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Proper Definition and Handling of Dirac Delta Functions

D irac delta functions are introduced 
to students of signal processing in 
their sophomore year. Quite under-

standably, Dirac delta functions, which 
should be more aptly called general-
ized functions or distributions, cannot 
be comprehensively given to a young 
audience at the beginning of their engi-
neering education. Instead, a simplified 
and abridged definition is presented, and 
the implications of the definition in sig-
nal processing problems are illustrated 
through numerous examples, following 
the footsteps of Oppenheim et al. [1], [2]. 

Students typically learn the properties 
by developing an affinity through their 
usage. As their mathematical knowledge 
matures, some students tend to notice 
inconsistencies related to the sugar-
coated definitions and start questioning 
the mathematics behind them. Unfortu-
nately, the inquisitive questions of these 
students are rather difficult to answer 
convincingly due to the lack of sources 
on generalized functions at the level of 
undergraduate/graduate engineering 
students. The goal of these notes is to 
scratch the sugarcoating a bit and provide 
the basics of generalized functions, lim-
its, and derivatives as well as their usage 
in signal processing problems. 

As an illustrative example, the Fou-
rier transform of ( ) ,f t 1=  which is 

( ) ( ),F 2rdX X=  is typically “proven” 
with the application of the inverse Fourier 
transform on ( ) ( ).F 2rdX X=  However, 
according to the standard calculus results, 
the Fourier transform of ( ) ,f t 1=  which 
is ,{ } ( )exp j t dt1F X= -

3

3

-
#  ceases to 

exist for any X in the ordinary calculus 
sense. The plot further thickens when the 
Fourier transform of the unit step func-
tion, sign function, and Hilbert transform 
discussions come into play. 

Generalized functions enable these 
calculations, and they are indispensable 
tools of our field, yet their proper under-
standing, true definition, and the whys 
and hows about their usage require an 
update to our classical calculus knowl-
edge. Such an update, however incom-
plete, is the topic of this lecture note. 

Relevance
Paul Dirac is one of the giants among 
the great physicists of the early 20th 
century. It is a compliment to our pro-
fession that he received his first aca-
demic degree in electrical engineering 
(from the University of Bristol). He said, 

I owe a lot to my engineering train-
ing because it [taught] me to tolerate 
approximations. Previously to that I 
thought . . . one should just concen-
trate on exact equations all the time. 
Then I got the idea that, in the actual 
world, all our equations are only 
approximate. We must just tend to 
greater and greater accuracy. In spite 

of the equations being approximate, 
they can be beautiful
The function ( )td  introduced by 

Dirac is now called the Dirac delta 
function; it provides great computa-
tional and conceptual advantages in cal-
culations involving diverging integrals, 
which is the case for some Fourier inte-
grals. In addition, the inclusion of the 
Dirac delta function to the calculus of 
ordinary functions enables the differen-
tiation of discontinuous (generalized) 
functions, paving the way toward a con-
sistent analysis of highly practical engi-
neering problems, such as circuit theory 
problems involving switches, unified 
treatment for mixed random variables 
(random variables that are both discrete 
and continuous), and more.

Despite the abundance of topics uti-
lizing Dirac delta functions in signal 
processing, there are only a few sources 
explaining the true nature of the approx-
imation involved to the signal process-
ing audience [3, Appendix I], [4]. This 
column is prepared to answer some of 
the questions on generalized functions, 
illustrate their properties, and show 
their proper usage in some signal pro-
cessing calculations.

The intended audience of this lecture 
note includes instructors, researchers 
with an inclination toward theory, and 
graduate students getting close to ful-
filling their course requirements, say, 
studying for Ph.D. qualification exams.  
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For beginners to the topic, the author 
suggests following the mainstream 
track and developing an affinity for the 
topic first by following the wisdom of 
Oppenheim et al. [1], [2]. 

The conventional treatment aims to 
develop a working knowledge of Dirac 
delta functions, which is a notewor-
thy goal on its own, and gives a good 
“first-order approximation” to the top-
ic. Science and engineering are built 
upon successively refined approxima-
tions, which Paul Dirac has alluded 
to as a potential source of beauty.Es-
pecially in engineering, approximate 
models/explanations are important, 
beyond their aesthetic value, because 
of the basic need for working tools 
and methods for the solution of practi-
cal problems. 

In a typical undergraduate course, 
the need for a work ing solut ion  
may easily overshadow the need for a 
comprehensive theoretical treatment.  
As an example, the first course in 
physics studies the mechanics of 
inclined planes, stacked boxes with 
high/low friction surfaces, and so 
on. If we consider two stacked wood 
blocks on a flat surface, we may say 
that the weight of top block is bal-
anced with the normal force so that 
the net force on the block is zero. 
This comment can be used to explain 
why two blocks do not coalesce into 
a single piece. 

However, if we think about the 
nature of the normal force, it is typi-
cally explained as a direct consequence 
of Newton’s laws of motion (the law 
of action–reaction), and Newton’s laws 
are brought upon students axiomati-
cally in relation to Newton’s empirical 
observations. Hence, the contents of 
Physics 101 correctly predict that two 
stacked wood blocks will not coalesce 
into a single piece without saying 
much about the mechanism behind 
the process! 

In spite of that, Physics 101 students 
learn to use and appreciate the benefit 
of defining a normal force through a 
series exercises and problems, just like 
a beginner signal processing student 
working his or her way through a set 
of exercise problems on Dirac delta 

functions. Much later, physicists with 
advanced degrees learn that the macro-
scopic normal force is due to the Pauli 
exclusion principle applied to bulk mat-
ter [5]. Needless to say, such a compre-
hensive answer is of no help to Physics 
101 students working on problems with 
inclined planes. 

The situation is almost analogous for 
signal processing students and Dirac delta 
functions. Hence, the author believes that 
exposure to Dirac delta functions beyond 
the conventional Oppenheim et al. level 
can be safely postponed to graduate stud-
ies. Of course, professionals in the field, 
lecturers, and researchers can refer quick 
learners with inquisitive questions to this 
lecture note, disregarding the suggest-
ed timeline.

Prerequisites
The only prerequisites are a working 
knowledge of freshman calculus, basic 
signal processing theory, and a keen eye 
for detail.

Problem statement 
The main focus is on the han-
dling of integrals, limits, and deriva-
tives that do not exist in the standard 
calculus sense. The Fourier trans-
form of u(t) (the unit step function), 

( ) ( ) ( ) ,expF u t j t dtX X= -
3

3

-
#  i s  t h e 

prime illustrative example. This Fourier 
transform integral requires the evaluation 
of ( )cos t dt

0
X

3#  and ( ) ,sin t dt
0

X
3#  

which are known to diverge according 
to standard calculus results. However, 
signal processing textbooks express the 
result as { ( )} / ( )u t j1F rdX X= +  [1, 
Table 4.2]. 

The appearance of (·)d  function 
hints at the divergence of the Fourier 
integral to an experienced eye, but 
this is not the case for all divergent 
integrals. The Fourier transform of 

( )tsgn  (the sign function) requires the 
evaluation of ( ) ,sin t dt

0
X

3#  which is 
a divergent integral. However, text-
books state that { ( )} / .t j2sgnF X=  
The main problem is that the trans-
form pair for both functions is not 
valid in the ordinary calculus sense 
but valid in the generalized sense or in 
the sense of distributions. This article 
studies the definition of generalized 

functions and their use in signal pro-
cessing problems.

Solution 
We first present some basic definitions 
to better explain the upcoming defini-
tions of the Dirac delta and other gener-
alized functions.

Function
Functions, as defined on the set of real 
numbers, map real numbers to real 
numbers. Functions are interpreted 
in a pointwise manner. For example, 

( )t t2z =  maps t0  in ( , )3 3-  to t0
2  in 

[ , ).0 3

Linear functional
A functional is a mapping from the 
space of functions to real numbers. For 
example, the area functional defined as 

{ } ( )t dtArea z z=
3

3

-
#  maps the func-

tion ( )tz  to the numerical value of the 
total area under ( ).tz  A functional that 
satisfies the linearity conditions (homo-
geneity and additivity, [1, Sec. 1.6.6]) is 
called a linear functional. Our focus is 
entirely on linear functionals. Hence, 
the term functional should be interpret-
ed as a linear functional in these notes. 

It is easy to verify that the functional 
{ },Tf $

{ ( )} ( ), ( ) ( ) ( ) ,T t f t t f t t dtf _ G Hz z z=
3

3

-
#

 (1)

sat isfies the conditions of linear-
ity. We use the notations { ( )}T tf z  and 

( ), ( )f t tG Hz  interchangeably to denote 
functionals. { ( )}T tf z  explicitly shows 
that the “input” ( )tz  is mapped to an 
“output,” i.e., a real number. The func-
tion ( )f t  appearing in the subscript of 

{ ( )}T tf z  characterizes the mapping. As 
an example, the area functional, previ-
ously given, can be realized by substitut-
ing ( )f t  with 1 in (1). The second notation 

( ), ( )f t tG Hz  is handy in many calculations 
due to the symmetry between ( )f t  and 

( )tz  in (1).
We refer to the function ( )tz  as 

the test function. Hence, { ( )}T tf z  
is said to operate on test functions. 
Generalized functions or distribu-
tions, shown as ( ),f t  are built upon 
the “observed” action of functionals 
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on the test functions, as described in 
the next section. 

Generalized equality
If functions ( )f t  and ( )tg  induce the 
same functional, that is, { ( )}T tf z  and 

{ ( )}T tg z  yield identical outputs for all 
test functions, then functions ( )f t  and 

( )tg  are said to be equal in the gener-
alized sense. We show the generalized 
equality with the notation of ( ) ( ):f t g t

( )g
=

 
( ) ( ) ( ), ( ) ( ), ( )

 ( ).

f t g t f t t g t t

tfor all

( )g
+G H G Hz z

z

= =
 

 (2)

To make the statements precise, we 
need to specify the function class for 
the test functions and also give a dis-
cussion of Lebesgue integration. We 
refer readers to [6, Ch. 6] for a readable 
account of these topics. As readers can 
intuitively appreciate, the class for the 
test functions should be sufficiently 
“rich” and “refined” so that the general-
ized equality in (2) presents practically 
useful results. For example, if the test 
functions are limited to constant func-
tions, say, ( ) ,t cz =  where c is a real 
number, the generalized equality in (2) 
only implies the equality of the area 
under two functions, which is of rather 
limited value.

In this text, we assume that the test 
function class is infinitely differentia-
ble functions in the form of Gauss-
ian functions:

( )
( )

,expt
t

2
1

2
, 2 2

2

z
rv v

n
= -

-
n v c m  (3)

with arbitrary mean n  and spread .v  
We take this class of test functions as 
sufficiently rich and refined so that the 
generalized equality ( ) ( )f t g t

( )g
=  in (2) 

becomes practically meaningful. [The 
class of infinitely differentiable test func-
tions with rapid decay at infinity is called 
the Schwartz space [6], [7]. The Hermite 
functions, an orthonormal and complete 
set for ,L2  are members of this class. 
Laurent Schwartz received the Fields 
Medal in 1950 for building the math-
ematical foundation (theory of distribu-
tions) to the framework of Dirac.] 

Dirac delta function
We consider a specific functional, called 
the evaluation functional, that maps the 
function ( )tz  to ( ),t0z  i.e., the evaluation 
functional maps ( )tz  to the value of its 
sample at .t t0=  The evaluation functional 
is clearly linear, but it is not possible to ex-
press the evaluation functional in the form 
of (1) with a regular ( )f t  function. In spite 
of that, we substitute ( )f t  with ( )t t0d -  
in (1) and use the following as a formal 
definition of the evaluation functional:

 
( ) ( ) ( )

 ( ).

t t t dt t

tfor all

0 0d z z

z

- =
3

3

-
#

 
(4)

We do not question the existence of the 
( )td  function at this point but treat it as 

a regular function for now. Readers may 
interpret (4) as another notation for the 
evaluation functional from which some 
properties, such as the linearity of the 
functional, can be readily observed. Our 
goal is to derive some properties of ( ),td  
given in Table 1, first and then answer 
existence questions.

Verification of the multiplication 
property
Let’s study the product of ( )f t  and 

( ),t t0d -  which is ( ) ( )f t t t0 0d -  ac-
cording to the multiplication property 

( ) ( ) ( ) ( )f t t t f t t t
( )g

0 0 0d d- = -  in Table 1. 
To prove the generalized inequality, we 
need to show that ( ) ( ), ( )f t t t t0G Hd z- =

( ) ( ), ( )f t t t t0 0G Hd z-  for all test func-
tions. We focus on the term on left-hand 
side, ( ) ( ), ( ) ,f t t t t0G Hd z-  first:

 

( ) ( ), ( ) ( ) ( )

( )

( )

( )

( )

( ) ( ) .

f t t t t f t t t

t dt

t t

t dt

t

f t t

( )

( ) ( ) ( )

( )

a

t f t t

b

0 0

0

0

0 0

G Hd z d

z

d

z

z

z

- = -

= -

=

=

3

3

3

3

z z

-

-

=
t

t

t

#

#
 

 

(5)

In line (a), ( ) ( ) ( )t f t tz z=t  is introduced, 
and ( )tzt  is assumed to be a member of 
the test function class due to its “rich-
ness” and “fineness.” Line (b) is due to 
the definition of evaluation functional.

The r ight side of equal ity ( )f t

( ) ( ) ( )t t f t t t
( )g

0 0 0d d- = -  can be worked 
out as follows:

 

( ) ( ), ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ).

f t t t t

f t t t t dt

f t t t t dt

f t t

0 0

0 0

0 0

0 0

G Hd z

d z

d z

z

-

= -

= -

=

3

3

3

3

-

-

#
#

 

(6)

Combining (5) and (6), we have

( ) ( ), ( ) ( ) ( ),

( ) ,  ( ),

f t t t t f t t t

t tfor all

0 0 0G H G
H
d z d

z z

- = -
 

 
(7)

wh ich  concludes  t he  p roof  of 
( ) ( ) ( ) ( ).f t t t f t t t

( )g
0 0 0d d- = -

An important takeaway message 
from the proof of the first property is 
not the final result but the proof pro-
cedure followed for the generalized 

Table 1. The properties for the Dirac delta function and its derivatives.

Basic

Multiplication ( ) ( ) ( ) ( )f t t t f t t t
( )g

0 0 0d d- = -  

Scaling ( ) ( )at
a

t1( )g

d d=  

Sifting ( ) ( ) ( )f t t t dt f t0 0d - =
3

3

-
#  

Convolution ( ) ( ) ( )t f t f t
( )g

)d =  

Advanced

Multiplication where

and

( ) ( ) ( ) ( ) ( ),

( ) ( ), ( ) ( )

k
nf t t t f t t t

dt
d t t dt

d f t f t

1( )
( )

( ) ( )

( ) ( )

n
g

k

k

n
k n k

n

n
n

n

n
n

0
0

0 0d d

d d

- = - -

= =

=

-` j|

Scaling where are zeros of

. .,

( ( ))
( )

( ), ( ),

( ) , { , , , }i e

t f tf t
f t

t t

f t k K

1

0 1 2

( )

k

g

kk

K

k

k

1

f

d d= -

= =

= l
|

Sifting ( ) ( ) ( ) ( )f t t t dt f t1( ) ( )n n n
0 0d - = -

3

3

-
#  

Convolution ( ) ( ) ( )f t t f t( )
( )

( )n
g

n) d =  
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equality. The equality sign 
( )g
=  appearing 

in ( ) ( )f t g t
( )g
=  denotes the equality of 

the functionals for every member of the 
test function class. It is, indeed, very dif-
ferent from the ordinary equality sign.

A rather silly, but memorable, anal-
ogy given by one of my instructors can 
be repeated as follows: Assume that you 
are in a county fair, and there is a contest 
to identify an unknown animal. Con-
testants are allowed to ask only yes/no 
questions. After several rounds of ques-
tions, you learn that the animal is green, 
lives in a lake, is capable of leaping sig-
nificant distances, and quacks. Given 
this information, can you say that the 
animal is a frog? 

If you have asked a sufficiently large 
number of informative questions (the 
richness and fineness of the question 
class), you can be pretty sure that the ani-
mal is a frog! However, there is always a 
possibility that the animal is of another 
species that is capable of imitating a frog 
quite closely! If you are only interested in 
the actions of this animal, though, there 
is no harm in calling the animal, irre-
spective of its genus, a frog or a general-
ized frog! 

Analogous to the story, a general-
ized function ( )f t  is characterized by 
its response to the probing test func-
tions ( ).tz  Generalized functions are 
declared equal if they give the same 
response to all test functions.

The major mishap in the treatment 
of the impulse function or Dirac delta 
function in all signal processing texts is 
the usage of an ordinary equality sign = 
instead of a generalized equality sign .

( )g
=  

This carries the potential of interpreting 
equations involving ( )td  in a pointwise 
manner, which is prone to inconsisten-
cies and calculation mistakes.

Verification of the scaling property
Let’s verify the scaling proper ty 

( ) ( / ) ( ),at a t1
( )g

; ;d d=  given in Table 1. 
The left side of the equality can be writ-
ten as

 

( ), ( )

( ) ( )

| |
( )

| |
( )

.
a

at t

at t dt

u
a
u du

a
1 0

u at

G Hd z

d z

d z
z

=

= =

3

3

3

3

=
-

-
` j

#

#

 

(8)

Here, ( / )u az  is assumed to be in the test 
function class, as in the proof of the first 
property, and we have treated ( )atd  as a 
regular function and changed the inte-
gration variable from t to u = at without 
any due diligence (more on this later).

The r ight side of the equality 
( ) ( / ) ( )at ta1

( )g
; ;d d=  can be written as

 

( ), ( ) ( ), ( )

( )
.

a
t t

a
t t

a

1 1

0

G Hd z d z

z

=

=
 

(9)

Equations (8) and (9) imply the general-
ized equality of ( ) ( / ) ( ).at a t1

( )g
; ;d d=  

Note that setting a 1=-  in the scaling 
property gives ( ) ( ),t t

( )g
d d= -  which is 

the evenness of function ( )td  in the gen-
eralized sense.

Generalized limit
Up to this point, we have averted the 
existence questions on the ( )td  func-
tion but, rather, focused on its proper-
ties. Now, we present a limit argument 
for the construction of the Dirac delta 
function. The described limit operation 
is called the generalized limit. In stan-
dard textbooks, the Dirac delta function 
is introduced as the pointwise limit of 
ordinary functions, which is not the cor-
rect definition and the root cause of con-
fusion in many discussions.

The generalized limit of ordinary 
functions ( )f tn  is said to be a general-
ized function ( ),f t  if

 ( ) ( ) ( ) ( )lim f t t dt f t t dt
n

n z z=
"3 3

3

3

3

- -
# #  

 (10)

is satisfied for all test functions ( ).tz  
We denote the generalized limit as 

( ) ( ).f t f t
( )

n
g
"

The Dirac delta function can be 
given as the generalized limit of ordi-
nary ( )f tn  functions defined as follows:

 ( )
,

.
,

f t
n

n
t

n
0

2 2
other

n
1 1e e

e=
-)  (11)

From Figure 1, it can be seen that ( )f tn  is 
a pulse of duration /ne  centered around 

.t 0=  The area under ( )f tn  is unity for 
all n. With the running assumption that 
the test functions ( )tz  are sufficiently 

smooth, we can expand the function into 
the Taylor series around :t 0=

 
( ) ( ) ( ) ( )t t t0 0 0

2
h.o.t.

( )2
2

z z z z= + +

+

l
 
(12)

Here, h.o.t. refers to the higher-order 
terms of the Taylor series expansion. 
As ,n " 3  the support of function 

( ),f tn  as shown in Figure 1, approaches 
zero. Hence, the product ( ) ( )t f tnz  can 
be approximated with the first term 
of the Taylor series expansion, which 
is ( ) ( ),f t0 nz  for large enough n. As a 
result, we have the equality of

 ( ) ( ) ( )lim f t t dt 0
n

n z z=
"3 3

3

-
#  (13)

in the usual calculus sense. Given the gen-
eralized limit definition, this concludes 
the proof of ( ) ( )f t t

( )
n

g
" d  as .n " 3

The definition of the Dirac delta 
function as a generalized limit of 
 ordinary functions is important in prac-
tice. Whenever in doubt, it is possible 
to replace ( )td  with the ( )f tn  functions 
in (11), solve the problem of interest, 
and then calculate the ordinary limit 
of the final result as .n " 3  Readers 
are invited to do this calculation to 
have another verification of the scaling 
property in Table 1. Furthermore, the 
generalized limit definition establishes 
a connection with the “physical” inter-
pretation of the Dirac delta function as 
a very-short-duration pulse, but readers 
should always keep in mind that the 
limit operation for getting shorter and 
shorter pulses is not an ordinary point-
wise limit operation, as introduced in 
many undergraduate texts, but a gener-
alized limit operation.

The Dirac delta definition by a gen-
eralized limit argument is not specific to 

( )f tn  given by (11). Readers can examine 
[1, Problem 1.38] for some other ordi-
nary functions for which the generalized 
limit is ( ).td  The basic requirement is 
the construction of a unit area function 
sequence with diminishing support. It 
can be verified that both

 
( ) ( / )

( ) ( )
( )

exp

sin
nt

g t n nt

h t n
t
nt

2
2 and

sinc

n

n

2

r

r

r

= -

= =
 

(14)
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tend to ( )td  as n " 3 in the general-
ized sense.

Figure 2 shows the sketch of 
( ) ( )nth t nsincn =  for different n values. 

The main lobe of the function ( )h tn  gets 
narrower and taller as n increases, yet, 
however large n is, there exist two sid-
elobes, with a peak value of about one-
fifth the maximum value, on both sides 
of the main lobe. Furthermore, by fixing 
t to a nonzero value, say ,t0  and evaluat-
ing ( ),lim h t

n
n 0

"3
 we get

( ) ( ),lim limsinh t
t

nt1
n

n
n

0
0

0
r

r=
" "3 3

which does not exist in the usual sense. 
Hence, ( )h tn  does not approach ( )td  in 
a manner that is as described in many 
undergraduate textbooks but approach-
es in the generalized sense or, equiva-
lently, in the weak limit sense [8].

Generalized derivative of the  
Dirac delta function
The derivative of the Dirac delta function 

/ { ( )}d dt td  is called the doublet function 
[1, Sec. 2.5.3]. It is no surprise that the 
differentiation operation in / { ( )}d dt td  is 
in the generalized sense, that is, accord-
ing to the introduced generalized limit 

definition. To understand this operation, 
let’s examine the response of / { ( )}d dt td  
to a test function:

 

{ ( )} ( ) ( ) ( )

( ) ( ) ( )

( ) .

dt
d t t dt t t

t
dt
d t dt

dt
d t

0( )

t

t

t 0

1

d z d z

d z z

z

=

- =-

=-

3

3

3

3

3

3

- =-

=

- =

#

#  
 

(15)

This calculation is based on the applica-
tion of integration by parts to the leftmost 
side of (15). Since the test function ( )tz  
is a member of scaled and shifted Gauss-
ian functions, the term ( ) ( )t t t

t
d z 3

3

=-

=
 

vanishes. The other term, the inte-
gral term of the integration-by-parts 
 operation, can be expressed using the 
sifting property of the Dirac delta func-
tion. Hence, we get the defining relation 
for the doublet function as

 ( ) ( ) ( ).t t dt 0( ) ( )1 1d z z=-
3

3

-
#  (16)

Here, ( )t( )nd  and ( )t( )nz  refer to the nth 
derivative of the Dirac delta and test 
function ( )tz  in the generalized and 
ordinary sense, respectively.

At this point, readers should be 
rightfully uncomfortable with the 
application of integration by parts with 
an integrand containing a Dirac delta 
function, as in (15). To the comfort of 
these readers (and also the ones still 
uneasy about the change of variables 
from t to u = at in the scaling property 
discussion), we present an alternative 
proof path and suggest replacing ( )td  
with the ordinary function ( )h tn  given 
in (14). The integration-by-parts opera-
tion with the substituted ( )h tn  function 
is now well defined, and the final 
result becomes

 
{ ( )} ( )

( ) ( ) .

dt
d h t t dt

h t
dt
d t dt

n

n

z

z

=

-

3

3

3

3

-

-

#

#
 

(17)

By taking the limit of both sides in 
(17) as n " 3 and using the generalized 
limit definition in (10), we reach the 
conclusion that, since ( ) ( ),h t t

( )
n

g
" d  we 

have / { ( )} ( ).d dt h t t
( ) ( )

n
g 1" d  The formal 

definition of ( )t( )1d  becomes the rela-
tion in (16).
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FIGURE 1. The convergence of pulse sequences fn(t ) to d(t ).

hn(t ) → δ (t )
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FIGURE 2. The convergence of hn(t ) = nsinc(nt ) to d(t ). Convergence is not in the pointwise sense! 
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Sifting and other properties for high-
er-order derivatives of the Dirac delta 
function are given in Table 1. These 
results can be called advanced results, 
since they require more than a basic 
understanding of the generalized func-
tions. Many signal processing textbooks 
avoid these properties since even a par-
tial justification of these results requires 
much more than a pictorial or pointwise 
justification of the ( )td  function.

Derivative of the unit step function
By replacing ( )h tn  with an arbitrary 
regular function f(t) in (17), we get

 
{ ( )} ( )

( ) ( ) .

dt
d f t t dt

f t
dt
d t dt

z

z

=

-

3

3

3

3

-

-

#

#
 

(18)

Substituting f(t) in (18) with the unit step 
function u(t) yields

 

{ ( )} ( ) ( )

( )

( )

( ) ( )

( ), ( ) ,

dt
d u t t dt u t

dt
d t dt

dt
d t dt

t t

0
( )a

0

3

G H

z

z

z

z z

d z

=-

=-

= -

=

3

3

3

3

3

- -
# #

#  
  
  
  
 (19)

where ( ) 03z =  is used in l ine 
(a), which is due to the test func-
tion class definition. The leftmost 
and rightmost sides of (19) imply that 
( / ) ( ), ( ) ( ), ( )d dt u t t t tG H G Hz d z=  for all 

test functions. This statement is equiva-
lent to ( / ) ( ) ( ).d dt u t t

( )g
d=

From this discussion, we reach the 
important conclusion that an ordinary 
function, such as u(t), when interpreted 
as a generalized function, has deriva-
tives of all orders. In other words, func-
tion u(t) is not a differentiable function 
due to its discontinuity at ,t 0=  but it is 
differentiable for all orders in the gener-
alized sense. 

Application examples
A number of examples are presented to 
illustrate the application of the Dirac 
delta function. Our goal is to relate the 
applications to the generalized defini-
tions on functions, limits, derivatives, 
and so on.

Example 1
Assume that a sequence [ ]y n  is formed 
by down-sampling [ ]x n  by two: 

[ ] [ ].y n x n2=  It is well known that the 
spectrum of [ ], ( )y n Y e j~  is related to 
the spectrum of [ ], ( ),x n X e j~  according 
to the relation [2, Sec. 3.6.1]

 ( ) .Y e X e X e
2
1j j j

2 2= +~
~ ~

r+^ ^^ `h hhj   

(20)

In this example, we would like to 
illustrate the validity of this expres-
s io n  fo r  [ ] ( ).expx n j n0~=  T h i s 
exercise is quite trivial from the time-
domain-processing viewpoint. Since 

[ ] [ ] ( ), [ ]expy n x n j n y n2 2 0~= =  is a 
complex exponential whose frequency is 
doubled after down-sampling. The fre-
quency-domain representations of [ ]x n  
and [ ]y n  are ( ) ( ),X e 2j

0rd ~ ~= -~  
and ( ) ( ),Y e 2 2j

0rd ~ ~= -~  respec-
tively. This example aims to verify this 
basic result directly from (20).

It should be remembered that the 
expressions for ( )X e j~  and ( )Y e j~  
are periodic with ,2r  as the notation 
implies. Let’s check the validity of (20) 
for ( ) ( )X e 2j

0rd ~ ~= -~ :

( )

( )

( )

( ) .

Y e X e X e
2
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2
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2
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2
2 2
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2 2 2

2 2 2

2 2
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j j j
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2 2

0

0

0

0

0

0

0

r
d
~

~

d
~

r ~

r
d
~ ~

d
~ r ~

r
d ~ ~

d ~ r ~

rd ~ ~

= +

= -

+ + -

= -

+ + -

= -

+ + -

= -

~
~ ~

r+^ ^ ^

`

`

`

`

`h hh

j

j

j

j

j

8

8

6

B

B

@

In line (a), we have used the scaling 
property of the Dirac delta function 
from Table 1. In line (b), the expres-
sion is rewritten to cover only a single 
2r  period, following the convention. 
As expected, the final result indeed 
matches the earlier result found from 
time-domain considerations.

Comment
The spectrum after a down-sampling oper-
ation is typically found with a frequency-

domain sketch that indicates the support 
of ( )X e j~  and its translated versions (see 
[2, Fig. 3.18]). Such a sketch is also useful 
to illustrate the aliasing concept. We see 
that when the spectrum involves a Dirac 
delta function, a sketch is not sufficient 
to explain the vanishing 1/2 coefficient in 
(20). We need to bring the scaling property 
of the Dirac delta function into play.

Example 2
Let X be a random variable with the 
probability density function (pdf) ( ).f xX  
The problem of interest is the pdf of the 
random variable .Z X2=

This is a standard probability prob-
lem, and we would like to illustrate the 
utility of the Dirac delta function in this 
calculation:

 

( ) ( , )

( ) ( )

( ) ( )

( ) ( )

( )
( )

( )
(  )

( ) ( ) .

f z f x z dx

f x f z X x dx

f x z x dx

f x x z dx

f x
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x z

z
x z

dx z

z
f z f z

2

2
0

2
1

with

( )
,

( )
|

( )

( )

( )

( )

Z
a

X Z

b
X Z X

c
X

d
X

e
X

f
X X
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d

d

d

d

=

= =

= -

= -

=
-

+
+

= + -

e

^

o

h

#
#
#
#

#
 

(21)

Line (a) is the marginalization opera-
tion. Line (b) includes a factorization 
for the joint density in terms of the 
conditional density. Line (c) introduces 
Z X2=  into the calculation. Line (d) is 
due to the evenness of the Dirac delta 
function, ( ) ( ).x xd d= -  Line (e) uses 
the scaling property of Table 1 (from 
the “Advanced” section of the table). 
It is important to note that the integra-
tion variable in line (d) is x. Hence, for 
the function ( )x z2d -  appearing in the 
integrand, x is the variable, and z is just 
a constant value. Therefore, the scal-
ing property of the Dirac delta function 
should be utilized by treating function 
x z2 -  as a function of the variable x. 
Line (f) is due to the sifting property.

Comment
We observe that the inclusion of the 
Dirac delta in the operational calculus 
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results in significant shortening of 
the algebra. Note that the calculation 
given in (21) exactly mimics a simi-
la r calculation given for the dis-
crete random variables (probability 
mass functions). 

More specifically, line (c) of (21) 
can be interpreted as follows: Let’s 
assume that z 100=  and consider the 
integral ( ) ( ) .f x z x dxX

2d -
3

3

-
#  Since 

the function ( )z x2d -  is equal to 
zero when ,z x2!  this integral corre-
sponds to checking all ( , )x 3 3! -  
to find the ones satisfying the condi-
tion x z 1002 = =  and “summing up” 
f(x) values corresponding to these 
x values. 

The main difficulty for instructors 
is not this interpretation but explain-
ing the factor / ,z1 2  which is the 
Jacobian term arising during the func-
tional mapping of random variables. 
The Jacobian term does not arise in 
discrete random variables, and the 
“summing up” interpretation becomes 
exactly correct; that is, for the prob-
ability mass functions, the sum of the 
probability values for x that satisfy the 
condition z x2=  gives the probability 
of z. With the inclusion of the Dirac 
delta function in the calculus, the 

/ z1 2  term in line (f) of (21) effort-
lessly comes out with the application 
of the scaling property.

Example 3
Let X and Y be two random variables 
with the joint pdf ( , )f x y,X Y . The prob-
lem is the derivation of the pdf for the 
random variable Z X Y2= + :

 

( ) ( , ) ( )

( , ) ( )

( , ) ( )

( , )

( ) ( ) .

f z f x y z x y dydx

f x y z x y dx dy
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,
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,
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#
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(22)

Line (a) is the “summing up” operation 
of ( , )f x y,X Y  values for which the condi-
tion z x y2= +  is satisfied. In line (b), 
the order of integration is exchanged, 
that is, the inner integration is with 

respect to x after the exchange. Line 
(c) is due to the evenness of ( ).xd  Line 
(d) is due to the sifting property. Line 
(e) is the factorization of joint density 
in terms of the conditional density of X 
given Y.

Comment
By changing the integration order in 
line (c), the variable for the function 

( )z x y2d - -  becomes x. After the 
order change, the variables z and y are 
treated as constants, and we have the 
result in line (d). If the inner integral in 
line (c) were with respect to the variable 
y, that is, if we do not change the order 
of integration, we need to use result 
given in Example 2 to evaluate the inte-
gral involving ( ).z x y2d - -

Example 4
Show that the Fourier transform of 

( )f t 1=  is ( ) ( ),F 2rdX X=  where 
( ) { ( )} ( ) ( )expF f t f t j t dtFX X= = -

3

3

-
#  

is the Fourier transformation operation. 
Freshman calculus results state that 

( ) ( )expf t j t dtX-
3

3

-
#  does not con-

verge for any X for ( ) .f t 1=  Hence, 
the well-known Fourier transform 
pair of ( )1 2) rd X  should be inter-
preted in the generalized sense. To 
show { } ( ),1 2F

( )g
rd X=  we need to 

examine the response of the function 
( ) { }F 1FX =  to a test function ( ):U X
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(23)

Line (a) is due to the linear functional 
definition. Line (b) results from the 
definition of the Fourier transform. 
Line (c) changes the integration order. 
Line (d) is due to the inverse Fourier 
transform relation for ordinary, abso-
lutely integrable functions [1]. [With 
the assumed test function class (Gauss-

ian functions), the Fourier integral, that 
is, { ( )} ( ),F tz U X=  is guaranteed 
to converge in the ordinary calculus 
sense.] Line (e) is due to the fact that 

( ) ( ) ,t dt0
t
zU = #  that is, the area of the 

time-domain function, is the value of its 
Fourier representation at .0X =  Lines 
(f) and (g) are different ways of writing 
line (e). Considering the leftmost and 
rightmost sides of (23) and remember-
ing the generalized equality definition 
in (2), we can conclude the proof of 

{ } ( ).1 2F
( )g
rd X=

Comment
In a first course, this relation is given 
by finding the inverse Fourier trans-
form of ( ),2rd X  i.e., { ( )},2F 1 rd X-  
without mentioning the existence of 
the Fourier integral for ( ) .f t 1=  The 
Fourier integral for ( )f t 1=  diverges 
in the usual sense but exists only in 
the generalized sense or in the sense 
of distributions.

Example 5
Show that the Fourier transform of 

( ) ( )f t tsgn=  is ( ) / .F j2
( )g

X X=

The Fourier transform of ( )tsgn ,

( ) ,t
t
t

1
1

0
0

sgn
2
1

=
-
'

can be written as the integral

 { ( )} ( ) ,sint
j

t dt2sgnF
0

X=
3#  (24)

which does not converge in the ordinary 
calculus sense. Hence, as suspected, 

{ ( )}tsgnF  is equal to /j2 X in the dis-
tribution sense. It is interesting to note 
that there is no Dirac delta function 
in the expression { ( )} / ,t j2sgnF

( )g
X=  

immediately giving away that the equal-
ity is in the generalized sense.

Let’s define a regular function 
( )gT X  as ( ) ( )sing t dtT

T

0
X X= =#

( ) / .cos T1 X X-^ h  We would like to 
take the limit of ( )gT X  as T " 3 with 
the goal of evaluating the transform in 
(24). To do that, we need to examine 
the response of ( )gT X  to a test func-
tion ( ),U X  that is, ( ), ( ) ,gTG HX U X  and 
then evaluate the limit of the response 
as .T " 3

For a fixed T, ( ), ( )gTG HX U X  can be 
expressed as
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(25)

As ,T " 3  the equal ity in (25) 
approaches

 ( ), ( )

, ( ) ( ),
( )

.

lim

lim cos

g

T1
T

T

T

G H

G H G H

X U X

X
U X X

X
U X

=

-

"

"

3

3 
(26)

From (26), it is clear that we need to 
s h ow  ( ), ( ) /( )lim cos T 0

T
G HX U X X =

"3
 

to conclude the proof. Since the test 
function class is the class of Gauss-
ian functions, the function ( ) /U X X is 
absolutely integrable in ( , )3 3!X -  
in the Cauchy principle value sense. 
(The Cauchy principle value integral 
is required due to the singularity of 

( ) /U X X at 0X =  [4, p. 359]). 
We know from Dirichlet conditions 

that the Fourier transform of an abso-
lutely integrable function exists in the 
regular sense [1, p. 290]. An impor-
tant but less-known fact by the signal 
processing audience is the Riemann–
Lebesgue lemma, stating that, if x(t) is 
absolutely summable, then ( )X 0"X  
as " 3X  [3, p. 278]. 

Armed with this knowledge,  
( ), ( ( ) / )cos TG HX U X X  can be interpret-

ed as the real part of the { ( ) / }F U X X  
with the t ransform-domain var i-
able T. Then, due to the absolute 
integrability of ( ) /U X X and the Rie-
mann–Lebesgue lemma, we have 

( ), ( ( ) / ) .lim cos T 0
T
G HX U X X =

"3
By multiplying both sides of (26) 

by /j2  and replacing ( )gT X  with 
( ) ,sin t dt

T

0
X#  we reach

 
( ) ( )

( ) ,

lim sin d
j

t dt

j
d

2

2

T

T

0
X U X X

X
U X X

=
"3 3

3

3

3

-

-
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 (27)

stat ing that { ( )} /t j2sgnF
( )g

X=  via 
the generalized limit definition given 
in (10).

Comment
A first course in signal processing needs 
to sugarcoat some definitions and even 
some calculations due to pedagogi-
cal reasons. Among these, the Fourier 
transformations of the sign function and 
unit step function stand out. The sign 
function, ( ),tsgn  is clearly not abso-
lutely or square summable; hence, its 
Fourier transform cannot be given in 
the usual sense. 

In spite of that, to show this result, 
some instructors calculate the Fourier 
transform of a regular, absolutely sum-
mable function ( ) ;t esgn t; ;a-  evaluate 
the limit of the result as ;0"a  and 
then present the limit as the Fourier 
transform of ( ).tsgn  The end result 
of this calculation matches the cor-
rect result, but the intermediate steps, 
especially the one involving the move-
ment of the limit operation inside of 
the Fourier transform integral in the 
final step, are highly questionable. It 
should be clear at this point that any 
treatment of integrals diverging in the 
ordinary calculus sense requires some 
extraordinary effort. The definition 
of generalized functions is an effort 
along this line.

As expected, the Fourier transform 
of u(t) is also only valid in the gen-
eralized sense. By expressing u(t) as 

( ) ( ( ) ) /u t t 1 2sgn= +  and applying the 
linearity of the Fourier transform, we 
can show { ( )} / ( ).u t j1F

( )g
rdX X= +

Example 6
Find the inverse unilateral Laplace 
transform of ( ) / ( ).X s s s 32= +

This problem is typically solved by 
partial fraction expansion, that is,

 ( ) ,X s
s

s s
s3

3
3

92
=
+
= - +

+
 (28)

followed by inverse Laplace transfor-
mation via transform-pair recognition. 
The final answer of this example is 

( ) ( ) ( ) ( ) ( ).expx t t t t u t3 9 3( )1d d= - + -  
Our goal is to derive the same result 
via some alternative paths to illus-
trate the usage of generalized dif-
ferentiation.

Let’s first express X(s) as ( )X s =
( ),s X sp

2  where ( )X sp = / ( ).s1 3+  The  

inverse Laplace transform of ( )X sp   
is ( ) ( ) ( ).expx t t u t3p = -  Hence, the  
inverse Laplace transform ( )X s =

( )s X sp
2  becomes ( ) ( / ) ( ).x t d dt x tp

2 2=  
We can verify this result by remember-
ing that the unilateral Laplace trans-
form of ( / ) ( )d dt x t  is ( ) ( ).sX s x 0- -  
Note that ( )x tp  and its derivatives are 
all zero at t 0= -  due to the existence 
of the u(t) term in ( ).x tp  Let’s evaluate 
the first two derivatives of ( )x tp  and 
compare the result with the answer by 
partial fraction expansion:
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(29)

Line (a) of both equations is due 
to the product rule for differentia-
tion and the generalized equality of 
( / ) ( ) ( ).d dt u t t

( )g
d=  Line (b) is due to 

the multiplication property of the Dirac 
delta function from Table 1. Note that 
the equalities given in (29) are not ordi-
nary equalities but valid only in the gen-
eralized sense. The absence of the ( )g

=   
symbol can be a source of inconsisten-
cies and confusion, yet we go back to 
the conventional notation and symbols 
in this last example.As a final exercise, 
let’s redo the calculation by evaluating 
the second derivative of ( ) ( ) ( )x t f t g tp =  
with ( ) ( )expf t t3= -  and ( ) ( )g t u t=  

(continued on page 203)
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 ■ “I am doing my Ph.D. in a relatively 
new university. The PROGRESS 
workshop helped me to get a better 
exposure of how things operate in 
other universities and their culture. It 
really got me motivated when pro-
fessors of high reputation spent their 
time to interact and share their 
knowledge with early researchers 
like me.”

 ■ “In the panel with faculty who 
shared their experiences, it became 
clear that everybody struggles at 
some time in their academic career. 
This made me more confident that 
an academic position is actually 
within my possibilities.”

 ■ “The PROGRESS motivated me a 
lot, especially because we had a lot 
of wonderful examples of how a 

career could be merged and coexist 
perfectly with the private life of any-
body and it should be up to us to 
decide where is the boundary.”

 ■ “Hearing how women have actu-
ally been able to combine a career 
in academia and still have a fami-
ly is very helpful. In my country, 
there are almost no women in my 
field of research in permanent 
academic positions, so there are 
not really any role models, and it 
was very interesting to hear from 
women around the globe about 
their experiences.”
Via the survvey, the students also 

suggested topics for future PROGRESS 
workshops, including a session on prep-
aration of a CV, cover letters, statements, 
grant writing, a list of opportunities 

(postdoctoral, faculty, and scholarships), 
a list of platforms where one could find 
tools to sharpen signal processing skills, 
a mentorship program, and a forum for 
Q&A beyond the workshop.

The next PROGRESS workshop will 
be virtual and is scheduled for 4–5 June 
2021—right before ICASSP 2021. More 
information can be found at ieeeprogress 
.org.

Author
Athina Petropulu (athinap@soe.rutgers 
.edu) is a Distinguished Professor of 
electrical and computer engineering at 
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via the Leibniz generalized product rule, 
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In line (a), the basic and advanced versions 
of the product rule in Table 1 are applied. 
The advanced product rule states that 

( ) ( ) ( ) ( ) ( ) ( ),f t t f t f t0 0( ) ( ) ( )1 1 1d d d= -  and  
substituting ( ) ( )expf t t3= -  into this 
relation gives the term in the square 
brackets of line (a). We see that the 
final result given by either (29) or (30) 
matches the one by the partial fraction 
expansion, provided that we handle the 
differentiation of ( )x tp  in the general-
ized sense, obeying the rules of Dirac 
delta function manipulation.

What we have learned
We have studied generalized functions, 
limits, and derivatives as well as their ap-
plications in some signal processing prob-
lems. These notes aim to show that many 
familiar equalities are valid only in the gen-
eralized sense. Hence, the equality signs 
should be replaced with 

( )g
=  in many calcu-

lations involving Dirac delta functions, unit 
step functions, and so on. Interested read-
ers can examine classical signal processing 
textbooks of Papoulis [3] and Bracewell [4] 
for a brief treatment of generalized func-
tions. For more information, readers are 
invited to examine [7], [9], and [10].
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