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10-1 DEFINITIONS

As we recall, an RV x is a rule for assigning to every outcome ¢ of an
experiment . a nuwmber x(¢). A stochastic process x(7)1s a rule for assigning to
every ¢ a function x(¢, ). Thus a stochastic process is a family of time functions
depending on the parameter ¢ or, equivalently, a function of ¢ and . The
domain of ¢ is the set of all experimental outcomes and the domain of ¢ is a set
R of real numbers.

If R is the real axis, then x(¢) is'a continwous-time process. 1f R is the set
of integers, then x(¢) is a discrete-time process. A discrete-time process is, thus,
4 sequence of random variables. Such a sequence will be denoted by x, as in
See. 8-4, or. to avoid double indices. by x[n).

We shall say that x(¢) is a discrete-state process if its values are countable.
Otherwise, it iS a continuous-state process.

Most results in this investigation will be phrased in terms of continuous-
time processes. Topies dealing with discrete-time processes will be introduced
either as illustrations of the general theory, or when their discrete-time version
is not self-evident.

We shall use the notation x(z) to represent a stochastic process omitting,
as in the case of random variables, its dependence on ¢ Thus x(r) has the
following interpretations:

1. It is a family (or an ensemble) of functions x(z, £). In this interpretation.
and ¢ are variables,
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2. Itis a single time function (or a sample of the given process). In this case, ¢ is

a variable and ¢ 1s fixed.

3. If ¢ is fixed and ¢ is variable, then x(¢) is a random variable equal to the srate
of the given process at time ¢.

4. If ¢ and ¢ are fixed, then x(t) is a number.

H

A physical example of a stochastic process is the motion of microscopic
particles in collision with the molecules in a fluid (brownian metion). The
resulting process x(¢) consists of the motions of all particles (ensemble). A single
realization x(¢, &;) of this process (Fig. 10-1a) is the motion of a specific particle
(sample). Another example is the voltage

x(1) = reos(wt + @)

of an ac generator with random amplitude r and phase ¢. In this case, the
process x(¢) consists of a family of pure sine waves and a single sample is the
function (Fig. 10-14)

x(1,4,) = £({)cos[wt + ¢(L)]

According to our definition, both examples are stochastic processes. There
is, however, a fundamental difference between them. The first example (regular)
consists of a family of functions that cannot be described in terms of a finite
number of parameters. Furthermore, the future of a sample x(¢,&) of x(z)
cannot be determined in terms of its past. Finally, under certain conditions, the
statisticst of a regular process x(r) can be determined in terms of a single
sample (see Sec. 13-1). The second example (predictable) consists of a family of
pure sine waves and it is completely specified in terms of the RVs r and e.
Furthermore, if x(¢, ¢) is known for ¢ < t,, then it is determined for ¢ > ¢,.
Finally, a single sample x(r, ) of x(1) does not specify the properties of the

TRecall that statistics hereafter will mean statistical propesties.
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entire process because it depends only on the particular values W) and (&) of
rand ¢. A formal definition of regular and predictable processes is given in Sec,
12-3.

Equality. We shall say that two stochastic processes x(1) and y(1) are equal
(everywhere) if their respective samples x(¢, £) and y(z, ¢) are identical for every
¢ Similarly, the equality z(¢) = x(r) + y(¢) means that 2(z, £) = x(¢, {) + y(t, &)
for every £. Derivatives, integrals, or any other operations involving stochastic
processes are defined similarly in terms of the corresponding operations for
each sample.

As in the case of limits, the above definitions can be relaxed. We give
below the meaning of MS equality and in App. 10A we define MS derivatives
and integrals. Two processes x(7) and y(¢) are equal in the MS sense iff

E{lx(¢) = y(£)I*} = 0 (10-1)

for every r. Equality in the MS sense leads to the following conclusions: We
denote by &7 the set of outcomes ¢ such that x(r, ) = ¥(1. ) for a specific t,
and by 22 the set of outcomes ¢ such that x(t,{) = y(t, &) for every . From
(10-1) it follows that x(¢,¢) — y(r, &) = 0 with probability 1; hence P(.5/) =
P(.~") = 1. It does not follow, however, that P(.57) = 1. In fact, since .22 is
the intersection of all sets .27, as ¢ ranges over the entire axis, P(.22) might
even equal 0.

Statistics of Stochastic Processes

A stochastic process is a noncountable infinity of random variables, one for each
t. For a specific 1, x(¢) is an RV with distribution

F(x,t) = P(x(1) < x} (10-2)

This function depends on ¢, and it equals the probability of the event {x(¢) < x)
consisting of all outcomes ¢ such that, at the specific time ¢, the samples x(¢, {)
of the given process do not exceed the number x. The function F(x, ) will be
called the first-order distribution of the process x(¢). Its derivative with respect
to x:

Flx,t) = a”ﬁ—t') (10-3)

18 the first-order density of x(1).

Frequency interpretation If the experiment is performed n times, then a functions
x(2, £) are observed, one for each trial (Fig. 10-2). Denating by n,(x) the number of
trials such that at time ¢ the ordinates of the obscrved functions do not exceed x (solid
lines), we conclude as in (4-3) that

F(x, 1) =

X) (10-4)
n
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The second-order distribution of the process x(¢) is the joint distribution
E (% %5 0000 = Pix(n,) < x:x() < %) (10-5)
of the RVs x(¢,) and x(t,). The corresponding density equals

B (%53 Lta t5)

Xy, Kaibygty) = —————— =
i %33 s 02) ax, 0x, (18:5)

We note that (consistency conditions)
F(xp0,) = F(x%5t, t) f(xy50) =f fQxp x50, 15) dx,

as in (6-9) and (6-10).
The nth-order distribution of x(t) is the joint distribution F(x,...,x,;
ty,...,1,) of the RVs x(r,),...,x(r,).

SECOND-ORDER PROPERTIES. For the determination of the statistical proper-
ties of a stochastic process; knowledge of the function F(xy, ..., X, ty...yt,) I8
required for every ,\,, » and n. However, for many apphuauons only certam
averages are used, in particular, the expected value of x(¢) and of x*(¢). These
‘quantities can be expressed in terms of the second-order properties of x(1)
‘defined as follows:

Mean The mean n(t) of x(¢) is the expected value of the RV x(1):

7(r) = E{x(r)} = [1 xf(x.t) dx (10-7)

Autocorrelation The autocorrelation R(r;,1,) of x(¢) is the expected
value of the product x(z,)x(¢,):

R(ty,15) = E{x(1)x(t2)) = [ [ wixaf (s xai i 1) dvy dey (10-8)

The value of R(r,r,) on the diagonal ¢, =1, = is the average power of
x(¢):
E{x2(1)} = R(#,1)
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The autocovariance C(1, t,) of x(1)'is the covariance of the RVs x(#,) and

K(l'z):
C(fnf;):R(fpfz)_'fi(ll)"'l(’:) (10'9)
and its value C(¢, 1) on the diagonal 1, = ¢, = 1 equals the variance of x(r).
Note The following is an explanation of the reason for introducing the function R(ty, t5)
even in problems dealing only with average power: Suppose that x(7) is the input to a
linear system and y(r) is the resulting output. In Sec. 10-2 we show that the mean of yir)
can be expressed in terms of the mean of x(r). However, the average power of y(z)
cannot be found if only E{x*(¢)} is given. For the determination of Ely*(e)}, knowledge
of the function R(t,, ;) is required, not just on the diagonal ¢, = t,, but for every 1, and
f5. The following identity is a simple illustration
E([x(1,) + x(1)F} = R(1;,1,) + 2R(t1,12) + R(t2, 1)

This follows from (10-8) if we expand the square and use the linearity of expected values.

Example 10-1. An extreme example of a stochastic process is a deterministic signal

x(t) = f(¢). In this case,

n(t) = E{f(D} =F(1)  R(1y,6) = E{f(1,}f(12)} = F(1;)f(12)
Example 10-2. Suppose that x(t) is a process with
() =3 R(t;.tp) =9+ 4e~ 300l

We shall determine the mean, the variance, and the covariance of the RVs
z = x(5) and w = x(8).
Clearly, E{z} = n(5) = 3 and E{w} = n(8) = 3. Furthermore,

E{z*} = R(5,5) = 13 E{w*} = R(8.8) = 13
E{zw} = R(5,8) = 9 + 4¢ "0 = 11,195
Thus z and w have the same variance o> =4 and their covariance equals
C(5,8) = de="0=2195.
Example 10-3. The integral

s=f"x(:)dr

a

of a stochastic process x(¢) is an RV s and its value s(¢) for a specific outcome ¢ is
the area under the curve x(¢,¢) in the interval (a,b) (scc also App. 10A).
In.terprcting the above as a Riemann integral, we conclude from the linearity of
expected values that

7= E(s) = ["E(x()) di = ["n(1) at (10-10)
Similarly, since

st= fbfbx(tl)x(rz)dt, dt,

a’a
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we conclude, using again the linearity of expected values, that

E{s?) :j:’f”ﬁ{x(:,)x(:z)]d:,d:: = [*[°RCtyts) diydts  (10-11)

Example 10-4. We shall determine the autocorrelation R(t,, t,) of the process
x(1) = reos(wt + @)

where 'we assume that the RVs rand ¢ are independent and ¢ is uniform in the
nterval (=, 7).
Using simple trigonometric identities, we find

E{x(t,)x(t;)} = $E{r*}E{cos w(t, — t5) + cos(wr; + wt, + 2¢)}

and since
E{cos(wty + wit, + 2¢)} = ﬁ _:cus(wl, +wl+ 2¢)de =0
we conclude that
R(1y,05) = 5 E{r®}cos w(t; —1;) (10-12)

Example 10-5 Poisson process. In Sec. 3-4 we introduced the concept of Poisson
points and we showed that these points are specified by the following properties:

Py: The number n(#,, ¢,) of the points t; in an interval (t;, t;) of length ¢ =t — ¢,
is a Poisson RV with parameter At:

o AL k
Pln(t,.1,) = k) = # (10-13)

P,: If the intervals (1, ¢,) and (15, () are nonoverlapping, then the RVs nlz,, t,)
and n(z;, ¢4) are independent.
Using the points t,. we form the stochastic process
x(1) = n(0,1)

shown in Fig. 10-3a. This is a discrete-state process consisting of a family of
increasing staircase functions with discontinuities at the points t,.
For a specific ¢, x(¢) is a Poisson RV with parameter Af; hence

E{x(1)} = n(t) = At
‘We shall show that its autocorrelation equals
AL, + At ts 0 =its

ﬂ (10-14)
VAL + At < s

R(ry.t5) =

or equivalently that
C(ryatz) = Amin(e 1) = An U, — 1)) + AU( = 1)
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Proof. The above is true for ¢, = 1, because [see (5-36)]
E{x*(t)) = At + A%? (10-15)

Since R(1), 1) = R(1,, 1)), it suffices to prove (10-14) for 1; < t5. The RVs x(1))
and x(f,) — x(2,) are independent because the intervals (0,¢,) and (¢,,1,) are
nonoverlapping. Furthermore, they are Poisson distributed with parameters Af,
and A(z; — t,) respectively. Hence

E{x(¢)[x(t2) — x(¢))]} = E{x(t;)}E{x(t3) — x(t,)} = At,A(ts— 1)
Using the identity
x(t)x(t2) = x(1))[x(1;) + x(12) — x(¢,)]
we conclude from the above and (10-15) that
Rty t5) = Aty + X2t + AtjA(t, — 1))

and (10-14) results.

Nonuniform case 1f the points t; have a nonuniform density A(¢) as in
(3-54), then the preceding results still hold provided that the product A(z, — 1)) is
replaced by the integral of A(¢) from ¢, to ..

Thus

E{x(1)) = jn‘;«(a)da (10-16)
and

R(1;.15) =f“"a(:_)m[1 +]:2A(.')d1] e (10-17)

Example 10-6 Telegraph signal. Using the Poisson points t;, we form a process
x(¢) such that x(+) = 1 if the number of points in the interval (0, ¢) is even, and
x(2) = —1 if this number is odd (Fig. 10-3b).
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Denoting by plk) the probability that the number of points in the interval
(0.1 equals &, we conclude that [see (10-13)]

P(x(1) = 1} =p(0) +p(2) + : -

(Ae)?
=¢."“[l -+ + <=+ | = ¢ M cosh At

21
PX(1) = =1} =p(1) +p(3) + -

(A1)’
3!

=¢""“[M+ ] = ¢ Mgsinh At

Hence
E{x(£)} = e *(cosh At — sinh A1) =e *¥ (10-18)

To determine R{t,,7,), we note that, il x(r;) = I, then x(r,) = | if the
number of peints in the interval (¢,.¢5) is even. Hence

P{x(t2) = 1x(t,) = 1) =e McoshAt ¢ = lt5— 1]
Multiplying by P{x(r,) = 1}, we obtain
Plx(t;) = 1,x(1,) = 1} = ¢ * cosh Are*'2 cosh At,
Similarly,
P{x(t,) = =1,x(13) = =1} = ¢ *cosh Afe "= sinh At,
P{x(r,) = 1,x(t5) = =1} =¢ Msinh Xte "2 sinh AL,
P{x(t;) = —1,x(r5) = 1} = *sinh Ate*"* cosh A1,
Since the product x(r,)x(¢5) equals 1 or — 1, we conclude omitting details that
R(tyyty)i=te= A=l (10-19)

The above process is called semirandom telegraph signal because its value
x(0) = 1 at ¢ = (is not random. To remove this certainty, we form the product
¥(t) = ax(4)

where a is an RV taking the values +1 and —1 with equal probability and is
independent of x(¢). The process y(z) so formed is called random telegraph signal.
Since Efa} =0 and E{a%) = I, the mean of y(¢) equals E{a}E{x(¢)) = 0 and its
autocorrelation is given by

E{w(e)¥(12)} = E{a)E{x(1,)x(1,)} = e” M0

We note that as ¢ — = the processes x() and ¥(¢) have asymptotically equal
stalistics.
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General Properties

The statistical properties of a real stochastic process x(7) are completely
determined in terms of its nth-order distribution

B i K n il iyereets 6) =Plx(6) <xp,...0x(1,) <x;)  (10:20)

The joint statistics of two real processes x(¢) and y(z) are determined in
terms of the joint distribution of the RVs

X0 e X)) )

The complex process #(1) = x(1) + jy(t) is specified in terms of the joint
statistics of the real processes x(r) and y(7).

A wveector process (n-dimensional process) is a family of 2 stochastic
processes.

Correlation and covariance. The autocorrelation of a process x(r), real or
complex, is by definition the mean of the product x(¢,)x *(r,). This function, will
be denoted by R(t,, ;) or R (t,.1,) or R (,,1,). Thus

R (1, 15) = E{x(t )x*(t3)} (10-21)

where the conjugate term is associated with the second variable in R, (¢, 1,).
From this it follows that

R(t5,1,) = E[x(£,)x*(2,)} = R*(t,.t5) (10-22
We note, further, that
R(ty1) = E{Ix(1)[F) = 0 (10-23)

The last two équations are special cases of the following: The autocorrela-
tion R(t,,1,) of a stochastic process x(t) is a positive definite (p.d.) function,
that is, for any a, and a;:

YaaER(e. ) =0 (10-24)
i

This is a consequence of the identity

0< E{’Zﬂ,x(l,)r} = Za,a;"E{X(I;)x*(!,)}
U Lo

We show later that the converse is also true: Given a p.d. function
R(t,, 1,), we can find a process x(¢) with autocorrelation R(f,.,).

FThere are processes (nonseparable) for which this is not true. However, such processes ure mainly
of mathematical interesl.
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Example 10-7. (a) If x(z) = ae’*! then
R(ty,15) = Efaeiha*e 11} = E{|a|?)e/oti=t)
(b) Suppose that the RVs a; are uncorrelated with zero mean and variance
o’ If

i

x(t) = Za.f"u’[
i
then (10-21) yields
R(ty,1,) = Y oleli=td
1

The autocovariance C(ty, t,) of a process x(¢) is the covariance of the RVs
x(1,) and x(¢, ):

C(’i-lz)=R('|r’z)_"l(f|)77*(’2) (10-25)
In the above, n(t) = E{x(¢)) is the mean of x(r).
The ratio
G5,
r(t, ;) = 1) (10-26)

V(1. 1,)C (15, t5)
is the correlation coefficient T of the process x(t).

Note The autocovariance C(r;, 1,) of a process x(1) is the autocorrelation of the centered
process
%(1) = x(1) = (1)
Hence it 1s p.d.
The correlation coefficient #(t, 1,) of x(¢) is the autocovariance of the normalized
process X(1)//C (1, t) ; hence it is also p.d. Furthermore [see (7-9)]

lr(r )l =1 r(r,0) =1 (10-27)
Example 10-8. If
b b
s= [ x(t)dt then s —u, = | %(r)dt
[ n, = [%(0)
where %(r) = x(2) — 5, (¢). Using (10-11), we conclude from the above note that
of = E{ls = n,1?} = [*[*C.e,. 1) at, aty (10-28)
a a

The cross-correlation of two processes x(¢) and y(1) is the function
R (11, 13) = E{x(1))y*(1,)} = R%.(t3,1,) (10-29)

fIn optics, C(ry, 1) is called the coherence function and £y, t5) s called the complex degree of
coherence (see Papoulis, 1968),
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Similarly,
Coplry,t3) = fs 1) = (e )mF (1) (10-30)

is their cross-covariance.
Two processes x(+) and y(1) are called (mutually) orthogonal if

R (1),1:) =0 forevery 1, and ¢, (10-31)

They are called uncorrelated if
C..(t:t5) =0 forevery 1, and r, (10-32)
a-dependent processes  In general, the values x(r,) and x(1,) of a stochastic

process x(7) are statistically dependent for any (i dl]d 15, However, in most
cases this dependence decreases as [f, — t,| — . This leads to the following
concept: A stochastic process x(f) is culicd a-dependent if all its values x(¢) for
t <t,and for t >z, + a are mutually independent. From this it follows that
Clr ) =0 for [ty =t;] >a (10-33

A process x(1) is called correlation a-dependent if its autocorrelation
satisfies (10-33). Clearly, if x(¢) is correlation a-dependent, then any lincar
‘combination of its values for ¢ < r, is uncorrelated with any linear combination
of its values for ¢ > 1, + a.

White noise We shall say that a process v(¢) is white noise if its values
v(1;) and w(1;) are uncorrelated for every , and ¢, # ¢,:

Clet;) =0t

As we explain later, the autocovariance of a nontrivial white-noise process
must be of the form

C(t, 1) =q(t;)8(t, — ;) q(t) =0 (10-34)

If the RVs w(;) and w(¢;) are not only uncorrelated but also indépendent,
then w(z) will be called strictly white noise. Unless otherwise stated, it will be
assumed that the mean of a white-noise process is identically (.

Example 10-9. Suppose that w(7) is white noise and
x(1) =[’u(n)da (10-35)
0
Inserting (10-34) into (10-35), we obtain
s i
E(x*(1)) = £)8(t, — o) dryde, = [q(r)dt (10-36)
["()} j‘.'j;Q(|)(| 5) dry di; j‘:!(|)'l
because
f'a(:, —ty)dta=1 for O<t, <t
0

Uneorrelated and independent increments 1f the increments x(¢,) — x(t;)
and x(r,) — x(r;) of a process x(7) are uncorrelated (independent) for any
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1, < b <ty < ty, then we say that x(¢) is a process with uncorrelated (indepen-
dent) increments. The Poisson process is a process with independent incre-
ments. The integral (10-35) of white noise is a process with uncorrelated

increments.

Independent processes 1f two processes x(¢) and y(1) are such that the
RVs x(1,),...,x(t,) and y(t{). ..., ¥(¢;) are mutually independent, then these
processes are called independent.

Normal processes. A process x(1) is called normal, if the RVs x(z,), ... ,x(z,)
are jointly normal for any n and ¢;,....¢,.

The statistics of a normal process are completely determined in terms of
its'mean m(#) and autocovariance C(z, f,). Indeed, since

E(x(1)} =n(1)  ol(r) =C(1,1)
we conelude that the first-order density f(x,¢) of x(¢) is the normal density

Nln(e);/C(¢, 1) 1.

Similarly, since the function r(¢,,¢,) in (10-26) is the correlation coeffi-
cient of the RVs x(¢,) and x(z,), the second-order density f(x,, x5; £, £;) of x(r)
is the jointly normal density

N["?(H)o"l(fz);\/c(’h‘l) VE(15,15) 3"(’1-'2)]

The nth-order characteristic function of the process x(7) is given by [see
(8-60)]

1
ch{j}:ﬂ(’i)“’. = EZC(I:'JJ()"’.“"A-} (10-37)
i ik
Its inverse fi(xy,...,X,i1},--.,1,) is the nth-order density of x(1).

Existence theorem. Given an arbitrary function n(t) and a p.d. function C(1,, ),
we can construct a normal process with mean n(r) and autocovariance C(1,, L)
This follows if we use in (10-37) the given functions 7(t) and C(t,,f,). The
inverse of the resulting characteristic function is a density because the function
C(t,, 1) is p.d. by assumption.

Example 10-10. Suppose that x(¢) is a normal process with
() =3 Cltyi 1) = de=02w

() Find the probability that x(5) < 2.
Clearly, x(5) is a normal RV with mean n(5) = 3 and variance C(5,5) = 4.
Hence
P{x(5) <2} = G(—1/2) = 0.309

(b) Find the probability that [x(8) — x(3)| < 1.
The difference s = x(8) — x(5) is a normal RV with mean n(8) — 7(5) = 0
and variance

C(8.8) + €(5,5) — 2C(8,5) = 8(1 — ¢~"®) = 3,608
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FIGURE 10-4
Hence

P{Ix(8) — x(5)| = 1) =2G(1/1.9) —1=04

Point and renewal processes. A point process is a set of random points t, on the
time axis. To every point process we can associate a stochastic process x(1)
equal to the number of points t; in the interval (0, £). An example is the Poisson
process. To every point process t; we can associate a sequence of RVs z, such
that

z, =t Zol=hits =ik iz = b =it g

n 1l

where t, is the first random point to the right of the origin. This sequence is
called a renewal process. An example is the life history of light bulbs that are
replaced as soon as they fail. In this case, z, is the total time the ith bulb is in
operation and t; is the time of its failure.

We have thus established a correspondence between the following three
cconcepts (Fig. 10-4): () a point process t;, (b) a discrete-state stochastic process
x(¢) increasing in unit steps at the points t,, (¢) a renewal process consisting of
the RVs z; and such that t, = z; + --- +z,. This correspondence is developed
further in Sec. 16-1.

Stationary Processes

A stochastic process x(r) is called strict-sense stationary (abbreviated SSS) if its
statistical properties are invariant to a shift of the origin. This means that the
processes x(t) and x(+ + ¢) have the same statistics for any c.

Two processes x(¢) and y(r) are called jointly stationary if the joint
statistics of x(r) and y(¢) are the same as the joint statistics of x(r +¢) and
¥(t + ¢) for any e,

A complex process z(1) = x(¢) + jy(¢) is stationary if the processes x(¢)
and y(¢) are jointly stationary.

From the definition it follows that the nth-order density of an SS8S process
must be such that

FCXpne o X3 Ly siby) =S5 000 Xyily € by +c¢) (10-38)

for any e.
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From the above it follows that f(x;1) = f(x;t + ¢) for any c. Hence the
first-order density of x(1) is independent of 7:
flxs 1) = f(x) (10-39)
Similarly, f(x,, X5;¢; + ¢, 1, + ¢) is independent of ¢ for any ¢. This leads
‘to the conclusion that
Fltipkastintz) = (%, X50) 7= =it (10-40)
Thus the joint density of the RVs x(r + 7) and x(z) is independent of f and it
equals f(x, x5; 7).

WIDE SENSE. A stochastic process x(¢) is called wide-sense stationary (abbrevia-
ted WSS) if its mean is constant

E(x(t)) =n (10-41)
and its autocorrelation depends onlyon 7 =1, — 15:
E{x(r + 7)x*(1)} = R(7) (10-42)

Since T i$ the distance from ¢ to ¢ + 7, the function R(7) can be written in the
symmetrical form

T T
R = B{x{t+ - |x*|r— =
(7) {x( + 2)1 ( 2)} (10-43)
Note in particular that
E{Ix(¢)I?} = R(0)
Thus the average power of a stationary process is independent of ¢ and it equals

R(0).

Example 10-11. Suppose that x(¢) is a WSS process with autocorrelation
R(7) = de™ !
We shall determine the second moment of the RV x(8) — x(5). Clearly,
E([x(8) ~ x(5)I'} = E{x*(8)) + E{x*(5)} - 2E(x(8)x(5)}
=R(0) + R(0) — 2R(3) =24 — 2A4e ™
Note As the above example suggests, the autocorrelation of a stationary process x(¢) can

be defined as average power. Assuming for simplicity that x(¢) is real, we conclude from
(10-42) that

E{[x(¢ + 7) = x(0)]} = 2[R(0) = R(x)] (10-44)

From (10-42) it follows that the autocovariance of a WSS process depends
onlyon 7 =t — t,:

C(r) = R(7) = Inl* (10-45)
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and its correlation coefficient [see (10-26)] equals

r(r) = C(7)/€(0) (10-46)
Thus 'C(7) is the covariance, and r(7) the correlation coefficient of the RVs
x(t +7) and x(¢).

Two processes x(7) and y(t) are called jointly WSS if each is WSS and
their cross-correlation depends only on 7 = 1, — ¢,:

R, (7) = E{x(t + 7)y*(1))  C,(7) =R, (7) —nmf (10-47)
If x(z) is WSS white noise, then [see (10-34)]
C(7) = qd(7) (10-48)

If x(¢) is an a-dependent process, then C(7) = 0 for |7| > a. In this case,
the constant a is called the correlation time of x(¢). This term is also used for
arbitrary processes and it is defined as the ratio

I =
"= o)

In general C(7) # 0 for every 7. However, for most regular processes

C(r)dr (10-49)

C(7) W’ 0 R(7) W’ |'q|2

Example 10-12. If x(r) is WSS and
T
5= x(t)de
- x®

then [see (10-28)]

a2 = [" [T clt, - n)dndt = [ @T = ls))C(z)dr  (10-50)

ST —o7

The last equality follows with = = t; — 1, (see Fig. 10-5); the details, however, are

omitted [see also (10-143)].

T 2

2r
_f f Clty—t) diy dt, = |2T—=|])C(r)dr c(7)
=TT —2T
T & ///.‘
58 27— |1
NS L
PAAY
7 T 1’/ //\" = ~
of 4 7z 1 —2T —a 0 a 2T 7
dr__ B
=T
27— r|>

FIGURE 10-5
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Special cases. {a) If C(7) = ¢b(7), then
o= q/jr(zr — lrl)6(r) dr = 2Tq

(b) If the process x(r) is a-dependent and a < T, then (10-50) yiclds

5

i f_l;_(_ez‘ — |[ZD)C(x) dr = 27[1('(1) a7

This shows that, in the evaluation of the variance of s, an a-dependent process
with @ < T can be replaced by white noise as in (10-48) with

q= fqu(T) ds

If a process is SSS, then it is also WSS. This follows readily from (10-39)
and (10-40). The converse, however, is not in general true. As we show next,
normal processes are an important exception.

Indeed, suppose that x(z) is a normal WSS process with mean n and
autocovariance C(7). As we see from (10-37), its nth-order characteristic
function equals

1
exp{j'n Y — ;Zcu, —Ik)w,wk} (10-51)
i =ik

This function is invariant to a shift of the origin. And since it determines
completely the statistics of x(¢), we conclude that x(1) is SSS.

Example 10-13. We shall establish necessary and sufficient conditions: for the
stationarity of the process
x(1) = acos wt + bsin wt (10-52)
The mean of this process equals
E{x(1)) = E{a)cos wt + E{b}sin vt
This function must be independent of . Hence the condition
Efa) = E(b} =0 (10-53)
is necessary for both forms of stationarity. We shall assume that it holds.
Wide sense. The process x(#) is WSS iff the RVs a and b are uncorrelated with
equal variance:
Ef{ab} =0  Efa’) = E{b’} =07 (10-54)
If this holds, then
R(7) = a’ coswr (10-55)

Proaf. 1f x(1) is WSS, then
E{x*(0)} = E(x*(w/2w)} = R(0)
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But x(0) = a and x(7/2w) = b; hence E{a’} = E{b2). Using the above, we obtain
E{x(t + 7)x(1)} = E{[acos w(t + 7) + bsin w(r + 7)][acos ws + bsin wt])
= a? cos wr + E{ab}sin w(21 + 1) (10-56)

This is independent of ¢ only if E{ab) = 0 and (10-54) results,
Conversely, if (10-54) holds, then, as we see from (10-56). the aulocorrelation
of x(t) equals &= cos wr; hence x(1) is WSS,

‘Strict sense. The process x(¢) is SSS iff the joint density f(a, b) of the RVs a and b
has circular symmetry, that is, if

fla,b) = f(Va® +b?) (10-57)

Proof. If x(¢) is SSS, then the RVs
x(0) =a x(7w/20) = b
and
x(t) = acoswt + bsinw! x(t +7/2w) = bcos wr — asin wt

have the same joint density for every . Hence [see (6-70)], f(a, b) must have
circular symmetry.

We shall now show: that, if' f(a, b) has circular symmetry, then x(1) is SSS.
With 7 a given number and

a; =acoswr + bsinwr by = bcos wr — asin wr
we form the process
x,(t) = a,cos wt + by sinwt =x(t + 7)

Clearly, the statistics of x(r) and x,(r) are determined in terms of the joint
densities f(a, b)and fl(ay, b)) of the RVs a,b and a, b;. But [see (6-67)] the RVs
a,b and a;, b, have the same joint density. Hence the processes x(¢) and x(¢ + 7)
have the same statistics for every 7.

Corollary. If the process x(1) is SSS and the RVs a and b are independent, then
they are normal.

Proof. It follows from (10-57) and (6-34).
Example 10-14. (a) Given an RV w with density f(w) and an RV ¢ uniform in the
interval (—, 77) and independent of w, we form the process

x(1) = acos(wr + ¢) (10-58)

We shall show that x(1) is WSS with zéro mean and autocorrelation

a* a* c
R(7) = TE{cos wr) = 5 Re (1) (10-59)

where
® (1) = E{e/*7}) = E{cos wr} + jE(sin w1} (10-60)

is the characteristic function of .



302  STOCHASTIC PROPERTIES

Proof. Clearly [see (7-59)]
E{cos(wr + @)} = E{ E{cos(wt + ¢)lw})
From the independence of @ and ¢, it follows that
E{cos(wi + ¢)|w) = coswt E{cos ¢} — sin wt E{sin ¢}
Hence E{x(1)) = 0 because

] m I v
Ef{cos ¢} = g[vwcoswdqz =) Efsing} = ;fr_sin e de =0

Reasoning similarly, we obtain E{cos(2et + ot + 2¢)} = 0. And since
2cos[w(r + 7) + @Jeos(wt + @) = cos wr + cos(2wt + w1 + 20)

we conclude that

R(7) = a*E{cos[w(t + 7) + @Jcos(wi + @)} = gE{cus wr}

(b) With w and ¢ as above, the process
2(1) = ae’tett®)
is' WSS with zero mean and autocorrelation

E(z(t + 7)z*(1)} = a’E{e’™}) = a* D (7)

Centering. Given a process x(¢) with mean 7(7) and autocovariance C (¢, 1,),
we form difference

i(r)=x(f) - (1) (10-61)

This difference is called the centered process associated with the process x(1).
Note that

E(x(1)} =0 Ri(4),6) = C(1),1,)

From this it follows that if the process x(¢) is covariance stationary, that is, if
C(t,.1;) = C(t, — 1,), then its centered process %(r) is WSS.

Other forms of stationarity. A process x(¢) is asymptotically stationary if the
statistics of the RVs x(r, + ¢),...,x(t, + ¢) do not depend on c if ¢ is large.
More precisely, the function

T s Xt =,y ol 1 C)

tends to a limit (that does not depend on ¢) as ¢ — =, The semirandom
telegraph signal is an example.

A process x(¢) is Nth-order stationary if (10-38) holds not for every n, but
only for n < N.

A process x(t) is stationary in an interval if (10-38) holds for every 1, and
2, + ¢ in this interval.

We say that x(¢) is a process with stationary increments if its increments
¥(t) = x(t + h) — x(z) form a stationary process for every hA. The Poisson
process is an example.
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MEAN SQUARE PERIODICITY. A process x(7) is called MS periodic if

E{lx(r+ T) —x(0)1”) = 0 (10-62)
for every £. From this it follows that, for a specific 1,
x(t + T) = x(t) (10-63)

with probability 1. It does not, however, follow that the set of outcomes ¢ such
that x(¢ + T,.{) = x(r. ) for all ¢ has probability 1.

As we see from (10-63) the mean of an MS periodic progess is periodic,
We shall examine the properties of R(t,,1,).

THEOREM. A process x(r) is MS periodic iff its autocorrelation is doubly
periodic, that is, if
R(ty +mT,t, + nT) = R(1,.1,) (10-64)

for every integer m and n.

Proof. As we know [see (7-12)]
E*{zw} < E{z°}E{w?}

With z = x(¢,) and'w = x(¢; + T') — x(r,) the above yields

EXx(t)[x(t; + T) — x(£:)]} = E(x2(1)}E[[x(t: + T) — x(1,)]%}
If x(¢) 1s MS periodic, then the last term above is (. Equating the left side to10,
we obtain

R(t,,t, + T) — R(t,,t5) =0

Repeated application of this yields (10-64).

Conversely, if (10-64) is true, then

Rt +T,t+T)=R(t+T,t)=R(t,1)
Hence
E([x(t+T) —=x()]*} = R(t + T, 1 + T) + R(1;1) = 2R(t + T,1) =0

therefore x(¢) is MS periodic.

10-2 SYSTEMS WITH STOCHASTIC INPUTS

Given a stochastic process x(¢). we assign according to some rule to each of its
samples x(, £;) a function y(z, £;). We have thus created another process

¥(t) = T[x(1)]
whose samples are the functions y(t, £;). The process y(r) so formed can be
considered as the output of a system (transformation) with input the process
x(r). The system is completely specified in terms of the operator 7, that is, the
rule of correspondence between the samples of the input x(¢) and the output

ylr).
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The system is deterministic if its operates only on the variable ¢ treating {
as a parameter. This means that if two samples x(¢, ¢;) and x(r, ;) of the input
are identical in ¢, then the corresponding samples y(r, £;) and y(¢, {,) of the
output are also identical in ¢. The system is called srochastic if T operates on
both variables ¢ and ¢ This means that there exist two outcomes ¢; and £, such
that x(r, £,) = x(t, {,) identically in ¢ but y(z,£;) # y(1, {;). These classifications
are based on the terminal properties of the system. If the system is specified in
terms of physical elements or by an equation, then it is deterministic (stochastic)
if the elements or the coefficients of the defining equations are deterministic
(stochastic). Throughout this book we shall consider only deterministic systems.

In principle, the statistics of the output of a system can be expressed in
terms of the statistics of the input. However, in general this is a complicated
problem. We consider next two important special cases.

Memoryless Systems
A system is called memoryless if its output is given by
(1) =g[x(1)]

where g(x) is a function of x. Thus, at a given time ¢ = t;, the output y(z,)
depends only on x(#,) and not on any other past or future values of x(¢).

From the above it follows that the first-order density f,(y; r) of y(¢) can be
expressed in terms of the corresponding density [ (x;¢) of x(t) as in Sec. 5-2.
Furthermore,

E(y(0)} = [ a(x)filx;0) v
Similarly, since y(¢,) = g[x(¢,)] and y(z,) = g[x(¢,)], the second-order den-

sity fy(yy, ¥21 £y, ) of y(¢) can be determined in terms of the corresponding
density f,(x,, x5; 1, £5) of x(#) as in Sec. 6-3. Furthermore,

E((e)¥(t)} = [~ [ s(x)e(x)fi(x 523t 1) dey dy

The nth-order density fy(y,,. ves Vs Ly ovoy 1) O ¥(2) can be determined
from the corresponding density of x(¢) as in (8-8) where the underlying transfor-
mation is the system '

¥(4) = g[x(t)].- .. ¥() = g[x(1,)] (10-65)

STATIONARITY. Suppose that the input to a memoryless system is an SSS
process x(¢). We shall show that the resulting output y(¢) is also SSS.

Proof. To determine the nth-order density of y(1), we solve the system
8(x1) = yp-.008(%,) =, (10-66)



10-2 systeMs with stacHAasTIC InpUTs 305

If this system has a unique solution, then [see (8-8)]

f.x(xl*"" Xpslivesoas ,,)
|g’("'1) 8 (-‘,,)l

Soae v Vi by o s 8,) = (10-67)
From the stationarity of x(¢) it follows that the numerator in (10-67) is invariant
to a shift of the time origin. And since the denominator does not depénd on .
we conclude that the left side does not change if ¢, is replaced by f; + c. Hence
y(¢) is §SS. We can similarly show that this is true even if (10-66) has more than
one solution.

Notes 1. If x(¢) is stationary of order N, then y(¢) is stationary of order N.
2. If x(¢) is stationary in an interval, then y(¢) is stationary in the same interval.
3. If x(¢) is WSS stationary, then y(t) might not be stationary in any sense.

Square-law detector. A square-law detector is a memoryless system whose
output equals
¥(r) = x*(z)

We shall determine its first- and second-order densities. If y > 0, then the
system y =x* has the two solutions + y/y. Furthermore, y(x)= +2y/y;

hence
Fibvst) = ,‘/—[f + (=)

If y, > 0 and y, > 0, then the system

[NFNY

2 =
Yi=Xx1 Y. =X

has the four solutions (& /y,,+y/y,). Furthermore, its jacobian equals

:t4‘/y,y2; hence
1
yYaslp ) = —7—— s sl
[y vain 1) Hra Efx(:t Yis TyY2 54 2)

where the summation has four terms.

Note that, if x(¢) is SSS, then f.(x;t) = f.(x) is independent of ¢ and
flxy, x55 8, t,) = f(x, x5;7) depends only on =1, —t,. Hence f,(y) is
independent of ¢ and f,(y,, ,; 7) depends only on 7 =, — ¢,.

Example 10-15. Suppose that x(¢) is a normal stationary process with zero mean
and autocorrelation R (r). In this case, f,(x) is normal with variance R.(0).
If ¥(¢) = x3(1) (Fig. 10-6), then E{y(1)} = R, (0) and [see (5-8)]

1
KO = Ry

eV /AROI( y)
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filx) L)
x(1) y(1)
N /\ : i VoA
0 x SV AR = ‘o0 v
0. x
FIGURE 10-6
‘We shall show that
(10-68)

R,(7) = R%(0) + 2R3(7)

Proof. The RVs x(t + 7) and x(¢) are jointly normal with zero mean. Hence [see
(7-36)]
E[x:(l -+ .—)xl(t)] = E{xl(l + T)]E[Xz(l)] + 2E*x(1 + 7)x(1)})

and (10-68) results.
Note in particular that

E{y* (1)} =R, (0) =3RI(0) o’ =2R0)

Hard limiter. Consider a memoryless system with
ey 1 x>0 W
g(x) {~1 x <0 (10-69)

(Fig. 10-7). Its output y(¢) takes the values + 1 and
Ply(¢) = 1) = P{x(1).> 0} = 1 — F,(0)
Ply(1) = =1} = P{x(¢) < 0} = F,(0)

Hence
E{y(1)}) = 1 X Ply(t) =1) =1 x P{y(t) = =1} = 1 — 2F,(0)

The product y(t + 7)y(¢) equals 1 if x(r + 7)x(r) > 0 and its equals —1 other-

wise. Hence
(10-70)

R (7) = P(x(t + 7)x(1) > 0} — P{x(t + 7)x(1) < 0)

x(1) ¥4 ¥
aTEN = I

0~ oW [ o = ol [n [= | r
ST o el _1_ EIE S O

FIGURE 10-7

b
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Thus, in the probability plane of the RVs x(1 + 7) and x(1), R (7) equals

the masses in the first and third quadrants minus the masses in the second and
fourth quadrants.

Example 10-16. We shall show that if x(¢) is a normal stationary process, then the
autocorrelation of the output of a hard limiter equals

R.(7)
R (0)

5

R (7) = — arcsin (10-71)
™

This result is known as the aresine law

PROOF. The RVs x(r + 7) and x(¢) are jointly normal with zero mean, variance
R (0), and correlation coefficient R (7)/R (0). Hence [see (6-47)],

1 ]iR

Pix(r+ 2)x(t) > 0} = = +

] =

. R.(7)
sing = ——
R.(0)

P{x(t + 7)x(t) <0} =

{
T

Inserting in (10-70), we obtain

R,\A(f)=5+"7(l_i)=ﬁ

T
and (10-71) follows.
Example 10-17 Bussgang’s theorem. Using Price’s thcorem, we shall show that if
the input to a memoryless system y = g(x)is a zero-mean normal process x(1), the

cross-correlation of x(¢) with the resulting output ¥(1) = g[x(1)] is proportional to
R, L7):

R, (7) = KR (v) where K=E{g'[x(1)]} (10-72)
Proof. For a specific 7, the RVs x = x(¢) and z = x(+ + 7) arc jointly normal with
zero mean and covariance p = E{xz) = R, (7). With
I = E{zg(x)} = E{x(1 + 7)y(1)} = R (7)
it follows from (7-37) that

al 3% X
- =F{—[afr,(—”} - E(e/ X)) = K (10-73)

If £ =0, the RVs x(t + 7) and x(t) are independent; hence /= (). Integrating
(10-73) with respect to u, we obtain ['= Ku and (10-72) results.

11, L. Lawson and G, E. Uhlenbeck: Threshold Signals, McGraw-Hill Book Company, New York,

1950.
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Special cases.i (a) (Hard limiter) Suppose that g(x) = sgn x as in (10-69). In this
case, g'(x) = 28(x); hence

K = E(25(x)} = sz 5(x)f(x) dx = 2£(0)

where

1 %2
) = @ cxp{_ ZR“(O)}

is the first-order density of x(¢). Inserting into (10-72), we obtain

2
R (%) =R“(,-)1/m y(1) = senx(1) (10-74)

(b) (Limiter) Suppose next that y(¢) is the output of a limiter
e lx] <e¢ e fiz x| <¢
£(x) {c lx] > ¢ &'(x) {U x| >0
In this case,

(10-75)

K= f;f(x)dx = EB(ﬁ) i

Linear Systems

The notation
y(r) = L[x(1)] (10-76)

will indicate that y(¢) is the output of a linear ‘system with input x(z). This
.means that

Llax,(1) + a,x:(0)] = a,L[x,(0)] +a,L[xx(0)]  (10-77)

for any a,,a,,x,(t), x,(2).

The above is the familiar definition of linearity and it also holds if the
coefficients a; and a, are random variables because, as we have assumed, the
system is deterministic, that is, it operates only on the variable .

Note If a system is specified by its internal structure or by a differential equation, then
(10-77) holds only if ¥(¢) is the zero-state response. The response due to the initial
conditions (zero-input response) will not be considered.

‘A system is called time-invariant if its response to x(¢ + ¢) equals y(r + ¢).
We shall assume throughout that all linear systems under consideration are
time-invariant,

TH. E. Rowe, "M yless Nonlinearities with Gaussian Inputs,” BSTJ, vol, 67, no. 7, September
1982,
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It is well known that the output of a linear system is a convolution

¥(£) = x(t) «<h(r) = '[J x(r —e)h(a) da (10-78)

where
h(e) = L[8(t)]

in its impulse response. In' the following, most systems will be specified by
(10-78), However, we start our investigation using the operational notation
(10-76) to stress the fact that various results based on the next theorem also
hold for arbitrary linear operators involving one or more variables.

The following observations are immediate consequences of the linearity
and time invariance of the system.

If x(r) is a normal process, then y(t) is also a normal process. This is an
extension of the familiar property of linear transformations of normal RVs and
can be justified if we approximate the integral in (10-78) by a sum:

¥(7;) = Ex(f,‘ = “k)A(ﬂ)

k

If x(¢) is SSS; then y(1) is also S8S. Indeed, since y(r + ¢) = L{x(1 + ¢)]
for every ¢, we conclude that if the processes x(¢) and x(t + ¢) have the same
statistical properties, so do the processes y(r) and y(r + ¢). We show later [see
(10-133)] that if x(¢) is WSS, the processes x(1) and y(r) are jointly WSS,

Fundamental theorem. For any linear system
E(L[x(1)]) = L[ E{x(1)}] (10-79)

In other words; the mean 7,(1) of the output ¥(t) equals the response of the
system to the mean 7,(1) of the input (Fig. 10-8a)

ny(1) = L[n(1)] (10-80)

The above is a simple extension of the linearity of expected values to
arbitrary linear operators. In the context of (10-78) it can be deduced if we write
the integral as a limit of a sum. This yields

E{y(r)) = fj E(x(t —a)}h(e) da =n.(1)*h(1) (10-81)

x(1) ¥(0)

—— h(1) }—— hity) +- h(ty) >

7.(1) (1) Rty 12) Ryy(ty, 1) Rrv('l' 1)
(a) (b)

FIGURE 10-8
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Frequency interpretation At the ith trial the input to our system is a function x(z,¢)
yielding as output the function y(1,£;) = L[x(t, £)]. For large n,

¥(6,6) + < Av(t,8,)  Llx(.4)] + -0 +L[x(2, 8,)]

E(s(1)} = - - .

From the linearity of the system it follows that the last term above equals

; x(£,5) + o +x(1,4,)
1 n

This agrees with (10-79) because the fraction is nearly equal to E{x(1)).

Notes 1. From (10-80) it follows that if
2(t) =x(r) = n.(1)  ¥() = y(0) —m,(1)

then

LIx(1)] = L[x(1)] = L[7.(0)] = 5C1) (10-82)
Thus the response of a linear system to the centered input x(¢) equals the centered
output y(r).

2. Suppose that
x(1) = f(1)+w(t)  E{(t)} =0
In this case, E{x(¢)} = f(r); hence
n,(1) = f(1)= k(1)

Thus, if x(r) is the sum of a deterministic signal f(r) and a random component
v(2), then for the determination of the mean of the output we can ignore w(t) provided
that the system is linear and E{w(1)} = 0.

Theorem (10-79) can be used to express the joint moments of any order of
the output y(1) of a linear system in terms of the corresponding moments of the
input. The following special cases are of fundamental importance in the study of
linear systems with stochastic inputs.

OUTPUT AUTOCORRELATION. We wish to express the autocorrelation R (¢,
t,) of the output y(¢) of a linear system in terms of the autocorrelation
R, (¢}, t;) of the input x(¢). As we shall presently see, it is easier to find first the
cross-correlation R, (1, t,) between x(¢) and y(¢).
THEOREM
(a) R.n-(rh!z) =L2[Rn('|ar1)] (]0'83)
In the above notation; L, means that the system operates on the variable f5,
treating ¢, as a parameter. In the context of (10-78) this means that

R, (1,,15) =f R, (1,1, — a)h(a) da (10-84)

(b) Ry (tity) = Ll[R.u-("u-'z)] (10-85)
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In this case, the system operates on 1 :

R, (11,12) = j_vR,L,.(n = a, L) () da (10-86)

Proof. Multiplying (10-76) by x(¢,) and using (10-77), we obtain
x(r)y(e) =L [x(r,)x(r)]
where L, means that the system operates on 7. Hence [see (10-79)]
E{x(1,)y(1)} = L [E{x(r,)x(1)}]
and (10-83) follows with ¢ = r,. The proof of (10-85) is similar: We multiply
(10-76) by ¥(¢,) and use (10-79). This vields
E{y(0)¥(t;)) = L,[E{x(r)¥(,)}]

and (10-85) follows with t = z,.

The preceding theorem is illustrated in Fig. 10-8b: If R (¢,,1,) i the
input to the given system and' the system operates on f,, the output equals
R (e 15) 18 R, (2, ¢,) is the input and the system operates on, (, the output
equals R, (¢, ;).

Inserting (10-84) into (10-86), we abtain

Ryltrta) = [ 7 Rty = ayta = BYi(@) () dar dp

This expresses R, (1, 7;) directly in terms of R (1}, ;). However, conceptually
and operationally, it is preferable to find first R, (r;, 15).

Example 10-18, A stationary process w(Z) with autocorrclation R, (1) = gélz)
(white noise) is applied at ¢ = 0 to a linear system with

h(r) =e “U(1)
We shall show that the autocorrelation of the resulting output y(¢) equals

4 2 = e
Ry (1), 1) = Z(l == Rl R (10-87)

for0 <t <i1,.
Proof; We can use the preceding results if we assume that the input to the system
is the process

x(1) =w(0)U(t)
With this assumption, all correlations are 0 if £y <0 or t, < 0. For 7, > 0 and
1> 0,

R, (ty.15) = E{w(r)w(1;)) = ad(t), — 1)

Aswe'see from (10-83), R, (1, 1,) cquals the responsc of the system to galt, — ;)
considered as a function of 't,. Since 8(t; = £,) = 8(t; — 1)) and Llalts = 1))l =
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Ry (ty, 1)

FIGURE 10-9

h(t, — ;) (time invariance), we conclude that

R (1. 1;) = ah(ty — t;) = qe”“C"VU(t, — 1))
In Fig. 10-9, we show R, (1,,1,) as a function of ¢; and ;. Inserting into (10-86),
we obtain

1 5 L —
R,w(fn-fz}=¢f“'e‘“"" e 1 <ty

and (10-87) results.
Note that

E(A(0)) = Ryy(1) = 5=(1 = ¢*) = q () da

COROLLARY. The autocovariance C,(r,,,) of y(z) is the autocorrelation of
the process y(¢) = y(¢) — m,(¢) and, as we see from (10-82), ¥(#) equals LIx(1)).
Applying (10-84) and (10-86) to the centered processes X(¢) and ¥(r), we obtain
ny(rnfz) = C.u'({l’ 12) *h(!z)
C,,(t;,1;) = C, (1}, ;) = A(t})

where the convolutions are in ¢, and ¢, respectively.
Complex processes The preceding results can be readily extended to

complex processes and to systems with complex-valued A(r). Reasoning as in
the real case, we obtain

R (1, 15) = R, (11, 65)  h*(15)
R)’)‘(’I‘ll) = R.\_r(rlﬂ":’_)*h(tl)

(10-88)

(10-89)

Response to white noise. We shall determine the average intensity E{|ly(1)]%) of
the output of a system driven by white noise. This is a special case of (10-89),
howeyer, because of its importance it is stated as a theorem.

THEOREM. If the input to a linear system is white noise with autocorrelation

R (1. 15) = q(1;)8(1;, = 13)
then

E{ly(0)*) = q(r) *|h(1)]? = [_’ qlt —a)|h(a)Pda  (10-90)
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Proof. From (10-89) it follows that
R (15 12) = GU8,)8(t> — 0,) ¥hi*(t3) = a(t,)i*(15 — 1,)

R, (t115) = j_z a(ty — e«)h*[1; = (1, — a)]h(a) da

and with 1, =1, = 1, resulls.
Special cases (a) 1f x(r) is stationary white noise, then g(t) =g and
(10-90) yields

Efy*(1)} =gE  where E = fm [R(2)|? di

is the energy of A(?).
(b) If A(t) is of short duration relative to the variations of g(¢), then

EW3(0) = a(0) [ 1h(a)|*da = Ea(1) (10:91)

This relationship justifies the term average intensity used to describe the
function g(r).

(e) If R, (7) = qd(7) and w(z) is applied to the system at ¢ = 0, then
q(t) = qU(t) and (10-90) yields

Ey’ (D)) =af" Ih(a) | da

Example 10-19. The integral
)
= | v(a)da
y= ()

can be considered as the output of a lincar system with input x{(¢) = v(1)U(z) and
impulse response A(r) = Uz). If, therefore, wit) is white noise with average
intensity ¢(¢), then x(r) is white noise with average intensity g(e)U(r) and (10-90)
yields

E{y*(0)} = a(0)U(0) = U() = ['¢(a) da

Differentiators. A differentiator is a linear system whose output is the derivative
of the input

L[x()] = x'(¢)

We can, therefore, use the preceding results to find the mean and the autocor-
relation of x/(1).
From (10-80) it follows that

me(1) = L{m,(8)] = ni(1) (10-92)
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Similarly [see (10-83)]
IR, (1.15)
Ru"(lil"z) = L'.‘[R\\'(rI!’?)I i | ;_ (10-93)

it
because, in this case, L, means differentiation with respeet to (. Finally,
AR oty 15)

Rywltsty) = Li[ Ryt 02)] = — 2 —— (10-94)
1

Combining, we obtain
. R, (1. 15) (
] L) ———————— 10-95
\1(!Iv L) ﬂl|':“: L"")

Stationary processes 1f x(¢) is WSS, then n,(¢) is constant; hence

E{x'(1)} =0 (10-96)
Furthermore, since R, (f,, 1;) = R (7), we conclude with 7 = 7, — , that
IR, (1, = t5) dR, (1) PR, (it = 1y) d*R (7)
at, T dr Aty o, T de?
Hence
R.(7) = =R.u(7)  Ryp7) = —RL(7) (10-97)

Poisson impulses. If the input x(r) to a differentiator is a Poisson process, the
resulting output z(r) is a train of impulses (Eig. 10-10)

2(t) = Yo(e—t) (10-98)
‘We maintain that z(r) is a stationary process with mean
M. =A (10-99)
and autocorrelation
R_.(7) = 2> +A8(n) (10-100)

Ri:(t1: 1)

x(1) R..(7)
z(1) |
T S -
el Ll , i
0 t, 1 di 0 T 0ot =
(a) (b)

FIGURE 10-10



10-2 systems with stocuastic ineurs. 315

Proof. The first equation follows from (10-91) because #,(¢) = Ar. To prove the
second, we observe that [see (10-14)]

R(tyy 13) = Notyty + Amin(ty;1,) (10-101)
And since z(t) = x'(t), (10-93) vields

IR (1 t5)
R (tyyty) = ———— = X1, + AU, — 1)
ary 4
This function is plotted in Fig. 10-105 where the independent variable is ¢,. As
we see; it is discontinuous for ¢, = ¢, and its derivative with respect to ¢,
contains the impulse A8(s; — ¢,). This vields [see (10-94)]
R, .(4,.1;)

R..(t,13) i = A4 A8t — 1)
I

DIFFERENTIAL EQUATIONS. A deterministic differential equation with random
excitation is an equation of the form

ﬂ”y(“”(f) T e +(1"_V(f) = x(,‘) (IU-IUZ)

where the coefficients a, are given numbers and the driver x(1) is a stochastic
process. We shall consider its solution y(r) under the assumption that the initial
conditions are 0. With this assumption, y(1) is unique (zero-state response) and
it satisfies the linearity condition (10-77). We can, therefore, interpret y(¢) as the
output of a linear system specified by (10-102).

In general, the determination of the complete statistics of y(r) is compli-
cated. In the following, we evaluate only its second-order moments using the
preceding results. The above system is an operator L specified as follows: Its
output y(#) is a process with zero initial conditions satisfying (10-102).

Mean. As we know [see (10-80)] the mean 7, (¢) of y(z) is the output of L with
input n,(r). Hence it satisfies the equation

) sy (0) = m () (10-103)
and the initial conditions
7,(0) = -+ == (0) =0 (10-104)
This result can be established directly: Clearly,
E{y”"(.’)] — TI(,-"’("-) (10-105)

Taking expected values of both sides of (10-102) and using the above, we obtain
(10-103). Equation (10-104) follows from (10-105) because yX0) = 0 by as-
sumption.



316  STOCHASTIC PROPERTIES

Correlation. To determine R, (1, t;), we use (10-83)
ROt 15 )= Lo IR (7,50
In' this case, L, means that R, (t, 1,) satisfies the differential equation
"R, (1. 15)

= + - dagR (s 15) =R (1 15) (10-106)
ol

"

with the initial conditions
"R, (14,0)
R, (1,,0) = -+ :T:O (10-107)
Similarly, since [see (10-85)]
Ry (tint3) = L[ R (¢,.15)]
we conclude as above that
"R, (L5 t5)

{,HT + e R ) = Rt 6) (10-108)
"R (0,15)
Ry(0,0) = ++n = — 212 (10-100)
ks = (.H;'

The preceding results can be established directly: From (10-102) it follows
that

x(.’l)[a,,y“”(fz) 31 it ‘i’ﬂn."(fz)] = x(t)x(1,)
This yields (10-106) because [see (10-119)]
Efx(1,)y* (1)} = 8*R, (1. 1,) for3
Similarly, (10-108) is a consequence of the identity
[2,y(8)) + =+~ +agy(1,)]v(t2) = x(1,)¥(22)
because
Ely®2e, )y(e2)} = 05R (i, 1) L3
Finally, the expected values of
x(1 )y (0) =0 y*U0)¥(1,) =0
yield (10-107) and (10-109).
General moments. The moments of any order of the output y(7) of a lincar

system can be expressed in terms of the corresponding moments of the input
x(1). As an illustration, we shall determine the third-order moment

Rty ta55) = E{y\(0)w2(0)ya(1))
of y(t) in terms of the third-order moment R, (f,, £, 2) of x(r). Praceeding as
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in (10-83), we obtain
E{x(t)x(12)3(13)} = L[ E£{x(£)x(r2)x(15)}]

pe

:j Rt tst — y)h(y) dy  (10-1104)

E{x(t,)y(£:)3(2:)} = L[ E{x(,)x(£,)¥(4:)}]

/ R (tists, — Bt )h(BY dB (10-1108)

E{w(r)y(e2)v(6:)) = Ly [ E(x(1))v( )5 1)) ]

[ Rty — e toits)hi(e) da (10-110¢)

Note that for the evaluation of R, (¢, t,,13) for specific imes 1, 5. 15, the
function: R (1, 7,,13) must be known for every r,1,, 1.

sy

Vector Processes and Multiterminal Systems

We consider now systems with » inputs x,(¢) and r outputs y,(z). As a
preparation, we introduce the notion of autocorrelation and cross-correlation
for vector processes starting with a review of the standard matrix notation.
The expression A = [a,] will mean a matrix with elements a;,. The
notation
A= [a;] A*=[af] A= [a}

will mean the transpose, the conjugate, and the conjugate transpose of A,

A column vector will be identified by A = [4,]. Whether A is a vector or a
general matrix will be understood from the context. If A4 = [a,] and B = [b)]
are two vectors with m elements each, the product A'B = a\b, + - +a,.b, is
a number, and the product AB‘ = [a,hj] is an m X m matrix with elements
ab,.

A vector process X(¢) = [x,(r)] is a vector, the components of which are
stochastic processes. The mean (1) = E{X(¢)) = [,(¢)] of X() is a yector with
components n,(1) = E{x(1)). The autocorrelation R(z;,,) or R, (1,,15) of a
vector process X(1) is an m > m matrix

R(ty,t5) = EX(1 )X (1)} (10-111)
with elements E{x;(7,)x (1)}, We define similarly the cross-correlation matrix
Ry Gt ita) = E{XCH)Y(1,) ) (10-112)

of the vector processes
X(1) =[x (e)] i=1l...om  Y(&)=[y(0)] =l....r (10-113)

A multiterminal system with m inputs x,(¢) and » outputs y,(¢) is a rule for
assigning to an mi vector X(r) an r vector Y(¢). If the system is linear and
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time-invariant, it is specified in terms of its impulse response matrix, This is an
r X m matrix

H(t) = [h(1)] i=1....m j=1,..., r (10-114)

defined as follows: Its component /,(2) is the response of the jth output when
the ith input equals 6(r) and all other inputs equal 0. From this and the
linearity of the system, it follows that the response y;(¢) of the jth output to an
arbitrary input X(2) = [x,(2)] equals

y(0) = [ tle)xy(t —a)da+ -+ [ hy()x,(t - a) da
Hence

(1) = [ H(«)X(1 - a) da (10-115)

In the above, X(¢) and Y(¢) are column vectors and F(¢) is an r X m matrix.
We shall use this relationship to determine the autocorrelation R (r,,¢,) of
¥(1). Premultiplying the conjugate transpose of (10-115) by X(r,) and setting
t = t,, we obtain

X(e)¥' (1) = [ X(1)X'(1; — ) H'(a) dar
Hence
R, (ty,13) = fiR”(t,.rz = @) Hi{a)da (10-116a)
Postmultiplying (10-115) by Y'(¢,) and setting ¢ = t{, we obtain
R,,(ty 1) = f:H(a)R,,,(fl =)o (10-116b)
as in (10-89). These results can be used to express the cross-correlation of the

outputs of several scalar systems in terms of the cross-correlation of their
inputs: The next example is an illustration.

Example 10-20. In Fig. 10-11 we show two systems with inputs x,(¢), x5(1) and
outpuls

y,(:)=j:h,(a)x,(z—a}da va(t) =f_” ha(@)x,(t —a) da (10-117)

x(1) - ¥i(0)
empe
h3s
- R v (h12) A Riyilinata) i) Ry, (6. 12)
xa(e) L~ ¥a(0)

(a) (6)
FIGURE 1011
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These signals can be considered as the components of the output vector Y/(1) =
[y, (). v, (0)] of a 2 X 2 system with input veetor X'(r) = [x (1), x:(2)] and impulse
response matrix

o w0
”(')7[ 0 h:u)}

Inserting into (10-116), we obtain

Ry o2 83) Zf Ry oty b —a)hi(a) da
(10-118)
R, (typta) = [ hi(a)R,, (6 —a.15) da

Thus, to find R, | (1;, ), we usc R, (. 15) as the input to the conjugate h%(1)
of A1), operating on the variable (5. To find Ry | (1,.6,) we use R, | (1), 15) as
the input to 4 (¢) operating on the variable £, (Fig, 10-11). :

Example 10-21. The derivatives ¥i{t) = 20t and y5(r) = w!(1) of two processes
z(t) and w(r) can be considered as the responses of two differentiators with inputs
x,(£) = z(¢) and x,(r) = w(r). Applying (10-118) suitably interpreted; we conclude
that

ATTR (8 1)

E{z"(t yw™ (¢, =
G AR ) At{" de

(10-119)

10-3 THE POWER SPECTRUM

In signal theory, spectra are associated with Fourier transforms. For determinis-
tic signals, they are used to represent 4 function as a superposition of exponén-
tials. For random signals, the notion of a spectrum has two interpretations. The
first involves transforms of averages; it is thus essentially deterministic. The
second leads to the representation of the process under consideration as
superposition of expeonentials with random coefficients. In this section, we
introduce the first interpretation. The second is treated in Sec. 12-4. We shall
consider only stationary processes. For nonstationary processes the notion of a
spectrum is of limited interest.

DEFINITIONS, The pawer spectrum (or spectral density) of & WSS process x(¢),
real or compley, is the Fourier transform S(w) of its autocorrelation R(r) =
Efx(r + 7)x*(0)}:
=
S(w) = [ R(7)e T dr (10-120)

Since R(—7) = R*(7) it follows that S(w) is a real function of w.
From the Fourier inversion formula, it follows that

g
R(z) = 5= [ S(w)er do (10-121)
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TABLE 10-1
L[ S(w)e (@)= [ R()e"d
R(r) = Ef_ﬁS(w)e dw © S(w) = f_= T)e T

d(r) e 1 1« 276(w)
P o 2a5(w — B) cos Br < wdlw — B) + wélw + B)
2a 2 T 2
g—ain 7=y e e — g 4o
a® + &

a

@r (=B @i+ (w+p)

3 T 3 2
267 cos Br fhs [e=(@=BY /4a 4 4=l +B) 4m)
o

e~ leos Br o

{1 = Il! Il <7 4sin(eT/2)
1 e
Tw™
0 Ir| T
sin o7 1 lal <o
— &
TT 0 la| > o

If x(¢) is a real process, then R(7) is real and even; hence S(w) is also real
and even. In this case,

S(a) = fm R(7)cos wrdr = ZIER(r)cns wrdr
. o (10-122)
R(7) = F= _ws(w)coswrdw = ;-/1; S(w)cos wr dw

The. cross-power spectrum of two processes x(r) and y(¢) is the Fourier
transform S, (w) of their cross-correlation R, (r) = E{x(¢ + )y *(1)}:

= , 1l =
S, (@) = j_ R, (m)e ™ dr R, (r)= Ef_ Sy(@)e dw (10-123)

The function §, () is, in general, complex even when both processes x(¢) and
¥(t) are real. In all cases,

Sey(w) = 83(w) (10-124)

because R, (—7) = E{x(r — 7)y*(¢)) = R¥.(7).

In Table 10-1 we list a number of frequently used autocorrelations and the
corresponding spectra. Note that in all cases, S(w) is positive. As we shall soon
show, this is true for every spectrum.

Example 10-22. A random telegraph signal is a process x(1) taking the values +1
and —1 as in Example 10-6;

X(1) = 1 GRSt
=1 by <t <ty
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where t, is a set of Poisson points with average density A. As we have shown in
(10-19), its autocorrelation equals e 27| Hence

4A

3 3

8 =—
(@) 44X + w*®

For most processes R(7) — n* where 7 = E(x(1)} (sce Sec. 12-4), If,
therefore, 7 # 0, then $(w) contains an impulse at w = 0. To avoid this, it is
‘often convenicnt to express the spectral properties of x(#) in terms of the
Fourier transform 5(w) of its autocovariance C(7). Since R(7) = C(7) + 72, it
follows that

S(w) = 8(w) + 2708 (w) (10-125)
The function S(w) is called the covariance spectrum of x(t).

Example 10-23. We have shown in (10-100) that the autocorrelation of the Poisson
impulses

d
z(t) = — Y U(r—t) = To(t—t,)
dt i i
equals R.(7) = A* + A8(7). From this it follows that
S(w)=A+270%8(w)  Si(w)=A
We shall show that given an arbitrary positive function S(w), we can find a

process x(¢) with power spectrum S(w).
(a) Consider the process

x(t) = ae/=i=% (10-126)

where g is a real constant, o is an RV with density f, (), and ¢ is an RV
independent of @ and uniform in the interval (0, 27). As we know, this process
is WSS with zero mean and autocorrelation

R (7) = B/} = a*[ f(w)e!" do

From this and the uniqueness property of Fourier transforms, it follows that
[see (10-121)] the power spectrum of x(t) equals

S.(w) =2ma’f (w) (10-127)
If, therefore,

1 =

= R do = R(0
2?2 ¢ 2m ‘NS(G)) ¢ (©)

then f (w) is a density and S, (w) = S(w). To complete the specification of :f(t).

it suffices to construct an RV w with density S(w)/27a® and insert it into

(10-126).
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S({w)4 Emitted

Doppler effect spectrum

v —

[ — 0 wy w
1] \/A/ P S(w)4 Received
. spectrum
(OP)=r=ry+Vvi /\
l »
0 wy @

FIGURE 10-12

(b) We show next that if S(—w) = S(w), we can find a real process with

power spectrum S(w). To do so, we form the process

y(1) = acos(wr + ¢) (10-128)

In this case (see Example 10-14)

a’ a* =
Ry(7) = S E{cos wr) = Ef_ fw)cos wr dw

From this it follows that if f (w) = S(w)/mwa®, then S@) = S(w).

Example 10-24 Doppler effect. A harmonic oscillator located at point P of the x
axis (Fig. 10-12) moves in the x direction with velocity v. The emitted signal equals
e/“o! and the signal reccived by an observer located at point O equals

S(!) — aej""""'/r)

where ¢ is the velocity of propagation and r = r, + vr. We assume that v is an RV
with density f,(2). Clearly,

. v r
s(t) = ael@=9) g = wn(l - _) _ To%o
c c
hence the spectrum of the received signal is given by (10-127)
2ma’c o
S(w) = 27wa’f (w) = f,,[(l - —]c] (10-129)
wy wy

Note that if v = 0, then
(1) = el =e)  R(r) = gZeiwor S(w) =27a’s(w — w,)

This is the spectrum of the emitted signal. Thus the motion causes broadening of
the spectrum,

The above holds also if the motion forms an angle with the x axis proyided
that v is replaced by its projection v, on OP. The following cise is of special
interest. Suppose that the emitter is a particle in a gas of temperature 7. In this
case, the x component of its velocity is a normal RV with zero mean and variance
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-
"~
LFY)

kT /m (sce Prob. 8-5). Inserting into (10-129); we conclude that

S(w) = 2ma’c _ me? ; o\
T kT m sz( - ‘) }

- 2.2

kTwir=

— elwor
mc*

R(7) = a* cxp{ -

Line spectra. (¢) We have shown in Example 10-7 that the process
x(1) = Ec,e"""

is WSS if the RVs ¢; are uncorrelated with zero mean. From this and Table
10-1 it follows that

R(7) = Y olelv S(w) =27 Y. 0% (w — »,) (10-130)

i

where o = Efe?}. Thus S(w) consists of lines. In Sec. 14-2 we show that such a
process is predictable, that is, its present value is uniquely determined in terms

of its past.
(b) Similarly, the process

y(t) = ¥, (a;cos w;t + b;sin ;1)
i
is WSS iff the RVs a, and b, are uncorrelated with zero mean and Efaj) =
E{b?} = . In this case,
R(r) = Eofcosor  S(w) =7 Lo?[8(w - @) +6(w + )]
i

i
(10-131)

Linear systems. We shall express the autocorrelation R, () and power spec-
trum S, (@) of the response

y(1) = j_” x(t = a)h(a) de (10-132)

of a linear system in terms of the autocorrelation R, (7) and power spectrum
S, (@) of the input x(¢).
THEOREM
Ryy(7) =R (r)xh*(-7) R,(7)= Ry (7)*h(7) (10-133)
Suy = Su(@)H*(@)  Sy(w) =Sy(@)H(@)  (1043)

Proof. The two equations in (10-133) are special cases of (10-184)-and (19-1&}.5).
However, because of their importance they will be proved directly. Multiplying
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the conjugate of (10-132) by x(¢ + 7) and taking cxpected values, we obtain
E(x(1 + )y*(1)) = fiE{x(l + )t — )i (a) de
Since Elx(r + #)x*(t —a)} = R, (= + a), this yiclds
R, (7) = f:R,.(.- e de = f:R‘,(f _ B)R*(—B) dB
Proceeding similarly, we obtain

E{y(t)y*(v = 7)) = fz E{x(t — a)y*(t — 7))i(a) da

= fz R, (7—a)h(a)da
Equation (10-134) follows from (10-133) and the convolution theorem.
COROLLARY. Combining the two equations in (10-133) and (10-134). w¢ obtain
Ry} =R, (7)sh(z)rh*(=1) = R (7)*p(7) (10-135)
Si(@) =8, (0)H(w)H* () =S, (0)|H(w)]* (10-136)
where

p(7) = h(z)wh*(=7) = [ h(t+2)h*(1) dt & [H(w)[* (10-137)
Note, in particular, that if x(¢) is white noise with average power g, then

R (7) = qd(7) S (w) =q
S,(w) =qlH(w)|* R (7) =ap(7)

From (10-136) and the inversion formula (10-121), it follows that

(10-138)

1 T
E{ly(t)1?} = Ry, (0) = Ef_ Sy (w) H(w)Pdw = 0 (10-139)

This equation describes the filtering properties of a system when the input is a
random process. It shows, for example, that if H(w) =0 for |w| > w, and
S..(@) = 0 for |w]| < w,, then Ely*(1)} = 0.

Note The preceding results hold if all corrclations are replaced by the corresponding
covariances and all spectra by the corresponding covariance spectra. This follows from
the fact that the response to x(2) — m, equals y(r) — 5,. For example, (10-136) and
(10-142) yield

5 (w) =8 (o) 1 H(w)|? (10-140)

I = .
Vary(l-)=§f S¢ (@) [ H(w)] dw (10-141)



10-3 mig rowen seicirum 325

x(1) ()4 ra)]
1l 1
2T 27

=T 0 T -7 0 T | —2T 0 2T 1

FIGURE 10-13

Example 10-25. (a) (Moving average) The integral
U e
y(r) = ? ,J ’l X(a) da
isithe average of the process x(t) in the interval (r — 7', £ + T'). Clearly, y(¢)is the
output of a system with input x(¢) and impulse response a rectangular pulse as in
Fig. 10-13. The corresponding p(7)'is a triangle, In this case,

sin T sin® 7w
; Syplw)i=8(0)—=—
Tw T w"

] o=
H(w) == [ e dr =

Thus H{w) takes significant values only in an interval of the order of 1 /T centered
at the origin. Hence the moving average suppresses the high-frequency components
of the input. Tt the thus a simple low-pass filter.

Since p(r)is a triangle, it follows from (10-135) that

i fee]
iz e SR e (10-142)
ul 2T/ oy 27 =

We shall' use this result to determine the variance of the integral

I .
= ﬁ}’7’?(;) di
Clearly, n; = y(0); hence
. D per el ! 10-143
Vara; = €, (0) =57 [ |1 - F)(.,(a)‘ﬂ (10-143)
(b) ( High-pass filter) The process z(¢) = x(2) — ¥(2) is the output of a system
with input x(¢) and system function
sin Tw
T(d

This function is nearly 0 in an interval of the order of 1 /7 centered at the un‘g_inv
and it approaches | for large w. It nets, therefore, as a high-pass Rlter suppressing
the low frequencies of the input.

H(w) =1~

Example 10-26 Derivatives. The derivative x'(r) of a process x(¢) can _hc
considered as the output of a lincar system with input x(¢) and system function jo.
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From this and (10-134), it follows that
(@) = —juS(0)  Spo(w) =S, ()
Hence
dR . (7) d’R,.(7)
R“-(T}‘—‘ *T R“.‘.(T)= —T

The nth derivative y(r) = x"{¢) of x(r) is the ontput of a system with input
x(t) and system function (jw)". Hence

Syw) = lfwl™ Ry, (r) = (=1)"R®"(r) (10-144)

Example 10-27. (@) The differential equation
yi(r) +ey(r) =x(¢) alle¢
specifies a linear system with input x(¢), output y(¢), and system function 1/(jw +

¢). We assume that x(¢) is white noise with R, (7)'= g8(r). Applying (10-136), we
obtain

Se(w q
2 s Ru() = e

q
S.(0) = e
H( ) wz +Cl m2+c"

Note that £{y*(1)} = R, (0) = g/2¢.
(b) Similarly, if

y(6) + by (t) + cy(r) =x(t) S..(w)=gq

then
q
Hig)y=——— — % o
(w) —w® + jbo + ¢ w(@) (c—w1)2+b3w2
To find R, (7), we shall consider three cases:
b* < 4c
Gl ey a b ;
R”,(r)=ae ”(cos,B'r+ESlnBIﬂ} a== attpi=c
b2 = 4¢
4 . b
Ryp(7) = g-e™ M1 +alrl) o= =
b* > 4¢

q
R, (1) = '4_3'?0-[(& Fy)etenil _ (o — .y)e—(nﬂt)lf)]

b
== a*—y*=¢

In all'cases, Ely*(1)) = q/2bc,
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S:(w)

Se(w)
0 w > 2 p—
QF X(2) L z(n)
x(0) | 7% | &(n)
—
_gnﬂ_“’ (i} w
FIGURE 10-14

Example 10-28 Hilbert transforms. A system with system function (Fig. 10-14)

5 =] w > () 5
H(w) = —jsgnw = {J ) 1 (10-145)
is called a quadrature filter. The corresponding impulse response equals | /¢
(Papoulis, 1977). Thus H(w) is all-pass with —90% phase shift; hence its response
to cos wi equals cos(w! — 90°) = sin wr and its response to sin wt equals sin(wt —
90%) = —cos wi.
The response of a quadrature filter to a real process x(2)'is denoted by %(r)
and it is called the Hilberr transform of x(t). Thus

© Xl(a)

x(!)—x(-‘)*——— de (10-146)
-l — @

From (10-134) and (10-124) it follows that (Fig. 10-14)
Sye(w) =S, (@)sgnw = —S;,(w)
Siilw) =8, (w)

(10-147)

The complex process
z(t) = x(1) +jx(1)

is called the analytic signal associated with x(¢). Clearly, z(¢) is the response of the
system

L +j(—isgnw) = 2U(w)
with input x(7). Hence [see (10-136)]
S, (w) =45, (@)U(w) =25, (@) + 2j8; (w) (10-148)
R.J(7) = 2R (7) + 2jR . (7) (10-149)

THE WIENER-KHINCHIN THEOREM. From (10-121) it follows that

E{x*(1)}) = R(0) = %I:‘S(w) dw =0 (10-150)
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This shows that the arca of the power spectrum of any process is positive. We
shall show that

S(w) =0 (10-151)
for every w.
Proof. We form an ideal bandpass system with system function

1 w, <0<,
0 otherwise

H(w)={

and apply x(¢) to its input. From (10-139) it follows that the power spectrum

S,,(w) of the resulting output y(¢) equals
Sv;'(a’)= {S(w) e <w<<m2
' 0] otherwise
Hence

.l o 1 W
02 By ()} = 5= [ S,(w)do= o) S(w)do  (10-152)

Thus the area of S(w) in any interval is positive. This is possible only if
S(w) = 0 everywhere.

We have shown on page 321 that if S(w) is a positive function, then we
can find a process x(t) such that S, () = S(w). From this it follows that a
function S(w) is a power spectrum iff it is positive. In fact, we can find an
exponential with random frequency w as in (10-127) with power spectrum an
arbitrary positive function S(w).

We shall use (10-152) to express the power spectrum S(w) of a process
x(t) as the average power of another process y(z) obtained by filtering x(1).
Sellli;lg wy =w, +d and w, = w, — , we conclude that if & is sufficiently
small,

< &
Efy*(1)) = —S(w,) (10-153)
This shows the localization of the average power of x(z) on the frequency axis.

Integrated spectrum. In mathematics, the spectral properties of a process x(r)
are (zxpressed in terms of the integrated spectrum F(w) defined as the integral
of S(w):

Fw) = jism} da (10-154)

From thf: posili\_fity of_ S(w), it follows that F(w) is a nondecreasing function w.
Integrating the inversion formula (10-121) by parts, we can express the autocor-
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relation R(7) of x(1) as a Riemann-Stieltjes integral:
1 = JoT -
R(r) = ﬁfqe dF(w) (10-155)

This approach avoids the use of singularity functions in the spectral representa-
tion of R(7) even when S(w) contains impulses. If S(w) contains the terms
B;8(w — @), then Flw) is discontinuous at w, and the discontinuity jump
equals j3;.

The integrated covariance spectrum. F(w) is the integral of the covari-
ance spectrum. From (10-125) it follows that Flw) = F(w) + 271 Ulw).

Vector spectra. The vector process X(1) = [x,(¢)] is WSS if its components x,()
are jointly WSS. In this case. its autocorrelation matrix depends only on
7 =1, — f,. From this it follows that [see (10-116)]

Ryy(7) = j_’ Rolr+ @)H (@) da R, (7) = [ H()R, (7 - «) da
(10-156)

The power spectrum of a WSS vector process X(r) is a square matrix
S, w) =[S, (0)], the elements of which are the Fourier transforms S, (w) of
the elements R, (7) of its autocorrelation matrix R, (7). Defining similarly the
matrices S”,(m) and § (@), we conclude from (10-156) that

S, (0) =8, (0)H(0) 8,(w)=H(w)S, (0) (10-157)

where F(w) = [H,(w)] is an m X r matrix with elements the Fourier trans-
forms Hj(w) of the elements /;(t) of the impulse response matrix H(t). Thus

S, (w) = H(@)S. (0)H (o) (10-158)

This is the extension of (10-136) to a multiterminal system.

Example 10-29. The derivatives

(1) =27 wae) = W ()
(of two WSS processes z(1) and w(t) can be considered as the responses of two
differentiators with inputs z(1) and w(¢) and system functions H (@) = (jw)™ and

H,(w) = (jw)". Proceeding as in (10-119), we conclude that the cross-powcr
spectrum of z)(¢) and w"(¢) equals (jo)"(—jw)"S. (@). Hence

damt HR_-..-( 1,-)

N

Ef2"™(r + 7)2'"(1)} = (—1)" (10-159)

dz
PROPERTIES OF CORRELATIONS. If a function R(z) is the autocorrelation of a WSS
process x(1), then [see (10-151)] its Fourier transform S(w) is positive. Furthermore, if
Riz) is a function with positive Fourier transform, we can find a process x(£) as in
(10-126) with autocorrelation R(r). Thus a nccessary and sufficient condition for 4
function R(r) 1o be an autocorrclation is the positivity of its Fourier transform. The
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conditions for a function R(7) to be an autocorrelation can be expressed directly in
terms of R{7). We have shown in (10-84) that the autocorrelation R(7) of a process x(1)
is p.d., that is,
Y a,a¥R(m;—7) =0 (10-160)
L

for every a;, @, 7, and 7. It can be shown that the converse is also truet: If Riz)is a
‘p.d. function, then its Fourier transform is positive. Thus a function R(7) has a positive
Fourier transform iff it is p.d.

A sufficient condition. To establish whether R(7) is p.d., we must show cither
that it satisfies (10-160) or that its transform is positive. This is not, in general, a
simple task. The following is a simple sufficient condition.

Polya’s criterion. It can be shown that a function R(7)is p.d. if it is concave for
7> () and it tends to a finite limit as 7 — =,

Consider, for example, the function w(r) =e <" If 0 <¢ < 1, then
w(r) = 0 as 7 = = and w"(7) > 0 for 7 > 0; hence w(7) is p.d. because it
satisfies Polya’s criterion. Note, however, that it is p.d. also for 1 < ¢ < 2 even
though it does not satisfy this criterion.

Necessary conditions. The autocorrelation R(7) of any process x(1) is maximum
at the origin because [see (10-121)]

1
[R(7)] < E?L S(w) dw = R(0) (10-161)

We show next that if R(7) is not periodic, it reaches its maximum only at the
‘origin.
THEOREM. If R(r) = R(0) for some 7, # 0, then R(7) is periodic with period

T
R(7 + 7,) =R(r) forallz (10-162)

Proof. From Schwarz's inequality
E*(zw) < E{z*)E(w?) (10-163)

it follows that

EN[x(t + 7+ n,) —x(t + 7)]x(1)}

< E{[x(r + 7.+ 7)) = x(1 + )]} E{x?(1)}

Hence

[R(r + ) —R(7)]® < 2[R(0).— R({)] R(0) (10-164)
If R(r,) = R(0), then the right side is 0; hence the left side is also 0 for every 7.
This yields (10-162).

1S, Bocher: Lectures on Fourier Integrals, Princeton Univ. Press, Princeton, NJ, 1959,
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COROLEARY. If R(r,) = R(7,) = R(0) and the numbers 7, and 7, are noncom-
mensurate, that is; their ratio is irrational, then R(7) is constant.

Proof. From the theorem it follows that R(z) s periodic with periods 7, and 7,.
This is possible only if R(7) is constant. -

Continuity. If R(7) is continuous at the origin, it is continuous for every 7.

Proof. From the continuity of R(7) at = = 0 it follows that R(7,) = R(0); hence
the left side of (10-164) also tends to 0 for every 7 as 7, — 0.

Example 10-30. Using the theorem, we shall show that the truncated parabola

at - 72 7| <a
w(r) =
tr) {U |7l > a

is not an autocorrelation.
If w(r) is the autocorrelation of some process x(1), then [see (10-144)] the
function

|7l <a

)
) = =
(r) {u |7l > a

is the autocorrelation of x(¢). This is impossible because —w"(7) is continuous for
7 = 0:but not for 7 = a.

MS continuity and periodicity. We shall say that the process x(1) is MS
continuous if
E{[x(t +&) —x(1)]*) >0 as e—=0 (10-165)

Since E{([x(r + &) — x()]*} = 2[R(0) — R(g)), we conclude that if x(¢) is MS
continuous, R(0) — R(e) — 0 as £ — 0. Thus a WSS process x(¢)is MS continu-
ous iff its autocorrelation R(7) is continuous for all 7.

We shall say that the process x(¢) is MS periodic with period 7, if

E{[x(t + 7)) —x(1)]’} = 0 (10-166)

Since the left side equals 2[R(0) — R(#,)], we conclude that R(z,) = R(0);
hence [see (10-162)] R(7) is periodic. This leads to the conclusion that a WSS
process x(t) is MS periodic iff its autocorrelation is periodic.

Cross-correlation. Using (10-163), we shall show that the cross-correlation
R, (7) of two WSS processes x(1) and y(1) satisfies the inequality
R2,(7) <R, (0)R,,(0) (10-167)
Proof. From (10-163) it follows that
E2(x(t + 7)y*(1)} = E{Ix(z + 7) P}E{Iy(1)[?) = R (D) R,,(0)
and (10-167) results.
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COROLLARY. For any @ and b,

th”(w) dw

a

<[5, (w) dmf{"s,,‘.( &)/ (10-168)

a

Proof. Suppose that x(1) and y(¢) are the inputs to the ideal filters

1 a<w<hb

Hi(w) = H,(w) = {[) otherwise

Denoting by z(z) and w(r) respectively the resulting outputs, we conclude that

- i
R.(0) = — [S,(0) dos  R,,(0) = — [8,,(0) dw
Zim Uy 27ds

1 b
R_i(0) = 2—_[ S (@) da

and (10-168) follows because R2, (0) < R, (DR, (0).

10-4 DIGITAL PROCESSES

A digital (or discrete-time) process is a sequence x, or RVs. To avoid double
subscripts, we shall use also the notation x[n] where the brackets will indicate
that » is an integer. Most results involving analog (or continuous-time) pro-
cesses can be readily extended to digital processes. We outline the main
concepts.

The autocorrelation and autocovariance of x[n] are given by

Rlny,no] = E(x{n x*[m,])  Clngama] = Rng, ] = nlnJn*[na]
(10-169)

respectively where n[n] = E{x[nl]} is the mean of x[n].
A process x[#] is SSS if its statistical properties are invariant to a shift of
the origin. It is WSS if 5ln] = 5 = constant and

R[n +m,n] = E{(x[n + m]x*[n]} = R[m] (10-170)

. A pracess X[ ] is strictly white noise if the RVs x[n,] are independent. It is
white noise if the RVs x[n;] are uncorrelated. The autocorrelation of a white-
noise process with zero mean is thus given by

Rln,n,l =qln,16[n, —n. ={1 =10 )-171

[y 2] = qlnyJ8[n, —n,]  where d[n] 0 n 20 (10-171)
and gln] = E(x*[nl). If x[n] is also stationary, then Rlm] = gb[m]. Thus a WSS
white noise is ‘a sequence of i.i.d. RVs with variance q-

The delta response #fln] of a linear system is its response to the delta
sequence [nl. Its system function is the z transform of hlnl:

H(z) = f) h[n]z=" (10-172)

9o -
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If x[a] is the input to a digital system, the resulting output is the digital
convolution of x[n] with A[n):

@

Mal= ¥ x[n —kln[k] = x[n]+ kln] (10-173)
AT
From this it follows that n,[n] = 5 [n]# Aln). Furthermore,
Rylnynl = ¥ R, [ny,n, — klh*[k] (10-174)
k==m
Ry[nunl= X R [n,—r,n,]0[r] (10-175)

If x[n] is white noise with average intensity q[n] as in (10-171). then, [see
(10-90)],
E{y*[n]} = qla]=k[n]I? (10:176)
If x[n] is WSS, then y[n] is also WSS with 1, = 1, = H(1). Furthermore,
Rylml =R [ml«h*[-m] R, [m] =R, [m]+h[m]
= (10-177
R, [m] =R, [m]*plm] plm]l = % hlm + klh*[k] { )
k= —=
as in (10-133) and (10-135).

THE POWER SPECTRUM. Given a WSS process x[2], we form the z transform
S(z) of its autocorrelation R[m):

S(z) = i R[m]z"" (10-178)

The power spectrum of x[#] is the function
S(w) =8(e”) = Y R[m]e~m (10-179)

Thus S(e’”) is the DFT of R[m]. The function S(e’®) is periodic with period 27
and' Fourier series coefficients R[m]. Hence

0 ,
R[m] = -Z—Ffi_S(e"")e”""' dw (10-180)

1t suffices, therefore, to specify S(e’) for |w| < = only (see Fig. 10-15).
If x[n] is a real process, then R[—m] = R[m] and (10-179) yields

S(e/®) = R[0] + 2 ¥, R[m]cos maw (10-181)
m=0
This shows that the power spectrum of a real process is a function of cos @
because cos mw is a function of cos w.
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x[n] = x(nT)
0 n
S, (@) S(w)
T = 1 1 >
=17 0 T w - 0 m @
FIGURE 10-15
Example 10-31. If R[m] = a!™, then
s _El i -~ az z
_ —my=m —m_ 5
(=) m__ma mzoa “ l—az z-a

al-a

= (a='+a)—(z7'+2)

Hence

al—a

S(e™) =

a'+a-2cosw
Example 10-32. Proceeding as in the analog case, we can show that the process
x[n] = Leeln
i
is WSS iff the coefficients ¢; are uncorrelated with zero mean. In this case,
Rlm] = YaZelPim  §(w) =27 0%8(w - B,) lwl <= (10-182)
i i
where 2 = E(c}), w; = 2wk, + B, and |B;| < 7.

From (10-177) and the convolution theorem, it follows that if y[n] is the
output of a linear system with input x[], then

S,,(e™) =S (e’)H*(e™)
S,,(e™) = S, (e/)H(e™) (10-183)
S,,(e*) =S, (e)IH(e)|?
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(7
w
W

If A[n] is real, H*(e’*) = H(e ~*), In this case
S,,(z) = z)H(z)H(1/z) (10-184)
Example 10-33. The first difference
y[n] =x[n] —x[n - 1]

of a process x[n] can be Eunbldt.n,d aa the output of a linear system with input x{2]
and system function H(z) = 1 — z—!. Applying (10-184), we obtain

Syi(z) =S, () —z2"Y(1 - 2) =S _(2)2=2-2"Y
Ry [m]=—R, [m+ 1]+ 2R, [m] =R [m - 1]
If x[n] is white noise with § _(z) = g, then

S () = q(2 —e™ — e ) = 24(1 — cos w)

Example 10-34. The recursion equation
¥[n] —ayln — 1] = x[n]

specifies a linear system with input x[n] and system function H(z) = 1 /(1 — az ).
If S,,(z) = g, then (see Example 10-31)

q (1,
S = Ay olml = o
From (10-183) it follows that
E(Iy[n]) = R, [0] = o [ (&) H(e™) [Pdw  (10-185)

Using this identity, we shall show that the power spectrum of a process x[n] real
or complex is a positive function:

S,.(e) 20 (10-186)

Proof. We form an ideal bandpass filter with center frequency w, and band-
width 2A and apply (10-185). For small A,

1 wy+ A 5 A
2 - (4 Joy =, I Jarg
E{lstn)l®) = 57 [* Suule) do = S, (e)
and (10-186) results because E{y*[n]} = 0 and w,, is arbitrary.

SAMPLING. In many applications, the digital processes under consideration are
obtained by sampling various analog processes. We relate next the correspond-
ing correlations and spectra.

Given an analog process x(¢), we form the digital process

x[n] = x(nT)
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where 7" is a given constant. From this it follows that
nln] = n,(nT) Rlny,n:] = R, (n,T,n,T) (10-187)
where n,(¢) is the mean and R(t,,¢,) the autocorrelation of x(r). If x(r) is a
stationary process, then x[n] is also stationary with mean 5 = 7, and autocorre-
lation
R[m] = R, (mT)
From this it follows that the power spectrum of x[#] equals (Fig. 10-15)
= (a) + 27n

2 1
S(e*)= Y R, (mT)e '™ = T Y, S, T

me= —x fn=—mx
where S () is the power spectrum of x(¢). The above is 4 consequence of
Poisson’s sum formula [see (11A-1)].

(10-188)

Example 10-35. Suppose that x(¢) is a WSS process consisting of M exponentials
as in (10-130):

M M
X0)= Lo S(0) =27 L 05w - )

i=1 =1

where af = E(cf]. We shall determine the power spectrum S(e’“) of the process
x[n] = x(nT). From (10-188) it follows that

- M
S(e™) = Y Y oXw-w +2wn)

fl=—m = |

In the interval (—7, =), this consists of M lines:

M
S(e’®) = E(r,-zﬁ(w—,ﬂ‘) lw| < 7 1B;] <=

i=1

where g, are such that w; = 27n, + B,.

APPENDIX 10A
CONTINUITY, DIFFERENTIATION, INTEGRATION

In the earlier discussion, we routinely used various limiting operations involving
stochastic processes, with the tacit assumption that these operations hold for
every sample involved. This assumption is, in many cases, unnecessarily restric-
tive. To give some idea of the notion of limits ina more general case, we discuss
-next conditions for the existence of MS limits and we show that these conditions
can be phrased in terms of second-order moments (see also Sec. 8-4).

STOCHASTIC CONTINUITY. A process x(¢) is called MS continuous if
E{[x(r + &) =x()]*) — 0 (10A-1)
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THEOREM. We maintain that x(¢) is MS continuous if its autocorrelation is
continuous.
Proof. Clearly,

E{[x(t + &) = x(1)]*} =R(s + &,1 + &) — 2R(t + &,1) + R(1,1)

If, therefore, R(r,, ¢,) is continuous, then the right side tends to 0 as & — 0 and
(10A-1) results,

Note Suppose that (10A-1) holds for every ¢ in an interval /. From this it follows that
[see (10-1)] almost all samples of x(¢) will be continuous at a particular point of I It
does not follow, however, that these samples will be continuous for every point in /. We
mention as illustrations the Poisson process and the Wicner process. As we see from
(10-14) and (11-5), both: processes are MS continuous. However, the samples of the
Poisson process are discontinuous at the points t,, whereas almost all samples of the
Wiener process are continuous.

COROLLARY. If x(7) is MS continuous, then its mean is continuous

(1 +¢e) = n(t) e—0 (10A-2)
Proof. As we know
Ef[x(t + &) — x()]7) = EX{[x(¢ + &) — x(1)]}

Hence (10A-2) follows that (10A-1).
The above shows that

lim E(x(+ +£)] = E{me(: +¢)) (10A-3)

STOCHASTIC DIFFERENTIATION. A process x(¢) is MS differentiable if
x(1 + &) —x(r)
E £=()

x’(1) (10A-4)
in the MS sense, that is, if

E“M _ ,"(,)]"} —0 (10A-5)

e—)

THEOREM. The process x(¢) is MS differentiable if a*R(1,1,)/dt, dt, exists.

Proof. 1t suffices to show that (Cauchy criterion)
E{{x(r+e,)—x(l) x(t +&,) —x(1)

2
] } e 0 (10A-6)

We use this criterion because, unlike (10A-5), it does not involve the unknown

€ €2
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x’(r). Clearly,
E([x(r + &) — x(£)] [x(r + &) — x(1)]}
=R(t 4+ g,31 +8;) —R(t+e,t) = R(t,t + &,) + R(1,1)

The right side divided by &,e, tends to #°R(t,t)/drdt which, by assumption,
exists. Expanding the square in (10A-6), we conclude that its left side tends to

P*R(t,1) 7DW(I,:) a*R(1,t)
dr it = arot atar

COROLLARY. The above vyields
x(it:+ ) —x(2) .
—} - tim

) & Ei £ ]

SR =E{f‘i‘3 L{Mt

Note The autocorrelation of a Poisson process x(1) is discontinuous at the points t;
hence x'() does not exist at these points. However, as in the case of deterministic
signals, it is convenient to introduce random impulses and to interpret x'(1) as in (10-98).
STOCHASTIC INTEGRALS. A process x(¢) is MS integrable if the limit
b . "

f x(¢)di = lim Yx(1,) At (10A-7)

a Ar=00
exists in the MS sense.

THEOREM. The process x(¢) is MS integrable if

h
J IRy 1) | dy de, < (10A-8)
a “a

Proof. Using again the Cauchy criterion, we must show that

E{|Ex(:,) Ar,— ¥ox(r,) Aty
i k

} — . 5
Aty Aty =0
This follows if we expand the square and use the identity
E{ Tx(e) 84T x(1) At} = T R(1,,1,) Aty Aty
i k ik

because the right side tends to the integral of R(t,,t,) as Ar, and Az, tend to 0.

COROLLARY. From the above it follows that

i

2
fbx(z)dr } = f'bth(r,,rz)n!r,dr2 (10A-9)

as in (10-11).
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APPENDIX 10B
SHIFT OPERATORS AND STATIONARY PROCESSES

An SSS process can be generated by a succession of shifts Tx of a single RV x
where 7 is a one-to-one measure preserving transformation (mapping) of the
probability space . into itself. This difficult topic is of fundamental importance
in mathematics. In the following, we give a brief explanation of the underlying
concept, limiting the discussion to the discrete-time case.

A transformation T of . into itselfis a rule for assigning to each element
¢ of . another element of ~;

& =Ty (10B-1)
called the image of (. The images [, of all elements ¢, of a subset o/ of .~
form another subset

= Tt
of ./ called the image of o7,

We shall assume that the transformation T has the following properties.
P: It is one-to-one. This means that
if & #¢ then £ =
P,: It is measure preserving. This means that if % is an event, then its
image 27 is also an event and
P(7) = P(.2) (10B-2)
Suppose that x is an RV and that T is a transformation as above. The
expression Tx will mean another RV
y=Tx suchthat y(&)=x(¢) (10B-3)

where {; is the unique inverse of ;‘-i._This specifies y for every clement of .~
because (see P,) the set of elements £, equals ..
The expression z = T~ 'x will mean that x = 7'z. Thus

=T % iff a(¢) =x(._’,f)
We can define similarly 7%x = T(T'x) = Ty and
Try = T(T"-IX) = T—1(Tn+lx)

for any n positive or negative. =
From (10B-3) it follows that if, for some £, x(£,) < w, then y({;) = x({)) <
w. Hence the event {y < w} is the image of the event {x < w). This yields [see
(10B-2)]
Plx<w)=Plysw}] y=1Tx (10B-4)

for any w. We thus conclude that the RVs x and 7'x have the same distribution
F(x),
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Given an RV x and a transformation 7 as above, we form the random
process

Xy = X x, = T"x H=—o.. ., - (10B-3)

It follows from (10B-4) that the random variables x, so formed have the same
distribution. We can similarly show that their joint distributions of any order are
invariant to a shift of the origin. Hence the process x, so formed is SSS.

It can be shown that the converse is also true: Given an SSS process x,
we can find an RV x and a one-to-one measuring preserving transformation of
the space .~ into itself such that for all essential purposes, x, = 7"x. The
proof of this difficult result will not be given.

PROBLEMS

10-1. In the fair-com experiment, we define the process x(r) as follows: x(1) = sin ¢ if
heads shows, x(1) =2t if tails shows. (a) Find E{x(r)). (b) Find F(x, 1) for
t =025, r=05,and t = 1.

10-2. The process x(1) = ¢ is a family of exponentials depending on the RV a.
Express the mean n(#), the autocorrelation R(r,. t,), and the first-order density
SfCx, 1) of x(¢) in terms of the density f,(a) of a.

10-3. Suppose that x(r) is a Poisson process as in Fig. 10-3 such that E{x(9)) = 6.
(a) Find the mean and the variance of x(8). (b) Find P(x(2) < 3). (¢) Find
Plx(4) < 5[x(2) < 3).

10-4. The RV ¢ is uniform in the interval (0, 7). Find R (1, t,) if (@) x(2) = Ulr — c).
(b)Y x(t) = 6(¢r — c).

10-5, The RVs a and b are independent N(O;o) and p is the probability that the
process x(1) = a — bt crosses the ¢ axis in the interval (0, 7). Show that =p =
arctan T.

Hint: p = P{0 < a/b < T},

10-6. Show that if

R.(1),12) = q(1;)8(t, —15)
w1 = v(1)U(r) and w(0) = w(0) = 0, then

Efw=(1)} = f"'(l —7)a(7)dr

10-7. The process x(r) is real with autocorrelation R(r). (@) Show that

P(lx(e +7) = x(0)| = a) < 2[R(0) — R(=)]/a?
(b) Express P{Ix(++7) —x(1)] =a) in terms of the second-order density
JCx . x50 7) of x(e).
10-8. The process x(¢) is WSS and normal with E{x(1)} =0 and R(r) =4¢ .
(a) Find P{x(r) < 3). (b) Find E{[x(r + 1) — x(¢ — D).
10-9, Show that the process x(r) = cw(r) is WSS iff £fe) = 0 and w(z) = /= * 0,

10-10. The process x(r) is WSS and £(x(1)} = 0. Show that if z(¢) = x2(z), then C..(7)
= 2C; (7).



10-11.

10-12,

10-13.
10-14.

10-15.

10-16.

10-17.

10-18.

10-19.

10-20.
10-21.

10-22,

10-23.

10-24,
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Find Efp(0)). Ey (0}, and R, (+) if
yO(1) A+ dy(e) + 13y(1) = 26 + v(1) R,.(7) = 105(7)
Find P{y(¢) < 3)if w(1) is normal
Show that: If x(1) is a process with zero mean and autocorrelation [(¢,)f(e,hwie,
— £,)! then the process ¥(1)'= x(1) /f(¢) is WSS with autocorrelation wir). If x(t)
is white noise with autocorrelation g(r)), 8(r, — 15), then the process z(f) =
x(0)/ /g () is WSS white noise with autocorrelation 8(7).
Show that |R, ()] < 3[R, (0) + R, (0)],
Show that if the processes x(r),y(r) are WSS and E(|x(0) — w®0|°) = 0, then
Ry {r) = R ) = R (7).
Hint: Set z.= x(t + 1), w=x*1)) — y*(1) in (10-163),
Show that if x(¢) is a complex WSS process, then
E{Ix(t + 7) = x(1)[*} = 2Re[R(0) — R(7)]
Show that if ¢ is an RV with dA) = E{e’*7} and D(1) = D(2) =0, then the
process x(2) = cos(wi + ) is WSS. Find E{x(1)} and R (#)1if ¢ is uniform inthe
interval (=, 7).
Given a process x(¢) with orthogonal increments and such that x(0) = 0. show
that (@) R(¢,, 1) = R, 1) for ¢, < ¢,y and (b)if E(Ix(1,) — %1017} = glt; — ¢,
then the process ¥(1) = [x(r + &) — x(2)] /e is WSS and its autocorrelation is a
triangle with area g and base 2e.
Show that if R, (1. 1) =ql,)6(r, — ;) and y(1) = x(1)+ klt) then
Efx(1)y(e)) = h(0)q(r)
The process x(¢) is normal with 5, = 0 and R () = 4¢ . Find a memoryless
system  g(x) such that the first-order density f(y) of the resulting output
1) = g[x(1)] is uniform in the interval (6, 9).
Answer: g(x) = 3G(x/2) + 6.
Show that if x(2) is an SSS process and e is an RV independent of x(¢), then the
process y(r) = x{r — €) is SSS.
Show that if x(t) is a stationary process with derivative x’(r), then for a given
the RVs x(¢)and x'(r) are orthogonal and uncorrelated.

Given a normal process x(¢) with 1, =0 and R (r) = 4¢~ |, .we form the RVs
z=x(r + 1), w = x(r = 1), (a) find E{zw} and F{(z + w3, (b) find

fi(z)  Ple<i}  [fa(zw)

Show that if x(1) is normal with autoeorrelation R{7), then

a
P{x'(t) <a}) =G T“(ﬂ_)_]

Show that if x(¢) is a normal process with zero mean and y(¢) = sgnx(¢), then

)
=2 £ Hatom - vl e

where J,(x) is the Bessel function.
Hine: Expand the arcsine in (10-71) into a Fourier series.
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10-25.

10-26.

10-27.

10-28.

10-29.

10-30.

10-31.

10-32.

10-33.
10-34.

STOCHASTIC PROPERTIES

Show that if x(¢) is a normal process with zero mean and y(r) = 7e“*"), then
)

7y == lcm{;’h(ﬂ)} R,(7) = I*exp[a*[R,(0) + R,(7)]]

Show that (a) if
y(1) = ax(ct) then R, (7)=a’R.(c7)
(6)if R(7) — 0 as r > «<and
2(1) = lim e x(&t) then R.(7) =¢gb(7) q=j R.(1)dr

b —
Show that if x(¢) is' white noise, h(t) = 0 outside the interval (0, T), and y(1) =
x(£)x h(¢) then R (1), ;) = O for [¢, — 15| > T.
Show that if

R (1, 15) = q(t)8(t, — t5) E{yl(:_)} =1(t)

and
(@)  ¥(1) = [h(t,@)x(a)da  then K1) = [h(t,a)q(a)da
0 0

(b) v'(1) +e(t)y(t) =x(r) then 7'(t) + 2c(0)i(t) = q(t)
Find B{y*(1)} (a) if R, (1) = 58(z) and
¥'(1) + 2v(r) = x(r) all ¢ (i)

(b) if (i) holds for ¢ > 0 only and y(1) = 0 for ¢ < 0.

Hint: Use (10-90).
The input to a linear system with A(f) = Ae “U(1) is a process x(r) with
R (7) = N&(7) applied at ¢ = 0 and disconnected at ¢ = 7. Find and sketch
Efy* ().

Hint: Use (10-90) with q(¢) = N for 0 < ¢ < T and 0 otherwise.
Show that if

10

s=f“mx(!)d1 then E{s%) =f_m(m — [7)R () d=

Find the mean and variance of s if E{x(¢)} = 8, R,(7) = 64 + 10"\
The process x(t) is WSS with R, (7) = 55(7) and

yO(e) -+ 2v(r) = x(1) Q)
Find ElyX (1), R, (1), 1), R, (¢, 1) (a) if (i) holds for all 1, () if (0) = 0 and
(i) holds for r > 0.
Find S(w) if (a) R(r) = ¢, (b) R(r) = ¢ " cos w7
Show that the power spectrum of an SSS process x(¢) equals

S(w) = fﬁ fs X x,G(x), x5 w) dyy dxy

where G(x;, x5; ) is the Fourier transform in the variable 7 of the second-order
density f(x, x,; 1) of x(1).



rROBLEMS 343

10-35. Show that if ¥(r) = x(sr + &) — x(1 — a). then
R, (z)i=2R,(7) — R.(7 + 2a) — R /(7 — 2a) Sw) =48 (w)sin® aw
10-36. Using (10-122), show that
I
R(0) = R(7) = ?[R(U} =R(2"7)]
Hint:

1 —cos# = 2sin?

ra =

L, 8 1
> 2sin® s E(l — £0s20)

10-37. The process x(¢) is normal with zero mean and R (=) = Je “"l cos Br. Show that
it W(1) = x*(2); then C (7) = Pe™ (] + cos 2B7). Find § (@)

10-38. Show that if R(7) is the inverse Fourier transform of a function S{w) and
S(w) = 0, then, for any a,,

Y aaiR(m — ) =0
ik
Hint:
f S(w)}za,u"‘”“ dw >0
s >

10-39. Find R(7)'if (a) S(w) = L/1 + w®), (B) S(w) = 1 /{4 + w?).
10-40. Show that, for complex systems. (10-136) and (10-181) yield

S,,(s) = S..(H(H(=s%)  S,(2) = S, (2)H(z)H*(1/2*)
10-41. The process x(¢) is normal with zero mean. Show that if ¥(r) = x*(¢), then
Si(@) = 27RUMB (@) + 28 (w)= S (w)

Plot Sy (@) if S (w)is (@) ideal LP, (b) ideal BP.

10-42. The process x(¢) is WSS with E{x(1)) = S and R, [(7) = 25 + de "L 1f (1) =
2x(r) + 3x'(1), find m,, R ,(7), and §, (w).

10:43. The process x(t) is WSS and R, (7) = 55(r). (@) Find Efy*(1)} and §, (w) if
y/(£) + 3y(r) = x(1). (b) Find E{y*(1)) and R (¢,, ;) if y(¢) + 3y(1) = x(0)U(1).
Sketch the functions R, (2,¢,) and R, (t,,3).

10-44. Given a complex process x(¢) with autocorrelation R(7), show thatif [R(7))| = I,
then

R(r) = e w(r)  x(1) =el*y(t)
where w(z) is a periodic function with period =, and y(r) is an MS periodic
process with the same period.

10-45. Show that () E{x()x(r)} = 0, (b) x(¢) = —x(z).
10-46. (Srochastic resonance) The input to the system

iD= s
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is 2 WSS process x(1) with E{x*(1)} = 10. Find § () such that the average power
Ely*(1)) of the resulting output y(¢) is maximum,
Hint: |H(jo)| is maximum for o = V3.
10-47. Show that if R (1) = Ae’”™, then R, (7) = Be’*V for any. y(1).
Hine: Use (10-167).
10-48. Given a system H{w) with input x(¢) and output y(¢), show that (a) if x(r) is WSS
and R, (7) = &/*7, then

Ry (7) =eH(a) R, () =e"|H(a)l?
(B) if R, (1), 1) = e/“17F1) then
R, (ty,15) =/ "FPH(a) R, (4;1;) = " PRH(a) H*(B)
10-49. Show that if S, (#)S, (@) =0, then §, (o) = 0.
10-50. ‘Show that if x{n] is WSS and R, [1] = R [0), then R [m] = R [0] for every m.
10-51. Show that if Rlm] = E{x{n + mlx[n]), then
R[0]R[2] > 2R?*[1] — R?[0]

10-52. Given an RV w with density f(w) such that f(w) = 0'for |w| > , we form the
process x[n] = Ae!"™r. Show that § (w) = 274 f(w) for |w| < -

10-53. (a) Find E{y*(0)} if y(0) = y(0) = 0 and
y*(t) + Ty!(r) + 10y(¢) = x(¢) R (7) = 58(7)
(b) Find Ely*[n]} if y[= 1] = y{=2] = 0 -and
8y[n] — 6y[n — 1] + y[n — 2] = x[n] R [m] =58[m]
10-54. The process x[n] is WSS with R, [m] = 58[m] and
y[n] = 05y[n = 1] = x[#] (i)

Find E{y?*[n]), R Imy, m,) Ry [m,.m,] (a) if (i) holds for all n, (6)if y[—1] =0
and (i) holds for n = 0,
10:55. Show that (a) if R [m,, m,] = glm,18[m, — m,] and
N N
s= Y a,x[n] then E{s’}= Y alq[n]

n=0 n=0

(b) If R, (1, ¢:) = q(r,)5(1, —1,) and

s -=j:a(t)x(r)dr then E(s?) =fu"al(1)q(:)m





