EE 503

Homework \#3

(Due : Dec. 25, 2012)
Deleted: 2
We examine the channel equalization problem in this assignment. Related discussions can be found in digital communications textbooks and also in [pages 530-534, Hayes].

Problem:

In the following set-up $h_{c h}[n]$ shows the impulse response of a causal FIR channel. We would like to design $h_{e q}[n]$, which is the equalizer filter, to compensate the effect of the channel. The process $w[n]$ is zero mean, white Gaussian noise (WGN) process with the

Deleted: the
Formatted: Font: Italic variance σ_{w}^{2}. The process $s[n]$ is the information carrying process that we are interested in. The processes $s[n]$ is uncorrelated with $w[n]$.

Figure: Scheme for channel equalization
a) Consider $H_{c h}(z)=h_{c h}[0]+h_{c h}[1] z^{-1}+\ldots+h_{c h}[L] z^{-L}$ and $d[n]=s[n-\Delta]$ where Δ is a non-negative integer. Analytically find the auto-correlation sequence $r_{r}[k]$ and the cross-correlation sequence $r_{d r}[k]$.
b) Take $H_{c h}(z)=\frac{14}{5}+\frac{2}{5} z^{-1}+\frac{4}{5} z^{-2}+2 z^{-3}+\frac{1}{5} z^{-4}-\frac{1}{5} z^{-5}$ and design FIR equalizers of order P, i.e. $H_{e q}(z)=h_{e q}[0]+h_{e q}[1] z^{-1}+\ldots+h_{e q}[P] z^{-P}$, such that $E\left\{(d[n]-\hat{d}[n])^{2}\right\}$ is minimized.

Note that if it is possible to reduce the error of $E\left\{(d[n]-\hat{d}[n])^{2}\right\}$ to zero (ideal equalizer), then the cascade of $h_{c h}[n]$ and $h_{e q}[n]$ becomes $\delta[n-\Delta]$; hence after the equalization the cascade channel becomes the delay channel with colored additive noise.

For the design of the filters assume that $r_{s}[k]=\delta[k]$ and $r_{w}[k]=\frac{1}{S N R} \delta[k]=\sigma_{w}^{2} \delta[k]$ Here $S N R=\frac{r_{s}[0]}{r_{w}[0]}=\frac{\sigma_{s}^{2}}{\sigma_{w}^{2}}$ shows the ratio of signal and noise powers.

Submit following :

1. Plot of $\operatorname{conv}\left(h_{c h}[n], h_{e q}[n]\right)$ at $\mathrm{SNR}=10 \mathrm{~dB}, \Delta=2$ for $P=\{3,5,7,11\}$. (Use subplot command of Matlab, if necessary).
2. Plot of $\operatorname{conv}\left(h_{c h}[n], h_{e q}[n]\right)$ at $\mathrm{SNR}=10 \mathrm{~dB}, \Delta=4$ for $P=\{3,5,7,11\}$.
3. Using Matlab calculate the error of $J_{\text {min }}=E\left\{(d[n]-\hat{d}[n])^{2}\right\}$ of the optimum equalizer and fill in the following table for each pair of P and Δ at $\mathrm{SNR}=10$ dB.

Jmin	$\Delta=3$	4	7	8	11	$\Delta=12$
$\mathrm{P}=3$						
4						
7						
8						
10						
11						
$\mathrm{P}=12$						

Achieved Minimum Error for Various Configurations for SNR $=10 \mathrm{~dB}$
4. Calculate the error of $J_{\min }=E\left\{(d[n]-\hat{d}[n])^{2}\right\}$ of the optimum equalizer and fill in the following table for each pair of P and Δ at $\mathrm{SNR}=0 \mathrm{~dB}$.

Jmin	$\Delta=3$	4	7	8	11	$\Delta=12$
$\mathrm{P}=3$						
4						
7						
8						
10						
11						
$\mathrm{P}=12$						

Achieved Minimum Error for Various Configurations for $\mathrm{SNR}=0 \mathrm{~dB}$

Questions:

- For the submission of parts 3 and 4 comment on the effect of SNR. Is the system significantly affected by SNR?
- State the values for P and Δ for which the equalizer is all zero filter.

These cases should appear in the tables with $\mathrm{J}_{\mathrm{min}}=1$. Explain whether this makes sense or not.
Note:
c) In this part, we numerically examine the success the effect of equalization on a communication scheme. This part shows how the equalizer is used in a practical setup.

For this part, assume that $s[n]$ is equally likely to be 1 or -1 for every n and $s[n]$ is i.i.d. distributed. Convince yourself that this leads to $r_{s}[k]=\delta[k]$.

1. Generate $s[n]$ for $n=\{0,1, \ldots, 99\}$ and implement the filtering scheme shown in the figure with $H_{c h}(z)=\frac{14}{5}+\frac{2}{5} z^{-1}+\frac{4}{5} z^{-2}+2 z^{-3}+\frac{1}{5} z^{-4}-\frac{1}{5} z^{-5}$, for $\Delta=2, P=5$ and SNR $=10 \mathrm{~dB}$. Present $s[n-\Delta]$ and $\hat{d}[n]$ using subplot command of Matlab. Compare $s[n-\Delta]$ and $\hat{d}[n]$. Do you think channel equalization is successful?
To get a numerical value for the success of equalization, empirically estimate the probability of error by counting how many times $\operatorname{sign}(\hat{d}[n]) \neq s[n-\Delta]$. What is your estimate for the probability of the error (probability of an erroneous case)?

Note: Since $s[n-\Delta]= \pm 1$, please use the following modified form of the sign \qquad function.

$$
\operatorname{sign}(x)=\left\{\begin{array}{cl}
1 & x>0 \\
\pm 1\left(\text { with prob. } \frac{1}{2}\right) & x=0 \\
-1 & x<0
\end{array}\right.
$$

2. Repeat the earlier part for $s[n]$ for $n=\{0,1, \ldots, 99999\}$ and provide your empirical estimate for the probability of error (as in earlier part) for each pair of P and Δ at SNR values of 10 and 0 dB .

$\mathbf{P}\{$ Error $\}$	$\Delta=3$	4	7	8	11	$\Delta=12$
$\mathrm{P}=3$						
4						
7						
8						
10						
11						
$\mathrm{P}=12$						

Probability of Error Estimate for $\mathrm{SNR}=10 \mathrm{~dB}$

$\mathbf{P}\{$ Error \}	$\Delta=3$	4	7	8	11	$\Delta=12$
$\mathrm{P}=3$						
4						
7						
8						
10						
11						
$\mathrm{P}=12$						

Probability of Error Estimate for $\mathrm{SNR}=0 \mathrm{~dB}$

