EE 503 Homework #3 (Due : Dec. 25, 2012)

We examine the channel equalization problem in this assignment. Related discussions

can be found in digital communications textbooks and also in [pages 530-534, Hayes].

Problem:

In the following set-up $h_{ch}[n]$ shows the impulse response of a causal FIR channel. We would like to design $h_{eq}[n]$, which is the equalizer filter, to compensate the effect of the channel. The process w[n] is zero mean, white *Gaussian* noise (WGN) process with the variance σ_w^2 . The process s[n] is the information carrying process that we are interested in. The processes s[n] is uncorrelated with w[n].

Figure: Scheme for channel equalization

- a) Consider $H_{ch}(z) = h_{ch}[0] + h_{ch}[1]z^{-1} + ... + h_{ch}[L]z^{-L}$ and $d[n] = s[n-\Delta]$ where Δ is a non-negative integer. Analytically find the auto-correlation sequence $r_r[k]$ and the cross-correlation sequence $r_{dr}[k]$.
- b) Take $H_{ch}(z) = \frac{14}{5} + \frac{2}{5}z^{-1} + \frac{4}{5}z^{-2} + 2z^{-3} + \frac{1}{5}z^{-4} \frac{1}{5}z^{-5}$ and design FIR equalizers of order P, i.e. $H_{eq}(z) = h_{eq}[0] + h_{eq}[1]z^{-1} + \dots + h_{eq}[P]z^{-P}$, such that $E\left\{\left(d[n] \hat{d}[n]\right)^2\right\}$ is minimized.

Note that if it is possible to reduce the error of $E\left\{\left(d[n] - \hat{d}[n]\right)^2\right\}$ to zero (ideal equalizer), then the cascade of $h_{ch}[n]$ and $h_{eq}[n]$ becomes $\delta[n - \Delta]$; hence after the equalization the cascade channel becomes the delay channel with colored additive noise.

For the design of the filters assume that $r_s[k] = \delta[k]$ and $r_w[k] = \frac{1}{SNR} \delta[k] = \sigma_w^2 \delta[k]$ Here $SNR = \frac{r_s[0]}{r_w[0]} = \frac{\sigma_s^2}{\sigma_w^2}$ shows the ratio of signal and noise powers. Deleted: 2

Deleted: the
Formatted: Font: Italic

Submit following :

- 1. Plot of $conv(h_{ch}[n], h_{eq}[n])$ at SNR = 10 dB, $\Delta = 2$ for $P = \{3, 5, 7, 11\}$. (Use subplot command of Matlab, if necessary).
- 2. Plot of $conv(h_{ch}[n], h_{ea}[n])$ at SNR = 10 dB, $\Delta = 4$ for $P = \{3, 5, 7, 11\}$.
- 3. Using Matlab calculate the error of $J_{\min} = E\left\{\left(d[n] \hat{d}[n]\right)^2\right\}$ of the optimum equalizer and fill in the following table for each pair of P and Δ at SNR = 10 dB.

Jmin	Δ=3	4	7	8	11	Δ=12
P=3						
4						
7						
8						
10						
11						
P=12						

Achieved Minimum Error for Various Configurations for SNR = 10 dB

4. Calculate the error of $J_{\min} = E\left\{\left(d[n] - \hat{d}[n]\right)^2\right\}$ of the optimum equalizer and fill in the following table for each pair of P and Δ at SNR = 0 dB.

Jmin	Δ=3	4	7	8	11	Δ=12
P=3						
4						
7						
8						
10						
11						
P=12						

Achieved Minimum Error for Various Configurations for SNR = 0 dB

Questions:

- For the submission of parts 3 and 4 comment on the effect of SNR. Is the system significantly affected by SNR?
- State the values for P and Δ for which the equalizer is all zero filter. These cases should appear in the tables with $J_{min}=1$. Explain whether this makes sense or not.

Note:

c) In this part, we numerically examine the success the effect of equalization on a communication scheme. This part shows how the equalizer is used in a practical setup.

For this part, assume that s[n] is equally likely to be 1 or -1 for every *n* and s[n] is i.i.d. distributed. Convince yourself that this leads to $r_s[k] = \delta[k]$.

1. Generate s[n] for $n = \{0,1,...,99\}$ and implement the filtering scheme shown in the figure with $H_{ch}(z) = \frac{14}{5} + \frac{2}{5}z^{-1} + \frac{4}{5}z^{-2} + 2z^{-3} + \frac{1}{5}z^{-4} - \frac{1}{5}z^{-5}$, for

 $\Delta = 2$, P = 5 and SNR = 10 dB. Present $s[n - \Delta]$ and $\hat{d}[n]$ using subplot command of Matlab. Compare $s[n - \Delta]$ and $\hat{d}[n]$. Do you think channel equalization is successful?

To get a numerical value for the success of equalization, empirically estimate the probability of error by counting how many times $sign(\hat{d}[n]) \neq s[n-\Delta]$. What is your estimate for the probability of the error (probability of an erroneous case)?

Note: Since $s[n-\Delta] = \pm 1$, please use the following modified form of the sign function.

Formatted: Centered

		x > 0
$sign(x) = \langle$	$\pm 1 \left(\text{ with prob. } \frac{1}{2} \right)$	x = 0
	-1	<i>x</i> < 0

2. Repeat the earlier part for s[n] for $n = \{0,1,...,99999\}$ and provide your empirical estimate for the probability of error (as in earlier part) for each pair of P and Δ at SNR values of 10 and 0 dB.

P{Error}	Δ=3	4	7	8	11	Δ=12
P=3						
4						
7						
8						
10						
11						
P=12						

Probability of Error Estimate for SNR = 10 dB

P{Error}	Δ=3	4	7	8	11	Δ=12
P=3						
4						
7						
8						
10						
11						
P=12						

Probability of Error Estimate for SNR = 0 dB