting in some savings. However, in general, the
computation requirements of the Farrow structure grows with
the square of the interpolation order.

In [5], Farrow structure has been modified, and its compu-
tation load has been lightened by deleting the integer part of
the delay parameter . This has lead to some additional sav-
ings for low ordered interpolations. In [6], filterbanks approxi-
mating exact Lagrange interpolation in the min-max error sense
is proposed. The computational cost of the filterbanks is further
minimized in [7].

III. PROPOSED STRUCTURE

The proposed structure is based on discrete time Taylor se-
ries expansion. We briefly review the difference operators and
factorial functions to illustrate the approach.
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The backward difference operator, ,
is the dual of derivative operator. Similarly, the discrete time
dual of polynomial powers are called factorial polynomials and
defined as follows:

(1)

As expected, when is operated on the factorial polynomials,
we get a factorial polynomial with one less degree,

. The discrete time dual of Taylor series can then be
written in terms of factorial polynomials and difference opera-
tors

(2)

The implicit interpolation operation in (2) can be easily verified
by substituting into the equation, leading to .
After the application of to both sides of (2), if is substituted
for , we get . By repeating the same operation
for arbitrary powers of , we can show that
for all .

When the summation in (2) is truncated to a finite number
of terms, sa,y , the resultant relation is equivalent to fitting a

th-degree polynomial to consecutive samples of .
In other words, the truncated sum is the th-order Lagrange
interpolation of the input.

The third-order interpolation relation can be explicitly written
as

(3)

The output denotes the interpolation result, and indicates
the delay parameter as shown in Fig. 2.

The remarkable aspect of relation (3) is the simplicity of its
implementation. The consecutive terms in summation (2) can be
recursively calculated as follows:

(4)

When the recursion is inserted in the Taylor summation, the
overall structure simplifies to the structure shown in Fig. 3.

The computational complexity of the proposed structure is
additions and multiplications for the th-order

interpolation. Furthermore, once the multiplication factors for
delay are calculated and stored, the overall complexity of de-
laying the next incoming sample for units reduces to mul-
tiplications and additions per output sample. In other

Fig. 2. Third-order interpolation.

Fig. 3. Proposed structure.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON FOR FARROW,

MODIFIED FARROW, AND PROPOSED STRUCTURE. THE NUMBER

OF ADDITIONS AND MULTIPLICATIONS ARE THE FIRST AND

SECOND ELEMENTS OF EACH TABLE ENTRY

words, computation load reduces to the level of tap FIR fil-
tering with constant coefficients. In Table I, computational com-
plexity requirements of different Lagrange interpolation imple-
mentations are compared.

A novel feature of the proposed structure is the run time incre-
ment-decrement possibility of the interpolation order. As shown
in Fig. 3, the order of the structure can be easily changed by flip-
ping the switch between the stages of filtering. This feature can
be useful in applications requiring variable levels of interpola-
tion as in software radio applications [12].

In Fig. 4, the magnitude and phase delay response of the
18th-order Lagrange interpolator is shown for different delay
values. The worst-case magnitude and phase error in the fre-
quency range is 0.00049 and 0.00054, respectively.
Using the proposed structure, the implementation cost of the
filter is reduced from multiplications to 18 multiplications
with stored coefficients and to 53 coefficients with calculated
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Fig. 4. Magnitude and phase delay response of 18th-order Lagrange interpo-
lator.

coefficients. In [7, Ex. 3], a filterbank is optimized to generate
fractional delays with the maximum magnitude and phase error
of 0.001. The resulting optimized filterbank requires 19 multi-
plications per output sample. When two systems are compared,
we note that the standard Lagrangian filter, which does not re-
quire any optimization, becomes competitive with the optimized
one when implemented with the proposed structure. In other
words, the maximally flat Lagrange interpolators [2], whose fre-
quency response closely approximates the ideal delay response
for low bandwidth signals, can be implemented at reduced costs.
Therefore, higher order Lagrange filters needed for higher band-
width inputs can be cost efficiently implemented with the pro-
posed structure, leading to a leverage between the optimized de-
signs of [7] and standard Lagrangian filters.

IV. CONCLUSION

We have presented an efficient structure for Lagrange interpo-
lation. The structure is well suited for the applications requiring
frequent variation of the interpolation parameter. The proposed

structure has linearly growing computational complexity, while
alternative structures have complexities growing with the square
of the interpolation order. We believe that such a reduction in
complexity can be critical in synchronization or time-delay esti-
mation applications. Additionally, the interpolation order of the
proposed structure can be changed during run time, leading to a
useful feature for applications such as software defined radio ap-
plications, which heavily depend on interpolation for sampling
rate conversion.
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