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a b s t r a c t 

A two-stage method for the parameter estimation of Gaussian autoregressive models is proposed. The 

proposed first stage is an improved version of the conventional forward-backward prediction method and 

can be interpreted as its weighted version with the weights derived from the arithmetic mean of the log- 

likelihood functions for different conditioning cases. The weighted version is observed to perform better 

than the conventional forward-backward prediction method and other linear prediction based methods 

(correlation method, covariance method, Burg’s method etc.) in terms of attained likelihood value. The 

proposed second stage uses the estimate of the first stage as the initial condition and approximates the 

highly non-linear log-likelihood function with a quadratic function around the initial estimate. The opti- 

mization of the quadratic cost function yields the optimal perturbation vector that locally maximizes the 

likelihood in the vicinity of the initial condition. The proposed method is compared with other methods 

and it has been observed that the likelihood value attained at the end of two-stages is almost identical 

to the value attained by higher complexity numerical-search based optimization tools in a wide range 

of experiments. The maximum likelihood-like performance at a significantly lower implementation cost 

makes the proposed method especially valuable for the applications with short data-records and limited 

computational resources. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Autoregressive (AR) modeling of random processes is a power-

ul tool of statistical signal processing utilized in speech process-

ng, seismic signal processing, radar signal processing and several

ther applications [1–4] . The preference of AR models over the

oving average (MA) or autoregressive moving average (ARMA)

odels partially stems from the availability of computationally fea-

ible estimation techniques involving only linear equation systems.

owerful modeling capabilities of AR systems, along with their

racticality, kept the estimation of AR model parameters as a key

roblem of focus for many decades. In this paper, we present a low

omplexity parameter estimation method, requiring no more than

he solution of a linear equation system, that works almost as well

s the maximum likelihood (ML) method. The suggested method

an be especially useful in applications with short data-records and

imited computational resources. 

The computational difficulties associated with the exact max-

mum likelihood solution led to the development of several low

ost AR parameter estimation methods. Among these methods,

ule-Walker equations (also known as the autocorrelation method),
E-mail address: ccandan@metu.edu.tr 
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urg’s method and forward-backward prediction based method can

e considered as methods based on the linear prediction opera-

ion [1] . These methods are highly practical and they can be in-

erpreted as substitutes for a much higher complexity maximum

ikelihood estimator. It is a generally accepted fact that the best

erforming method among these methods is the forward-backward

rediction method, trailed by Burg’s method, covariance method

nd Yule-Walker method, [ 5 , Section 6.4]. The suggested method,

eighted forward-backward prediction method, is also a member

f the same class. Here we show that the suggested method is bet-

er than other members in terms of likelihood maximization; but,

uffers from the stability problem at small sample sizes, a problem

ommon to some members of this class. 

In [6] , Kay proposed an approximate ML estimator, mimicking

urg’s approach, that produces exact ML estimate only for AR(1)

rocess. Kay suggests to solve for the k th reflection coefficient by

aximizing the likelihood function while keeping the earlier re-

ection coefficients fixed. Vis and Scharf have improved the effi-

iency of Kay’s estimator by integrating the Levinson recursion to

he estimator [7] . Tuan extended Kay’s estimator, at the expense

f more computation, by allowing iterative optimization of reflec-

ion coefficients [8] . Whorter and Scharf have given the exact ML

olution for AR model parameters in [9] . Unfortunately, the exact

https://doi.org/10.1016/j.sigpro.2019.107256
http://www.ScienceDirect.com
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ML solution requires root finding of very high degree polynomials.

To illustrate the difficulty of the problem, the root finding opera-

tion of a 6561 degree polynomial is required for the estimation of

AR(4) parameters, [ 9 , Fig. 4 ]. 

The main goal of this paper is to present a method that is sta-

tistically close to maximum likelihood estimation and computa-

tionally faster than other existing methods. The suggested method

consists of two stages. In the first stage, we generalize the con-

ventional forward-backward prediction approach and propose its

weighted version. The performance of weighted forward-backward

prediction is generally much better than the conventional one and

its computation requirements are the same. A second stage is pro-

posed to further improve the likelihood value. In the second stage,

the result of the first stage is taken as the initial condition and

the perturbation vector that maximizes the likelihood value in the

neighborhood of the initial condition is found. The numerical re-

sults indicate that the suggested method generates almost identi-

cal likelihood values to the ML solution in AR(1) and AR(2) cases,

the cases for which exact ML solutions are available. For higher

order processes, for which there is no exact ML solution, the sug-

gested method outperforms other linear prediction based alterna-

tives in the maximization of the likelihood function and works as

well as numerical-search based non-linear optimization tools in

spite of its lower computational requirements. We can summa-

rize the main contributions of this study as the development of

an improved version of conventional forward-backward prediction

scheme (first stage method) and an efficient solver for the local

maxima of the likelihood function around an initial condition (sec-

ond stage method). 

The main application target for the suggested method is the AR

parameter estimation problems with short data records, as in radar

signal processing [3,10] . In many radar signal processing applica-

tions, the computational sources are limited and do not allow a

real-time implementation of a general purpose optimization tool.

More specifically, a pulse-Doppler radar system with 10 MHz pulse

bandwidth utilizing 100 pulses in a coherent processing interval

generates 10 0,0 0 0 vectors per second where each vector contains

100 samples (slow/fast time decomposition). AR modeling can be

used to model the clutter process in each observation vector. Un-

fortunately, it is not feasible to apply general purpose non-linear

optimizers on each vector due to the inflow rate of vectors. Typ-

ically, low complexity methods, such as Burg’s method, is utilized

to model the clutter power spectral density. The suggested fixed la-

tency, reduced complexity, ML-like performing method can be use-

ful in such applications. In the other extreme of long data records,

as in speech processing, the frequency domain methods can be

preferred [11,12] . As the record size increases, the performance dif-

ference between alternative methods vanishes [5] and the method

with the lowest computational load is typically preferred. 

There are similar works in the literature that aim to generate

good approximations to the ML solution such as Tufts and Kumare-

san, [13] , where the conventional linear prediction is “transformed”

to attain a ML like performance for frequency estimation problem

with multiple sinusoids. Present work can be interpreted as a sim-

ilar effort on a different problem, AR model parameter estimation

problem. 

2. Preliminaries 

The elements of the N × 1 random vector x =
[ x 1 x 2 . . . x N ] 

T are the samples of the Gaussian AR(P) process,

that is assumed to be synthesized with the application of zero-

mean Gaussian distributed white noise with variance σ 2 
ε to the

filter with the transfer function 

H(z) = 

1 

1 + a z −1 + a z −2 + · · · + a z −P 
. 
1 2 P 
he autocorrelation matrix of the vector x can be written as R =
 f,N σ

2 
ε . Here, R f,N is a N × N Hermitian Toeplitz matrix whose

rst column entries are r f [ k ] for k = { 0 , 1 , . . . , N − 1 } , where r f [ k ] =
{ x [ n ] x ∗[ n − k ] } = h [ n ] ∗ h ∗[ −n ] = Z 

−1 { H (z) H 

∗(1 /z ∗) } , 

 f = 

⎡ ⎢ ⎢ ⎣ 

r f [0] r f [ −1] . . . r f [ −N + 1] 
r f [1] r f [0] . . . r f [ −N + 2] 

. . . 
. . . 

. . . 
. . . 

r f [ N − 1] r f [ N − 2] . . . r f [0] 

⎤ ⎥ ⎥ ⎦ 

. (1)

he parameter σ 2 
ε denotes the variance of process noise at the in-

ut of the synthesis filter generating AR(P) process or equivalently,

he mean square error (MSE) value of the P th or higher order lin-

ar prediction filter for the same process. 

The density of N × 1 circularly symmetric complex Gaussian

ector x is denoted by CN (x ; 0 , σ 2 
ε R f ) and expressed as 

f X (x ;σ 2 
ε , a ) = 

1 

πN σ 2 N 
ε | R f,N | exp 

(
− 1 

σ 2 
ε

x 

H R 

−1 
f,N 

x 

)
here a = 

[
a 1 a 2 . . . a P 

]T 
. The problem is to find a and σ 2 

ε

uch that the likelihood function f X (x ;σ 2 
ε , a ) is maximized. Taking

he logarithm of likelihood function, we get 

(σ 2 
ε , a ) 

c = −
(

N log σ 2 
ε + log | R f,N | + 

1 

σ 2 
ε

x 

H R 

−1 
f,N 

x 

)
. (2)

ere 
c = indicates equality of both sides up to an additive constant,

ot affecting the subsequent optimization. Optimizing (2) for σ 2 
ε ,

y differentiation, yields the estimate of ̂ σ 2 
ε = 

1 
N x 

H R 

−1 
f,N 

x . Inserting

he optimized 

̂ σ 2 
ε estimate into the log-likelihood relation, we get

also see [6] ) 

( ̂  σ 2 
ε , a ) 

c = −
{

N log (x 

H R 

−1 
f,N 

x ) + log | R f,N | 
}
. (3)

he maximization of �( ̂  σ 2 
ε , a ) given in (3) , a quantity also called

he compressed likelihood by Scharf et al. in [7] , is trivially equiv-

lent to the minimization of N log (x H R 

−1 
f,N 

x ) + log (| R f,N | ) . Note

hat the first term of the compressed likelihood function, i.e.

 log (x H R 

−1 
f,N 

x ) , depends on the observation vector x . The second

erm, i.e. log (| R f,N |), is data-independent and related to the entropy

f the Gaussian vector whose parameters are to be estimated. It

an be said that the second term penalizes the estimates accord-

ng to the entropy of the resulting process. 

Forward prediction: The joint density for the entries of vector x

an also be expressed as follows: 

f X (x 1: N ) = f (x 1: P ) f (x P+1: N | x 1: P ) (4)

= f (x 1: P ) 
N ∏ 

n = P+1 

CN (x n ;−a T x n −1: −1: n −P , σ
2 
ε ) 

he vectors with the subscript, such as x 1: P , indicate col-

mn vectors whose entries are restricted to the entries

f the original vector with indices denoted in the sub-

cript, i.e. x 1: P = [ x 1 x 2 . . . x P ] 
T . Similarly, the subscript

s in x n −1: −1: n −P denotes entries in the reversed order, i.e.

 n −1: −1: n −P = [ x n −1 x n −2 . . . x n −P ] 
T . With this notation, the

og-likelihood function for the factorization given in (4) can be

xpressed as 

(σ 2 
ε , a ) 

c = −
( 

N log σ 2 
ε + log | R f,P | 

+ 

1 

σ 2 
ε

[ 

x 

H 
1: P R 

−1 
f,P 

x 1: P + 

N ∑ 

n = P+1 

| e f [ n ] | 2 
] 

(5) 

) 

(5)
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here e f [ n ] = x n + a T x n −1: −1: n −P is the forward prediction error

nd 

̂ x n = −a T x n −1: −1: n −P is the forward prediction result of the

ample x n . 

We note that for all M ≥ P dimensional R f matrices of AR(P)

rocesses, the determinant of R f is identically the same, that is

 R f,M 

| = | R f,P | = 

∏ P 
i =1 (1 − | k i | 2 ) −i for M ≥ P , [ 6 , Eq. 14]. Here k i is

he i th reflection coefficient. Given this, when (2) and (5) are com-

ared, we note that the first two terms of both equations are

dentical. Leading to the fact that the data dependent term in

2) ( x H R 

−1 
f,N 

x ) is identical to the term in the square brackets of (5) . 

Optimizing over σ 2 
ε , we get 

( ̂  σ 2 
ε , a ) 

c = −
{

N log [ ·] (5) + log | R f | 
}

here [ ·] (5) = [ x H 
1: P 

R 

−1 
f,P 

x 1: P + 

∑ N 
n = P+1 | e f [ n ] | 2 ] is the contents of the

quare bracket, the data dependent term in (5) . 

The conventional forward prediction method neglects all the

erms in the compressed likelihood of �( ̂  σ 2 
ε , a ) except the predic-

ion error term, 
∑ N 

n = P+1 | e f [ n ] | 2 . This method is also known as the

ovariance method, [1] . 

Backward Prediction: Backward prediction is initiated with the

ollowing factorization of the joint density, 

f X (x 1: N ) = f (x N : −1: N −P+1 ) f (x 1: N−P | x N : −1: N −P+1 ) 

= f (x N : −1: N −P+1 ) 
N−P ∏ 

n =1 

CN ( x n ;−a H x n +1: n + P , σ 2 
ε ) . (6) 

ollowing the same route, the log-likelihood function can be ex-

ressed as 

(σ 2 
ε , a ) 

c = −
( 

N log σ 2 
ε + log | R f,P | 

+ 

1 

σ 2 
ε

[ 

x 

H 
N : −1: N −P+1 R 

−1 
f,P 

x N : −1: N −P+1 + 

N−P ∑ 

n =1 

| e b [ n ] | 2 
] 

(7) 

) 

here e b [ n ] = x n + a H x n +1: n + P is the backward prediction error and
 

 n = −a H x n +1: n + P is the backward predictor. 

Optimizing over σ 2 
ε , we get 

( ̂  σ 2 
ε , a ) 

c = −
{

N log [ ·] (7) + log | R f | 
}
. 

s in forward prediction, the backward prediction method ignores

ll the terms of [ ·] (7) except the quadratic term representing the

otal squared backward prediction error, 
∑ N−P 

n =1 | e b [ n ] | 2 . Here [ ·] (7) 

enotes the contents of the square brackets in (7) . We prefer to

se [ ·] (5) and [ ·] (7) notation to illustrate the similarities between

ifferent prediction methods. 

Forward-Backward Prediction: The log-likelihood functions given

y (2) , (5) and (7) are different factorizations of the same like-

ihood expression. The difference arises from the conditioning of

ariables that the density is written. 

The forward-backward method can be motivated by considering

he arithmetic average of the log-likehoods given by (5) and (7) .

aking the arithmetic average of Eqs. (5) and (7) as the objective

unction and optimizing over σ 2 
ε , we get 

( ̂  σ 2 
ε , a ) 

c = −1 

2 

{
N log 

{
[ ·] (5) + [ ·] (7) 

}
+ log | R f | 

}
. 

he forward-backward prediction method ignores all the terms

xcept the quadratic terms in [ ·] (5) + [ ·] (7) . Stated differently,

he forward-backward prediction method optimizes a such that
 N 
n = P+1 | e f [ n ] | 2 + 

∑ N−P 
n =1 | e b [ n ] | 2 is minimized. 

Once the filter coefficients are estimated via some method, the

aximum likelihood estimate of the remaining parameter (σ 2 
ε ) is

iven by ̂ σ 2 
ε = 

1 
N x 

H R 

−1 
f,N 

x . The straightforward application of this
tep requires on the order of N 

3 operations due to inversion of

 f,N matrix. By carefully incorporating the Levinson recursion, the

omputational load can be reduced to order of N × P multiplica-

ions with the method given in Algorithm 1 . This algorithm is a

orrected and extended version of a related algorithm in [7] . 

Algorithm 1: Efficient calculation of the quadratic form with 

the inverse AR(P) covariance matrix. (Requires on the order of 

N(3P+2) multiplications per execution). 

1 output = function xHinvRx (a, x ) ; 

Input : a = 

[
1 a 1 a 2 . . . a P 

]
. 

x : N × 1 vector 

Output : x H R 

−1 
f 

x 

2 gamma = atog(a); %Step-down recursion, [1, p.236] 

3 N = length(x); sigmasq = 1/N*real(x’*x); 

4 e = x; f = x; 

5 alpha = abs(e(1))^2; beta = abs(f(end))^2; 

6 etilde = e(2:end); ftilde = f(1:end-1); 

7 c = etilde’*ftilde; d = 2*N*sigmasq - alpha - beta; 

8 hsq = 0; ARorder = length(a) - 1; 

9 for order = 1:ARorder do 

10 k = gamma(order); 

11 V = (1 + abs(k)^2)*d + 4*real(k*c); 

12 hsq = (1 - abs(k)^2)*(hsq + alpha + beta); 

13 e = etilde + k*ftilde; 

14 f = conj(k)*etilde + ftilde; 

15 alpha = abs(e(1))^2; beta = abs(f(end))^2; 

16 etilde = e(2:end); ftilde = f(1:end-1); 

17 c = etilde’*ftilde; 

18 d = V - alpha - beta; 

19 end 

20 output = (hsq + V)/2; 

. Proposed method 

The proposed method consists of two stages. The first stage

enerates a good initial estimate around which the likelihood func-

ion is locally maximized. There are several methods in the litera-

ure that can be used to generate a suitable initial condition for

he second stage. Yet, we propose a novel linear prediction based

ethod which can also be utilized on its own in many applica-

ions. 

.1. First stage: Weighted forward-Backward prediction 

Fig. 1 illustrates different forward/backward prediction schemes

or second order prediction. In the top panel of this figure, the for-

ard predictor is shown where observations { x 1 , x 2 } is assumed

o be available for the prediction of x 3 . The observations are in-

icated by dark colored cells. By weighting the observation cells

ith coefficients a 1 and a 2 , as described in the preliminaries, the

rediction for the next cell is generated, ̂ x 3 = −(a 1 x 2 + a 2 x 1 ) . The

orward prediction can be repeated for all possible pairs of x k −1 

nd x k −2 , k = { 3 , . . . , N} . That is, the predictor can be “translated”

tep-by-step in the direction shown with f and at each step, a pre-

iction for the next cell is generated by weighting and summing

he contents of dark colored cells. 

Fig. 1 b illustrates the backward prediction resulting from the

onditioning on { x N−1 , x N } . The interpretation is similar to the for-

ard prediction. The only difference is the direction of predictor

otion. Hence, the forward and backward prediction methods re-

ults from the conditioning of the joint distribution with the sam-

les at the beginning and end of the observation vector x . 
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Fig. 1. Forward and backward prediction for a second order predictor. 
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Fig. 1 c illustrates the forward and backward prediction when

conditioning is generalized to arbitrary consecutive samples, say

{ x k +1 , x k +2 } . For an arbitrary conditioning of x k +1: k + P , the joint

density for the observations can be factorized as 

f X (x 1: N ) = f (x k +1: k + P ) f (x 1: k | x k +1: k + P ) f (x k + P+1: N | x k +1: k + P ) 

= f (x k +1: k + P ) 
k ∏ 

n =1 

CN (x n ;−a H x n +1: n + P , σ 2 
ε ) 

N ∏ 

n = k + P+1 

CN (x n ;

− a T x n −1: −1: n −P , σ
2 
ε ) . (7)

From (7) , the log-likelihood function can be written as 

�(σ 2 
ε , a ) 

c = −
( 

N log σ 2 
ε + log | R f,P | 

+ 

1 

σ 2 
ε

[ 

z H R 

−1 
f,P 

z + 

k ∑ 

n =1 

e 2 b [ n ] + 

N ∑ 

n = k + P+1 

e 2 f [ n ] 

] ) 

where z = x k +1: k + P represents the initial conditioning variables. 

Previously, we have made the observation that the conventional

forward-backward prediction method can be considered as the av-

eraging of the log-likelihood functions arising from two different

factorizations of the joint density. As shown in (7) , for an AR(P)

model, arbitrary P consecutive variables x k +1: k + P for k = { 0 , . . . , N −
P } can be selected for initial conditioning variables. This leads to a

different factorization for each value of k ∈ { 0 , . . . , N − P } , a grand

total ot N − P + 1 factorizations. 

The arithmetic average of log-likelihood functions for all possi-

ble conditioning cases can be expressed as 

�(σ 2 
ε , a ) 

c = −
( 

N log σ 2 
ε + log | R f,P | + 

N−P ∑ 

k =0 

z H 
k 

R 

−1 
f,P 

z k 

(N − P + 1) σ 2 
ε

+ 

1 

σ 2 
ε

[ 

N−P ∑ 

n =1 

w b [ n ] | e b [ n ] | 2 + 

N ∑ 

n = P+1 

w f [ n ] | e f [ n ] | 2 
] 

(8) 

) 

(8)

where z k is the vector of variables for the k th conditioning

set, z k = x k +1: k + P and w b [ n ] = N − P + 1 − n, w f [ n ] = n − P are the
eights for the forward and backward prediction errors, respec-

ively. To illustrate the weight calculation, x 5 can be forward pre-

icted with a 2nd order predictor, as in Fig. 1 , a total of 3 times

y conditioning the joint distribution with ( x 1 , x 2 ), ( x 2 , x 3 ) or ( x 3 ,

 4 ). This leads to w f [5] = 3 . Similarly, x 5 is backward predicted

 − P + 1 − n | { n =5 ,P=2 } = N − 6 times with the conditioning pairs of

(x N−1 , x N ) , (x N−2 , x N−1 ) , . . . , (x 6 , x 7 ) . This leads to w b [5] = N − 6 . 

It is worth emphasizing that the log-likelihood function given in

8) is identical to the log-likelihood functions given earlier, (5) and

7) . Once we optimize over σ 2 
ε and insert the estimate for σ 2 

ε into

8) , we get 

( ̂  σ 2 
ε , a ) 

c = −
{ 

N log 

( 

[ ·] (8) + 

N−P ∑ 

k =0 

z H 
k 

R 

−1 
f,P 

z k 

N − P + 1 

) 

+ log | R f | 
} 

. 

s in conventional forward-backward prediction method, we ig-

ore all the terms except the quadratic term in �( ̂  σ 2 
ε , a ) and min-

mize [ ·] (8) . The minimization of [ ·] (8) is simply the weighted aver-

ge forward-backward prediction errors, 

 

 = argmin 

a 

N−P ∑ 

n =1 

w b [ n ] | e b [ n ] | 2 + 

N ∑ 

n = P+1 

w f [ n ] | e f [ n ] | 2 (9)

here e f [ n ] = x n + a T x n −1: −1: n −P , e b [ n ] = x n + a H x n +1: n + P are the

orward and backward prediction errors with weights w f [ n ] = n −
 and w b [ n ] = N − P + 1 − n, respectively. 

The optimization problem in (9) can be solved simply by in-

roducing the linear equation systems, A f a = −b f and A b a = −b b ,

iven below, generating the forward and backward prediction er-

ors: ⎡ ⎢ ⎢ ⎣ 

x P x P−1 . . . x 1 
x P+1 x P . . . x 2 

. . . 
. . . . . . 

. . . 
x N−1 x N−2 . . . x N−P 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
A f 

⎡ ⎢ ⎢ ⎣ 

a 1 
a 2 
. . . 

a P 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
a 

= −

⎡ ⎢ ⎢ ⎣ 

x P+1 

x P+2 

. . . 
x N 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
b f 

, 
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â

w  

a  

1  

t  

t  

m

 

t  

b  

m  

m

3

 

p  

h  

t  

l  

c  

c  

e  

h  

T  

a

 

e

J

N  

l  

B  

i

 

l  

t  

t  

t  

t

 

f

a

w

a

a

 

m  

k

w

 

H

|  

δ

 

x  

S

x

w  

E  

T

M

M

T

i

x

 

i  

p  

t  

E  

t  

t  

o

 

c  

t  

o  
 

 

 

 

x ∗N−P+1 x ∗N−P+2 . . . x ∗N 
x ∗N−P x ∗N−P+1 . . . x ∗N−1 

. . . 
. . . . . . 

. . . 
x ∗2 x ∗3 . . . x ∗P+1 

⎤ ⎥ ⎥ ⎦ 

 ︷︷ ︸ 
A b 

⎡ ⎢ ⎢ ⎣ 

a 1 
a 2 
. . . 

a P 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
a 

= −

⎡ ⎢ ⎢ ⎣ 

x ∗N−P 

x ∗N−P−1 

. . . 
x ∗1 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
b b 

. 

sing the introduced matrices, the final result of the first stage be-

omes 

 

 F S = −(A 

H 
f WA f + A 

H 
b WA b ) 

−1 (A 

H 
f Wb f + A 

H 
b Wb b ) (10) 

here ̂ a F S denotes the first stage estimate for a a a , W is the di-

gonal matrix with the diagonal entries of w f [ n ] for n = { P +
 , P + 2 , . . . , N} , i.e. W = diag (1 , 2 , . . . , N − P ) . Notice that, when

he weighting matrix W is replaced with the identity matrix,

he method reduces to conventional forward-backward prediction

ethod, [1] . 

We would like to note that the computational complexity of

he first stage is almost identical to the conventional forward-

ackward prediction scheme. Hence, the performance improve-

ent in using the weighted version comes at no additional imple-

entation cost. A ready-to-use MATLAB code is available in [14] . 

.2. Second stage: Maximizing likelihood around a point 

The second stage of the proposed method aims to further im-

rove the likelihood value of the first stage estimate. The likeli-

ood function is a highly non-linear function of unknown parame-

ers for third and higher order AR processes. The exact maximum

ikelihood solution is very difficult to obtain, in general [9,15] . A

ommon approach is to use numerical optimization tools whose

omputational requirements increase with the desired statistical

fficiency. To maximize the likelihood expression locally, the likeli-

ood function is approximated with a quadratic function by the

aylor series expansion of the likelihood function at the point

 = ̂

 a F S where ̂  a F S is the estimate of the first stage. 

The maximization of the likelihood function given by (3) is

quivalent to the minimization of 

(a ) = 

1 

N 

log | R f,N | + log (x 

H R 

−1 
f,N 

x ) . (11) 

ote that, both terms of the cost function J ( a ), that is log | R f,N | and

og (x H R 

−1 
f,N 

x ) , are non-linear functions of the unknown vector a .

elow, we study the Taylor series of these two functions at a = ̂

 a F S ,

ndividually. We start with the determinant term. 

Quadratic Approximation for log | R f,N | : The log-determinant term,

og | R f,N |, is equal to log | R f,P | = −∑ P 
i =1 i log (1 − | k i | 2 ) where k i is

he i ’th reflection coefficient corresponding to the filter generating

he AR(P) process, [1,6] . Due to the analytical simplicity of the de-

erminant expression in terms of reflection coefficients, we switch

he optimization domain to the domain of reflection coefficients. 

We can express the first three terms of the Taylor series of the

unction 

f (z, z ∗) = log (1 − | z| 2 ) (12) 

t the expansion point of (z 0 , z 
∗
0 ) as follows: 

f a (z 0 + δz , z 
∗
0 + δ∗

z ) = f (z 0 , z 
∗
0 ) + 

[
δz δ∗

z 

][ f z (z 0 , z 
∗
0 ) 

f z ∗ (z 0 , z 
∗
0 ) 

]
+ 

1 

2 

[
δz δ∗

z 

][ f zz (z 0 , z 
∗
0 ) f zz ∗ (z 0 , z 

∗
0 ) 

f z ∗z (z 0 , z 
∗
0 ) f z ∗z ∗ (z 0 , z 

∗
0 ) 

][
δz 

δ∗
z 

]
(13) 

here 

f z (z, z ∗) = 

∂ 

∂z 
f (z, z ∗) = − z ∗

1 − zz ∗
(14) 
nd f z ∗ (z, z ∗) = f ∗z (z, z ∗) . Also, 

f zz (z, z ∗) = 

∂ 2 

∂z 2 
f (z, z ∗) = − (z ∗) 2 

(1 − zz ∗) 2 
, 

f zz ∗ (z, z ∗) = 

∂ 2 

∂ z∂ z ∗
f (z, z ∗) = − 1 

(1 − zz ∗) 2 
(15) 

nd f z ∗z ∗ (z, z ∗) = f ∗zz (z, z ∗) , f z ∗z (z, z ∗) = f ∗zz ∗ (z, z ∗) . 
Hence, 1 

N log | R f,N | = 

∑ P 
i =1 − i 

N log (1 − | k i | 2 ) can be approxi-

ated via Taylor series expansion at the reflection coefficients of

 i i = { 1 , . . . , P } as 

1 

N 

log | R f,N | ≈ − 1 

N 

P ∑ 

i =1 

i f a (k i + δk i 
, k ∗i + δ∗

k i 
) (16) 

here the definition of f a (k i + δk i 
, k ∗

i 
+ δ∗

k i 
) is given in (13) . 

For the latter use, we also present the partial derivative of

f a (z 0 + δz , z 
∗
0 

+ δ∗
z ) with respect to δ∗

z as 

f a δ∗
z 
(z 0 + δz , z 

∗
0 + δ∗

z ) = f z ∗ (z 0 , z 
∗
0 ) 

+ 

[
f zz ∗ (z 0 , z 

∗
0 ) f z ∗z ∗ (z 0 , z 

∗
0 ) 
][δz 

δ∗
z 

]
(17) 

ence, the partial derivative of 1 
N log | R f,N | = 

∑ P 
i =1 − i 

N log (1 −
 k i | 2 ) with respect to k ∗

i 
can be approximated with − i 

N f 
a 
δk ∗

i 

(k i +

k , k 
∗
i 

+ δ∗
k 
) , given in (17) . 

Quadratic Approximation for log (x H R 

−1 
f,N 

x ) : First, we expand

 

H R 

−1 
f,N 

x into Taylor series at the point ̂ a F S . From the Gohberg-

emencul formula, x H R 

−1 
f,N 

x can be expressed as 

 

H R 

−1 
f,N 

x = x 

H (A 1 A 

H 
1 − A 2 A 

H 
2 ) x = ‖ A 

H 
1 x ‖ 

2 − ‖ A 

H 
2 x ‖ 

2 

= ‖ x 

∗
1: N + M 1 a ‖ 

2 − ‖ M 2 a ‖ 

2 (18) 

here explicit expressions for A 1 and A 2 are given in [ 16 ,

q. (3.9.22), p. 130]. The matrices M 1 and M 2 are Hankel and

oeplitz matrices, respectively, with the definitions of 

 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x ∗2 x ∗3 x ∗4 . . . x ∗P+1 

x ∗3 x ∗4 x ∗5 . . . x ∗P+2 

. . . 
. . . 

. . . . . . 
. . . 

x ∗N−1 x ∗N 0 . . . 0 

x ∗N 0 0 . . . 0 

0 0 0 . . . 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×P 

, 

 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

x N x N−1 x N−2 . . . x N−P+1 

0 x N x N−1 . . . x N−P+2 

. . . 
. . . 

. . . . . . 
. . . 

0 0 0 . . . x N−1 

0 0 0 . . . x N 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

P×P 

. (19) 

o facilitate the Taylor series expansion, we substitute a = ̂

 a F S + δδδa 

n (18) 

 

H R 

−1 
f,N 

x = ‖ x 

∗
1: N + M 1 ( ̂  a F S + δδδa ) ‖ 

2 − ‖ M 2 ( ̂  a F S + δδδa ) ‖ 

2 . (20) 

It should be remembered that we are interested in the min-

mization of the cost function J( a a a ) given in (11) which is com-

osed of two terms. Previously, we have approximated the first

erm of the sum as a quadratic relation of reflection coefficients.

q. (20) gives the quadratic approximation of the second term in

erms of filter coefficients. In order to combine the approximations

o two terms of the cost function, we need to express δδδa in terms

f reflection coefficients. 

The first order approximation of δδδa on the variation of reflection

oefficients can be written as δδδa = G δδδk + G c δδδ
∗
k where G and G c are

he P × P Jacobian matrices with the i th row and j th column entry

f 
∂a i 
∂k j 

and 

∂a i 
∂k ∗

j 
evaluated at the expansion point of a FS , respectively.



6 Ç. Candan / Signal Processing 166 (2020) 107256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

l

 

w

 

b  

x  

f  

c  

g  

o

 

l  

c  

e  

t

J

 

H  

p  

t  

l

 

c  

c  

f  

o  

t

 

s

∇  

w  

−  

t

 

g

∇

 

S  

l

∇

 

Note that the matrices G and G c are not complex conjugates of

each other. This stems from the fact that the relation between fil-

ter coefficients and reflection coefficients are in general complex-

valued functions of complex variables, [17] . 

As an example, the synthesis filter coefficients for an AR(2) pro-

cess can be written as a 1 = k 1 + k ∗
1 
k 2 and a 2 = k 2 in terms of the

reflection coefficients, [ 1 , p. 234]. The G and G c matrices can be

written as 

G = 

[
1 k ∗1 
0 1 

]
, G c = 

[
k 2 0 

0 0 

]
. 

where [ G ] i j = 

∂a i 
∂k j 

and [ G c ] i j = 

∂a i 
∂k ∗

j 
. 

The elements of the Jacobian matrices can be efficiently calcu-

lated from the inverse Levinson-Durbin recursion. The critical ex-

pression of the recursion enabling the calculation is a 
j+1 
i 

= a 
j 
i 
+

k j+1 (a 
j 
j−i +1 

) ∗, 1 ≤ j ≤ P , 1 ≤ i ≤ j , [ 1 , Table 5.4]. Here a 
j 
i 

shows the

i th filter coefficient at the j th stage of the recursion. This expres-

sion states that the n th reflection coefficient ( k n ) affects the n th

and following stages, i.e. the recursion stages with the index j ≥ n .

Further details of the Jacobian calculation are given in Algorithm 2 .

Algorithm 2: Returns Jacobian matrices for the filter coeffi- 

cients with respect to reflection coefficients evaluated at a 

given point. 

1 function [Jr,Ji,G,Gc]=jacobian-of-a-wrt-gamma(gamma) ; 

Input : gamma : Reflection coefficients of the expansion 

point 

Output : Jr, Ji : Jacobian matrix of filter coef. wrt 

real/imaginary parts of reflection coef. at the 

expansion point 

G, Gc : Jacobian matrix of filter coef. wrt 

reflection coef and its conjugate at 

the expansion point 

2 a=1; p=length(gamma); 

3 avecs = cell(1,p); 

4 for jind=2:p+1 do 

5 a=[a;0] + gamma(jind-1)*[0;conj(flipud(a))]; 

6 avecs{jind-1} = a; 

7 end 

8 Jr = zeros(p+1,p); Ji = zeros(p+1,p); 

9 for gammaind=1:p do 

10 if gammaind==1, vec = 1; 

11 else vec = avecsgammaind-1; end; 

12 vecr = [0; conj(flipud(vec))]; 

13 veci = 1i*vecr; 

14 for jind=(gammaind+1):p; 

15 vecr=[vecr;0] + gamma(jind)*[0;conj(flipud(vecr))]; 

16 veci=[veci;0] + gamma(jind)*[0;conj(flipud(veci))]; 

17 end; 

18 Jr(:,gammaind) = vecr; 

19 Ji(:,gammaind) = veci; 

20 end 

21 G = Jr/2 - 1i*Ji/2/1; 

22 Gc = Jr/2 + 1i*Ji/2/1; 

Substituting δδδa = G δδδk + G c δδδ
∗
k into (20) , we get 

x 

H R 

−1 
f,N 

x = ‖ b 1 + M 1 (G δδδk + G c δδδ
∗
k ) ‖ 

2 

−‖ b 2 + M 2 (G δδδk + G c δδδ
∗
k ) ‖ 

2 , (21)

where b 1 = x ∗
1: N 

+ M 1 ̂  a F S and b 2 = M 2 ̂  a F S are constant vectors.

Here M 1 and M 2 matrices given by (19) and 

̂ a F S is the estimate

of the first stage. 
Finally, by the Taylor series expansion of log (A + Bx ) ≈ log (A ) +
B 
A 

x for | x | � 1, we can approximate the second term of the cost

unction as 

og x 

H R 

−1 
f,N 

x ≈ log (A ) + 

‖ b 1 + M 1 (G δδδk + G c δδδ
∗
k ) ‖ 

2 − ‖ b 1 ‖ 

2 

A 

− ‖ b 2 + M 2 (G δδδk + G c δδδ
∗
k ) ‖ 

2 − ‖ b 2 ‖ 

2 

A 

(22)

here A = ‖ b 1 ‖ 2 − ‖ b 2 ‖ 2 . 
Note that A = ‖ b 1 ‖ 2 − ‖ b 2 ‖ 2 is the value when δδδk is replaced

y all zeros vector in (21) . Hence, A can be expressed as A =
 

H R 

−1 
f,N 

x for the R f,N matrix generated by the a estimate formed

rom the first stage estimate ̂  a F S . The value of A can be efficiently

alculated, even without forming R f,N matrix, via the algorithm

iven in Algorithm 1 . This concludes the Taylor series expansion

f the second term at the expansion point. 

Combining Quadratic Approximations For Both Terms: Using ear-

ier results, the cost function of J(a ) = 

1 
N log | R f,N | + log (x H R 

−1 
f,N 

x ) .

an be approximated around the operating point of a = ̂

 a F S , or

quivalently around the reflection coefficient vector corresponding

o a = ̂

 a F S , as follows 

 

a ( δδδk , δδδ
∗
k ) = − 1 

N 

P ∑ 

i =1 

i f a (k i + δk i 
, k ∗i + δ∗

k i 
) 

− 1 

A 

2 ∑ 

i =1 

(−1) i ‖ b i + M i (G δδδk + G c δδδ
∗
k ) ‖ 

2 . (23)

ere k i for i = { 1 , . . . , P } are the reflection coefficients of the all-

ole filter with coefficients ̂ a F S . The first and second summa-

ion in (23) are the quadratic approximation to 1 
N log | R f,N | and

og x H R 

−1 
f,N 

x , given by (16) and (22) , respectively. 

Optimizing The Approximation To The Likelihood: The quadratic

ost function given by (23) is a real-valued function of the

omplex-valued vector δδδk ; hence the gradient of the quadratic cost

unction with respect to δδδk and δδδ∗
k are complex conjugates of each

ther, [17] . Therefore, the calculation of the gradient with respect

o δδδ∗
k is sufficient for the optimization. 

From (17) , the gradient of the first summation in (23) , with re-

pect to δδδ∗
k , can be written as 

 δδδ
∗
k 

{ 

− 1 

N 

P ∑ 

i =1 

i f a (k i + δk i 
, k ∗i + δ∗

k i 
) 

} 

= 

[
Q 1 Q 2 

][δδδk 

δδδ
∗
k 

]
+ r 1 , (24)

here Q 1 and Q 2 are diagonal matrices with diagonal entries of

i/N × f zz ∗ (k i , k 
∗
i 
) and −i/N × f z ∗z ∗ (k i , k 

∗
i 
) , i = { 1 , 2 , . . . , P } , respec-

ively. 

By combining gradient with respect to δδδk and δδδ∗
k together, the

radient with respect to [ δδδk δδδ∗
k ] 

T can be written as 

 

[ 
δδδk δδδ

∗
k 

] T 
{ 

− 1 

N 

P ∑ 

i =1 

i f a (k i + δk i 
, k ∗i + δ∗

k i 
) 

} 

= 

[
Q 1 Q 2 

Q 

∗
2 Q 

∗
1 

][
δδδk 

δδδ
∗
k 

]
+ 

[
r 1 
r ∗1 

]
. (25)

imilarly, the gradient of second summation in (23) can be calcu-

ated as 

 

[ 
δδδk δδδ

∗
k 

] T 
{ 

− 1 

A 

2 ∑ 

i =1 

(−1) i ‖ b i + M i (G δδδk + G c δδδ
∗
k ) ‖ 

2 

} 

= 

[˜ Q 1 
˜ Q 2 ˜ Q 

∗
2 

˜ Q 

∗
1 

][
δδδk 

δδδ
∗
k 

]
+ 

[̃
 r 1 ˜ r ∗1 

]
, (26)
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 1 = 

G 

H PG + 

(
G 

H 
c PG c 

)∗

A 

;˜ Q 2 = 

G 

H PG c + 

(
G 

H 
c PG 

)∗

A 

;

˜ r 1 = 

G 

H v + 

(
G 

H 
c v 

)∗

A 

. (27) 

nd P = M 

H 
1 M 1 − M 

H 
2 M 2 , v = M 

H 
1 b 1 − M 

H 
2 b 2 . 

Using the results given, the gradient of J a (δk i 
, δ∗

k i 
) can be ex-

ressed by summing the right hand sides of the Eqs. (25) and (26) .

y equating the gradient to the zero vector, we get the following

inear equation system for the optimal perturbation vector that lo-

ally maximizes the likelihood around the operating point 

Q 1 + ̃

 Q 1 Q 2 + ̃

 Q 2 

Q 

∗
2 + ̃

 Q 

∗
2 Q 

∗
1 + ̃

 Q 

∗
1 

][
δδδk 

δδδ
∗
k 

]
= −

[
r 1 + ̃

 r 1 
r ∗1 + ̃

 r ∗1 

]
. (28) 

he end result of the second stage is the updated reflection co-

fficients from k i to k i + δk i 
where k i is the reflection coefficients

orresponding to the estimate generated by the first stage. By run-

ing the well known step-up recursion or inverse Levinson recur-

ion, we can convert the optimized reflection coefficients to the

lter coefficients, [1] . For further details on the second stage of the

roposed method, you can examine the ready-to-use MATLAB code

iven in [14] . 

We would like to underline that the implementation of the sec-

nd stage can be simplified for real-valued processes. For real-

alued processes, the reflection coefficients are also real-valued, i.e.

k = δδδ∗
k . Substituting this condition in (28) results in a lower di-

ensional matrix equation from which the optimal perturbation

ector can be found at the halved dimension of complex-valued

ase: 

Q 1 + Q 2 + ̃

 Q 1 + ̃

 Q 2 

)
δδδk = −( r 1 + ̃

 r 1 ) . (29) 

s a final note, we would like to point the possibility of running

he proposed algorithm iteratively. That is, the second stage re-

ult of an earlier iteration can be taken as the initial condition of

he next iteration. In the numerical results section, the proposed

ethod and its iterative version are compared with other methods

o illustrate the cases in which the iterations can be useful. 

. Numerical results 

We present a comparison of the likelihood values attained by

everal autoregressive model parameter estimation methods. The

omparisons are given in two sets. In the first set, the experiments

re conducted on AR processes with specific synthesis filters that

ave been previously utilized in similar performance comparisons,

6] . In the second set, the likelihood value comparison is given for

R processes with randomly selected filter coefficients. 

.1. First comparison set 

The comparisons are limited to AR(1), AR(2) and AR(4) pro-

esses in this set. We would like to remind that, with the ex-

eption of AR(1) and AR(2) processes, exact maximum likelihood

arameter estimation for AR processes is known to be infeasible

o implement, [9,15] . In the cases examined in this set, the poles

f the synthesis filter are close to the unit circle. This choice in-

reases the value of the determinant term in the compressed like-

ihood expression in (3) and puts the methods ignoring this term

t a disadvantage in comparison to true maximum likelihood es-

imator. Due to the complexity of the maximum likelihood esti-

ator, all practical methods, including the proposed one, exhibit

ifferent degrees of sensitivities to the ignored terms. Our goal is
o compare Burg’s method, conventional forward-backward predic-

ion method (also known as modified covariance method), covari-

nce method (also known as forward prediction method), correla-

ion method (also known as Yule-Walker method) and Kay’s RMLE

ethod [6] with the suggested method. 

Case 1: AR(1) Process The parameters generating the AR(1) pro-

ess are selected as a = [1 − 0 . 96] T and σ 2 
ε = 0 . 36 . The synthesis

lter is excited with white Gaussian noise and N consecutive sam-

les of the filter output is taken as the observation vector. Specif-

cally for the AR(1) process, the methods proposed by Kay [6] and

horter et al. [9] generate the exact maximum likelihood estimate.

ll other methods generate an approximation to the true maxi-

um likelihood value. 

As a comparison metric, the ratio of attained likelihood value

y a method over the maximum likelihood value is taken. We de-

ote this ratio as the loss factor. Fig. 2 shows the average of loss

actor as the observation vector length ( N ), i.e. the number of ob-

ervations, varies. The average is calculated over 50 0 0 Monte Carlo

uns in all comparisons. 

From Fig. 2 , we can see that the second stage result of the pro-

osed method is virtually identical to the maximum likelihood es-

imator of Kay and Whorter et al. In addition, the first stage output

f the proposed method, (the initial condition of the second stage)

s also a good estimate on its own, especially as N increases. For

R(1) processes, Burg’s method and forward-backward prediction

ethod present identical results, in line with the theoretical ex-

ectations. 

As a side observation, the conventional wisdom on the good-

ess of practical methods for AR parameter estimation, i.e.

orward-backward prediction followed by Burg’s method which

s followed by covariance and correlation methods, is exactly

eflected in Fig. 2 . More importantly, the proposed weighted

orward-backward prediction gives much better results in terms of

ikelihood maximization than all other schemes that are computa-

ionally competitive. 

Case 2: AR(2) Process In this case, the poles of the synthesis fil-

er are located at 0.96exp ( j π /4) and its conjugate on the complex

lane. Among all methods, the method by Whorter at al. gives the

rue maximum likelihood estimate for AR(2) processes [9] . Other

ethods are approximations to the maximum likelihood estimator.

From Fig. 3 , we can observe that the results for the second

tage of the proposed method coincides with the maximum like-
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Fig. 3. Variation of the average loss factor with respect to N (sample size) for AR(2) 

process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Variation of the average loss factor with respect to N (sample size) for AR(4) 

process. 
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lihood estimator of Whorter at al. for all N values. Similar to the

AR(1) case, the first stage of proposed method (weighted forward-

backward prediction) performs best among all linear prediction

based methods in the literature. It is interesting to note that the

gap between conventional forward-backward prediction method

and its weighted version is not closed even at large samples sizes.

The performance gaps between the weighted forward-backward

prediction method and other two methods (Burg’s method and co-

variance method) are even larger. 

Case 3: AR(4) Process The parameters of the synthesis fil-

ter generating AR(4) process are a = [1 − 2 . 7607 3 . 8106 −
2 . 6535 0 . 9238] T and σ 2 

ε = 0 . 36 . The random process generated

by this filter is utilized as a benchmark for parameter estima-

tion in many studies since the initial study of Kay, [6] . Since the

exact maximum likelihood value is not exactly known for this

case, we have implemented a Quasi-Newton method based numer-

ical search for the likelihood maximization. The numerical search

method uses the estimate of Burg’s method as the initial condi-

tion. For this comparison, the loss factor is calculated by normal-

izing the likelihood values by the maximum of the attained values

for that Monte Carlo run. 

The dashed and solid lines in Fig. 4 show the results of pro-

posed method and other methods, respectively. Different from ear-

lier comparisons, the second stage of the proposed method is also

initialized with the estimate of Burg’s method. In addition, the per-

formance after 10 iterations of the second stage is also given. 

From Fig. 4 , we can see that among all conventional methods

that are computationally competitive, both stages of the method

(shown by dashed lines with different colors) yields the best per-

formance. A careful consideration of Fig. 4 also yields that the ini-

tial condition for the second stage can also be taken as the Burg’s

estimate with a minor degradation in the loss factor. The results of

this comparison may also imply that running the proposed method

for 10 iterations has a little return in comparison to running it only

once. Even though this comment is correct for this case, the con-

clusion is reversed for higher order AR processes that are stud-

ied in the second comparison set. Again the weighted forward-

backward prediction is the best method among all linear predic-

tion based methods. It is also interesting to note that the corre-

lation method (Yule-Walker method) performs very poorly in this

case, which is known to have serious problems for ill-conditioned

covariance matrices [18] . 
.2. Second comparison set 

In this comparison set, we study AR processes whose synthesis

lters have randomly selected reflection coefficients. The random-

zation of the filters is achieved by independently sampling each

eflection coefficient from the uniform distribution over the unit

ircle in the complex plane, i.e. the stability region of the filter.

ince the comparisons are not specific to a synthesis filter, results

epresent the average over the ensemble of stable filters of a given

rder. For clarity, we do not present the results for the correlation,

ovariance and Kay’s method which perform poorly in comparison

o other methods. 

Case 1: AR(1), AR(2) Processes Fig. 5 shows the average loss

actor comparisons for real/complex valued AR(1) and AR(2) pro-

esses. For real-valued processes, the reflection coefficients of

he synthesis filter are sampled from the uniform distribution in

(−1 , 1) interval, leading to a stable filter with real-valued co-

fficients. The filter is excited with real-valued white Gaussian

oise to generate Gaussian AR process. Finally, N consecutive fil-

er output samples are concatenated to form the observation

ector. 

From Fig. 5 , it can be seen that the proposed method (dashed

ines) presents results very close to the numerical search in this

ase. A single iteration of the second stage is sufficient to prac-

ically reach the likelihood value of the numerical search. Again,

he first stage of the proposed method (green dashed line) yields

uch better results than the conventional prediction based meth-

ds, consistent with earlier results. 

Case 2: Higher Order AR Processes Fig. 6 shows the average loss

actor comparisons for AR(4), AR(6), AR(8) and AR(10) processes.

he results for the proposed method is very close to the numerical

earch in all cases, except the case of AR(10) for small sample sizes.

n addition, different from the earlier comparisons, the iterative ap-

lication of the proposed method for 10 iterations yields a signifi-

ant improvement in the performance. This is essentially due to in-

reasingly rugged nature of the objective function with the model

rder increase. As the sample size N increases, the performance of

ll methods improve. The rate of improvement is small for Burg’s

nd conventional forward-backward prediction methods. The sec-

nd stage of the suggested method becomes an important tool

o improve the likelihood value at a much lower computational

ost than the numerical search operation. Again, the first stage of
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Fig. 5. Average loss factor for AR(1) and AR(2) processes whose synthesis filters have randomized reflection coefficients. 
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he proposed method, the weighted forward-backward prediction

ethod, yields better results than other linear prediction based

ethods in all cases. 

Computational Complexity Considerations: Fig. 7 shows the per-

ormance of the proposed method for different numbers of second

tage iterations. This experiment, apart from fixing the iteration

umber, is identical to the one given for AR(8) and AR(10) pro-

esses in Fig. 6 ; but different from earlier comparisons, the numer-

cal search is also initialized with the first stage output (weighted

orward-backward prediction method) to observe the effectiveness

f the proposed method. The solid black line shows the result

f the numerical search without any limitations on the iteration

umber. From Fig. 7 , we observe that running the second stage

or 5 iterations is sufficient to get a good approximation to the

nal result of the numerical search. Surprisingly, increasing the

umber of iterations to 10, causes a minor reduction in the likeli-

ood value due to previously mentioned rugged optimization space

or high ordered AR processes and also due to the lack of pos-

tive definiteness guarantee on the matrix to be inverted in the

econd stage of the proposed method. Typically, the numerical

earch methods implement checks to avoid the reduction in the

bjective function value at each iteration. Similar early-termination

hecks can also be utilized in the second-stage of the proposed
 d  
ethod. An important observation from Fig. 7 is that 5 iterations

f the suggested method yields a better performance than 10 it-

rations of the numerical search method. Furthermore, to achieve

he performance of the proposed method (with 5 iterations)

ore than 20 and 30 iterations of Quasi-Newton based numeri-

al search are required on the average for AR(8) and AR(10) pro-

esses, respectively. Hence, we observe that the numerical search

equires approximately 5 fold number of iterations in comparison

o the proposed method to attain a similar performance in this

xperiment. 

To further compare the computational load of the proposed

ethod with the numerical search, we have used the compressed

ikelihood function given in (3) as the objective function of the nu-

erical search routine and utilized the efficient implementation

f the quadratic form x H R 

−1 
f,N 

x (given in the Algorithm 1 listing)

nd log-determinant ( log | R f,N | = −∑ P 
i =1 i log (1 − | k i | 2 ) evaluation

ia the step-down recursion [ 1 , p.236]. With the provided efficient

mplementations, the computational complexity for the evaluation

f objective function is dominated by the evaluation complexity of

he quadratic form, which is on the order of N × P multiplications.

he numerical search needs the evaluation of the objective func-

ion P times for the estimation of the gradient vector, a Hessian up-

ate and the inversion of a P × P matrix at each iteration. In com-
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Fig. 6. Average loss factor for real-valued AR processes of different orders. The filter reflection coefficients are sampled from uniform distribution in (−1 , 1) at each Monte 

Carlo run. 

Fig. 7. Average loss factor for AR(8) and AR(10) processes for different numbers of iterations. 
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Fig. 8. Probability of having an unstable synthesis filter for the experiments in 

Fig. 6 and its complex valued version when the proposed method is initialized with 

the weighted forward-backward prediction method. 
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arison, the proposed method basically requires the inversion of a

 × P matrix at each iteration. It has been observed that total CPU

ime of the numerical search is 2–3 times of the proposed method

t each iteration. Considering the number of iterations, the overall

omputation load of the proposed method is 10–15 folds reduced

n comparison to the numerical search in this experiment. We have

oted a similar CPU time reduction, about an order of magnitude,

n other experiments. 

Stability Considerations: A major set-back for the first stage of

he proposed method is the lack of stability guarantee for the de-

igned synthesis filter. It is well known that all-pole filter designs

y the correlation method and Burg’s method are guaranteed to be

table [1] . Yet, all other methods including the covariance method,

orward-backward prediction method and the suggested method,

hich is a variant of forward-backward prediction, do not have a

tability guarantee. Fig. 8 shows the percentage of unstable synthe-

is filters for the weighted forward-backward prediction method

or the experiment in Fig. 6 . 

Given the lack of stability guarantee for the weighted forward-

ackward prediction method, we suggest to initialize the second

tage with the weighted forward-backward prediction estimate

nly if the initial estimate corresponds to a stable filter. If the

eighted forward-backward prediction estimate results in an un-

table filter, the second stage can be initialized with the Burg’s

stimate. For high ordered processes, it is also recommended to

un the second stage for a small number of iterations, say 5 to 10

terations. 

. Discussions and conclusions 

A low complexity parameter estimation method for the maxi-

um likelihood estimation of AR(P) process parameters is given.

he method consists of two stages. The first stage of the method is

he weighted version of the conventional forward-backward pre-

iction scheme. The weighted version comes no additional im-

lementation cost and gives better likelihood values in compar-

son to other classical methods such as correlation method, co-

ariance method, Burg’s method etc. Different from similar efforts,

he proposed weights are not given in an ad-hoc manner, as in
19,20] ; but derived from the likelihood metric partially explaining

he observed improvement. Unfortunately, the weighted forward-

ackward prediction suffers from the stability problem at small

ample sizes which is a common problem for some other linear

rediction methods in this class such as covariance, conventional

orward-backward prediction methods etc. 

The second stage of the proposed method approximates the

ikelihood function around an initial parameter estimate with a

uadratic function. By solving the linear equation system associ-

ted with the optimization of quadratic approximation, the final

stimate is generated. The conducted numerical results show that

he second stage result is almost as good as Quasi-Newton based

umerical search operation with a proper initialization. We recom-

end to initialize the second stage with the estimate produced by

he weighted forward-backward prediction scheme due to its su-

erior performance, in terms of likelihood value, in comparison

o all other methods. If the estimate produced by the weighted

orward-backward scheme results in an unstable filter, the estimate

ia Burg’s method can also be used. Depending on the AR model

rder, the second stage is recommended to run a few number of

terations, say 5–10 iterations. 

In many applications, the process to be modeled is observed in

he presence of additive white noise, further complicating the AR

odeling problem [21] . For these problems, the proposed method

an be used as a sub-component of the expectation maximiza-

ion (EM) or Alternating Direction Method of Multipliers (ADMM)

rameworks taking into account the deviation from the exact

R model in parameter estimation. As a final note, a ready-to-

se MATLAB codes of the suggested method is made available

n [14] . 
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