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T
he discrete Fourier trans-
form (DFT) not only enables 
fast implementation of the 
discrete convolution opera-
tion, which is critical for 

the efficient processing of analog sig-
nals through digital means, but it also 
represents a rich and beautiful analyti-
cal structure that is interesting on its 
own. A typical senior-level digital signal 
processing (DSP) course involves a 
fairly detailed treatment of DFT and a 
list of related topics, such as circular 
shift, correlation, convolution opera-
tions, and the connection of circular 
operations with the linear operations 
[1]. Despite having detailed expositions 
on DFT, most DSP textbooks (including 
advanced ones) lack discussions on the 
eigenstructure of the DFT matrix. Here, 
we present a self-contained exposition 
on such. 

Our goals are to study the eigenval-
ues and eigenvectors of the DFT matrix, 
to determine the multiplicity of the 
eigenvalues, to define the invariant sub-
spaces under DFT mapping, to construct 
the projectors to the invariant subspaces 
and to underline some connections 
between invariant subspaces and other 
transforms. 

(We believe that this discussion can 
be followed by most of the signal pro-
cessing community, including advanced 
undergraduate students. The concepts 
used in this discussion are mostly ele-
mentary and available in standard linear 
algebra textbooks. A comprehensive 
knowledge of linear spaces is not 
required but would be highly beneficial 
to fully interpret some of the results. 
These notes have been prepared as an 

assignment for supplementary reading 
material on the DFT.) 

DESCRIPTION OF THE PROBLEM
Let F be a N 3 N  unitary DFT matrix: 

 3F 4  k, n5
1"N

 e2j 2p
N

 n k  .

In the equation above, 3F 4k, n denotes the 
matrix entry in the kth row and nth 
column of the matrix F. We assume both 
k and n run from 0 to N2 1, following 
the literature on the DFT. 

Different from the conventional 
definition given in [1], the definition 
above includes a scaling factor of 
1"N. This factor is required to make 
the matrix F  unitary.  From the 
theory of matrices, we know that the 
unitary matrices satisfy the relation 
FH F5 I(another form of Parseval’s 
relation) and have unit norm eigen-
values and have a complete orthogo-
nal set of eigenvectors [2]. Our goal 
is to study the eigenstructure of F 
matrices by finding the eigenvalues 
and their multiplicity, invariant sub-
spaces and projectors to the invariant 
subspaces. 

EIGENVALUES, EIGENSPACES AND 
PROJECTORS TO EIGENSPACES
The eigenvalues of a matrix are, by defi-
nition, the roots of its characteristic 
polynomial. Here we do not calculate 
the characteristic polynomial explicitly 

but relate the powers of F to the charac-
teristic polynomial. Let J denote the 
second power of the matrix F, that is 
J5 F2. The entries of matrix J can be 
calculated as follows: 3J 4  k, n5 a

N21

d50

3F 4  k, d 3F 4  d, n

 5
1
N

 a
N21

d50
e2j 

2p

N  
1n1k2 d5d 3 1n1 k 2N 4.

The notation of 1 # 2N  indicates the 
modulo N reduction of 1 # 2 , that is 1n1 k 2N ; 1n1 k 2  mod N. It can be 
seen that the J matrix is a permutation 
matrix that maps x 3n 4 S x 3 12n 2N 4. The 
J matrix is called a coordinate inversion 
or reflection matrix in the literature. 

Two coordinate inversion operations 
executed in a row can be denoted by J2 
or F4. Since two coordinate inversions 
result in the identity mapping, F4 is 
equal to I. If ek is an eigenvector of the F 
matrix with the eigenvalue lk, then the 
vector F4ek  should be equal  to 
F4ek5lk

4ek, by the eigenvector defini-
tion. Using the identity F45 I along 
with the last relation results in the con-
clusion that the possible values of l 
must satisfy lk

45 1. Hence the list of 
possible eigenvalues for the DFT matrix 
is lk5 51, 21,  j, 2j6. 

Having established the list of possible 
eigenvalues, we construct a p1 1l 2  poly-
nomial having roots at 521, j, 2j6 and 
taking the value of 1 at l5 1. Hence, 
this polynomial takes the value of zero 
for all except one of the eigenvalues of 
DFT matrix. This polynomial can be 
explicitly written as follows 

 p1 1l 2 5 1
4
1l21 1 2 1l1 1 2

 5
1
4
1l31l21l1 1 2 .
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When F is substituted for l in p1 1l 2 , we 
get the P1 matrix: 

 P15
1
4
1F31 F21 F1 I 2 .

When the P1 matrix is multiplied from 
right with an eigenvector of the DFT 
matrix having eigenvalue lk, the resul-
tant vector is as given: 

 P1ek5 e 0 lk5 521,  j, 2j6
ek         lk 5 1

.

The last relation shows that the eigen-
vectors of DFT with the eigenvalue of 1 
pass through P1 without any change 
(mapped to itself) and the other eigen-
vectors are projected to the zero vector, 
i.e., elements of null space. Since the 
eigenvectors of DFT are complete, i.e., 
span N  dimensional space, ek vectors 
form a complete set of eigenvectors for 
the P1 matrix. From this information, we 
can deduce that the matrix P1 has only 
two eigenvalues that can be either 0 or 1. 
This leads to the conclusion that P1 is a 
projection matrix [2]. 

The projection matrices satisfy the 
relation P25 P. Among the projection 
matrices, the matrices with the prop-
erty PT5 P are called the orthogonal 
projectors. With these facts, we can 
confirm that the matrix P1 is an orthog-
onal projector to the range space of DFT 
eigenvectors having the eigenvalue of 1. 

Following the same route, we can 
write the projectors to four eigenspaces 
as follows: 

 P15
1
4

 1F31 F21 F1 I 2

 P215
1
4

 1 2 F31 F22 F1 I 2
 Pj5

1
4

 1 j F32 F22 j F1 I 2
P2j5

1
4

 1 2 j F32 F21 j F1 I 2 .
Below we present a summary of our 
current findings along with some new, 
but easy to establish, results on Pk 
matrices: 

 ■ Pk matrices are orthogonal projec-
tors, i.e., Pk

25 Pk and Pk
T5 Pk. 

 ■ The projection matrices are com-
plementary (PkPl5 0,  k 2 l). 

 ■ The direct sum of the projection 
subspaces is RN. 

 ■ The projection subspaces are 
 invariant under DFT, that is, 
FPk5 PkF5lkPk. 

 ■ P11 P21 is the projector to the 
space spanned by even vectors, that 
is, E5 P11 P215 1/2 1I1 J 2  and 
E5x 3n 4 6 5 1/2 1x 3n 41 x 3 12n 2N 4 2 . 

 ■ Pj1 P2j is the projector to the 
space spanned by odd vectors, that is, 
O5 Pj1 P2j5 1/2 1I2 J 2  a n d 
O5x 3n 4 6 5 1/2 1x 3n 42 x 3 12n 2N 4 2 .
The results given above can be veri-

fied by algebraic multiplication and addi-
tion of Pk matrices. However, we would 
like to encourage readers not to inter-
pret these results algebraically, but 
through the concepts of linear spaces, 
e.g., subspace, range space, and null 
space. As an example, P1 is the projector 
to the space spanned by the eigenvectors 
with the eigenvalue of one, that is, 

 P15 a
m1

k51
ek

1 1ek
1 2T. (1)

Here m1 is the multiplicity of the eigen-
value and e1

k is the kth eigenvector with 
the eigenvalue of one. The first and 
second results given above immediately 
follow from the definition in (1) and the 
orthogonality of the eigenvectors with 
different eigenvalues. The third result is 
due to the completeness of the eigen-
vectors. The other results can be inter-
preted similarly with a little bit of effort. 

Up to this point we have studied how 
to construct the projection matrices for 
the invariant subspaces of the DFT 
matrix. It is well known that DFT maps 
even sequences to even sequences and 
odd sequences to odd sequences. Hence 
the subspace of even sequences and odd 
sequences are invariant under DFT. 
Here we generalize the invariance prop-
erty of even and odd subspaces. We 
show that a vector in Pk space is 
mapped to another vector in Pk space. 
With this interpretation we can say that 
Pk matrices partition even and odd sub-
spaces into two, as shown in Figure 1. 

THE MULTIPLICITY OF EIGENVALUES
The eigenvalue multiplicity problem of 
DFT matrices is known to be a difficult 
problem. We present a solution to the 
eigenvalue multiplicity problem using an 
equally difficult result known as the 
Gaussian sum. The Gaussian sum iden-
tity is given below: 

Guassian sum: 

1"N
 a
N21

n50
e j 2p

N
n2

 5 µ 11 j N54m
1 N54m1 1
0 N54m1 2
j N54m1 3

 .

The proof of this result took Gauss two 
years [3]. Since the original proof of 
Gauss, it is an ongoing challenge 
among mathematicians to present new, 
possibly better, proofs of this result. 
Interested readers can find four differ-
ent proofs of Mertens, Kronecker, 
Schur, and Gauss in [3]. In 1972, J. 
McClellan solved the eigenvalue multi-
plicity problem using elementary 
means [4]. McClellan’s solution can be 
considered as another proof of the 
Gaussian sum and resides at the 
 intersection of pure and applied 

[FIG1] Decomposition of N dimension space into even–odd sub-spaces.
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 mathematics as noted in [5]. McClellan 
is also known for an optimal filter 
design technique (Parks-McClellan 
algorithm) and a multidimensional 
filter design technique through map-
ping (McClellan transform) to the DSP 
community. Here we do not attempt to 
prove the Gaussian sum and but use the 
relation for the solution of the DFT 
eigenvalue multiplicity problem. 

It can be noted that the trace of the 
matrix Pk is equal to the multiplicity of 
the eigenvalue with value lk. This can 
be justified from equation (1) by using 
the identity trace 1AB 2 5 trace 1BA 2 . 
Another justification can be given by 
noting that the projection matrices have 
eigenvalues either zero or one. Therefore 
the trace, which is the sum of the eigen-
values, is equal to the number of eigen-
values with value one. 

The trace of the projection matrices 
can be written as follows: 

trace5P1 
6 5

1
4
e 2"N

 a
N21

n50
cosa2p

N
 n2b1trace5J61N f

trace5P216 5
1
4
e2 2"N

 a
N21

n50
cosa2p

N
n2b1trace5J61N f

trace5Pj 
6 5

1
4
e 2"N

 a
N21

n50
sina2p

N
 n2b2 trace5J61N f

trace5P2j 
6 5

1
4
e 2"N

 a
N21

n50
sina2p

N
 n2b2 trace5J61N f .

Using the Gaussian summation, the 
trace of each matrix can be easily cal-
culated and the eigenvalue multiplicity 
of DFT matrices can be found as 
shown in Table 1 (we note that the 

trace of the N 3 N  J matrix is equal to 
one and two for odd and even values of 
N, respectively).

EIGENVECTORS OF DFT MATRIX
The eigenvector set of DFT matrices for 
N $ 4 are not unique due to the eigen-
value multiplicity problem as shown in 
Table 1. The table indicates that there 
are infinitely many eigenvector sets of 
DFT matrix. 

An eigenvector set of DFT can be 
easily constructed using projection 
matrices. Since the projection spaces 
are invariant under DFT operation, that 
is, FPk5lkPk, the columns of projec-
tion matrix Pk are the eigenvectors of 
DFT. Unfortunately, this eigenvector set 
does have the orthogonality property. If 
the orthogonality of eigenvectors is 

desired, one can apply the Gram-
Schmidt  procedure over the columns of 
Pk. This operation can be done with a 
few lines of MATLAB code as shown 
below: 

>>  N = 7; F = 1/

sqrt(N)*dftmtx(N);

>>  P1 = 0.25 * (F^3 + F^2 + 

F + eye(N));

>> E1 = orth(P1);

To get a distinct set of orthogonal eigen-
vectors with eigenvalue of 1, we can 
modify the last line as follows: 

>> E1 = orth(P1*randn(N,N))

An alternative approach is to define a 
commuting matrix K through an arbi-
trary but a full-rank matrix M as 
shown below: 

K5M1 FMF211 F2MF221 F3MF23.

It is easy to show that matrices K and F 
commute; that is, FK5KF, therefore K 
and F have a common eigenvector set, 
[7, p. 52]. In other words, by finding the 
eigenvectors of K matrix, we can also get 
the eigenvectors of the DFT matrix. This 
technique has been applied to derive the 
eigenvectors of the DFT with some desir-
able features. In [8] and [9], the discrete 
equivalents of Hermite-Gaussian func-
tions (which are the eigenfunctions of 
continuous Fourier transform) are 
defined by a proper choice of M matrix. 

EXTENSIONS
Up to this point we have presented 
results on a one-dimensional conven-
tional DFT matrix. In this section, we 
extend the earlier results to non-con-
v e n t i o n a l  D F T  m a t r i c e s  a n d 
 multidimensional DFT matrices, and 
establish some connections with other 
relatives of the Fourier transform. 

EIGENSTRUCTURE OF OFFSET DFT
The offset DFT is a generalization of the 
conventional DFT. Its definition is given 
as follows: 3Fa, b 4k, n5

1"N e
2j 2p

N  
1k2a21n2b2.

The offset DFT has two parameters (a 
and b) that can be freely selected. It can 
be shown that the offset DFT matrix is 
unitary and reduces to the conventional 
DFT when a5 b5 0 [10]. The special 
case of a5 b5 1/2, is called an odd-
time odd-frequency DFT and was studied 
in [11]. The eigenstructure of the offset 
DFT has been shown to be closely related 
to ordinary DFT for the special case of 
a5 b5 1/2, [12]. The other cases are a 
little more complicated and studied 
under the categories of a1 b5 integer 
and a1 b 2 integer. Further details can 
be found in [13]. 

EIGENSTRUCTURE OF 
MULTIDIMENSIONAL DFT
By definition, the multidimensional 
DFT is a separable transformation. 
Hence a two-dimensional DFT opera-
tion can be interpreted as the cascade 

[TABLE I] EIGENVALUE MULTIPLICITY 
OF N 3 N DFT MATRIX.

N l 5 1 l 5 21 l 5 J l 5 2J

4M M11 M M21 M
4M11 M11 M M M
4M12 M11 M11 M M
4M13 M11 M11 M M11

WE HAVE EXAMINED 
THE STRUCTURE OF DFT 
EIGENSPACES AND USED 

THE PROJECTORS TO 
THE INVARIANT SPACES 
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application of a one-dimensional DFT 
to the columns of the input (a matrix) 
followed by the application of DFT to 
the rows of the resultant matrix. The 
separability property aids in identifying 
the eigenstructure of multidimen-
sional DFT. 

It can be noted that the following 
M 3 N rank-1 matrix is an eigenmatrix 
of two dimensional DFT with the eigen-
value lxly: 

 E5 exey
T. (2)

Here ex is an eigenvector of M 3 M 
one-dimensional DFT matrix with the 
eigenvalue lx and ey is an eigenvector 
o f  N 3 N  one-d imensional  DFT 
matrix with the eigenvalue ly. From 
this discussion, it can be noted that 
the set of eigenvalues of a two-dimen-
sional DFT is identical to the corre-
sponding set of a one-dimensional 
transform. The results on a two-
dimensional  DFT can be eas i ly 
extended to multidimensions. More 
details can be found in [14]. 

RELATIONS TO 
OTHER TRANSFORMS
The projectors to the invariant spaces of 
the DFT can be useful to characterize 
other relatives of the Fourier transform. 
The following lines show the relation 
between the pro jectors and DFT, 
Hartley transform, identity, and coordi-
nate inversion operations  respectively:

 F5 P12P211 j Pj2j P2j

 H5 P12P212 Pj1  P2j

I5 P11 P211   Pj1  P2j

 J5 P11 P212  Pj2  P2j.

It can be noted th at the projectors define 
an algebra for the relatives of the Fourier 
transform. As an illustrative example, 
the transformation formed by the cas-
cade application of a Har tley transform 
and a DFT transform, that is, an FH 

matrix can be expressed in terms of pro-
jectors as follows: 

 FH5 1P12 P211 j Pj2j P2j 2
 3 1P12 P212 Pj1 P2j 2
 5 P11 P212 j Pj2 j P2j

 5
1
2
1I1 J 2 2 j

2
1I2 J 2

 5E2 jO.

From this result, we can conclude that 
the cascade operation of Hartley and 
DFT is equivalent to expressing even and 
odd parts of the input and combining 
t hem together as the real and imaginary 
parts of the output. 

The fractional powers or any other 
function of F can also be defined 
th rough the projectors. We illustrate the 
idea on the square root of a DFT matrix. 
The square root or one half power of a 
DFT matrix can be defined as follows 
F

1

2 !"1P11"21P211"jPj1"2jP2j. 
Since the square root operation is 
 one-to-many, that is "15 51, 2 16, 
the proposed definition is not unique 
unless a branch-cut for every square root 
is specified. A possible definition is 
F

1

2 ! P11j P211 
1 1 j

2 Pj1    
12j

2  P2j.One can 
easily note that F

1
2 F

1
2 5 F as expected. 

More information on the fractional 
Fourier transform and the details of the 
definition multiplicity problem can be 
found in [15]. 

CONCLUSIONS
We have examined the structure of DFT 
eigenspaces and used the projectors to the 
invariant spaces to establish some connec-
tions with the relatives of the Fourier 

transform. The presented results are heav-
ily based on the properties of projectors 
that can also be of interest on their own 
due to their strong algebraic structure and 
important geometric interpretations. 
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