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Abstract
Brief notes on the basics of non-random parameter estimation are presented. These notes have

been prepared for the EE 503 course (METU, Electrical Engin.) whose major emphasis is the
Bayesian estimation. Therefore the notes may not be as complete as you may wish.

1 Non-Random Parameter Estimation

We examine the following model to illustrate the problem:

r = s + n (1)

Here n is a random variable showing the contribution of noise whose statistics are at least partially
known. The parameter s is a deterministic constant which we call, following the terminology of Van
Trees [1], as a non-random parameter. The variable r is the observation given to us which is also a
random quantity due to the additive noise term.

Previously we have considered general Bayesian estimators and also the special case of linear
minimum mean square error (MMSE) estimators. Different from the MMSE problem, here we do
not have any a-priori information on s. In the linear MMSE problem, first two moments of s and its
cross-correlation with the observations are utilized to construct an estimator that is optimal in the
sense of minimizing E{|s − ŝ|2}. Here by the nature of observations or due to insufficient a-priori
information, we do not have any statistical information on s. In spite of this, we proceed similar to
the MMSE case and try to produce an estimator that minimizes E{(s− ŝ)2}.

Minimization of E{(s − ŝ)2}: The variable ŝ shows the estimate that is produced from the
observation. Stated differently, the estimate is a function of the observation r, ŝ = g(r). The goal is
to establish a good g(r) function so that the cost is minimized.

It is clear that the estimate ŝ = g(r) is also a random variable. We denote the mean of ŝ with ηbs.
We can now express the cost function as follows:

E{(s− ŝ)2} = E{((s− ηbs)− (ŝ− ηbs))2}
= E{(s− ηbs)2 − 2(s− ηbs)(ŝ− ηbs) + (ŝ− ηbs)2}
= E{(s− ηbs)2}︸ ︷︷ ︸

(s−ηbs)2
−2(s− ηbs) E{(ŝ− ηbs)}︸ ︷︷ ︸

0

+E{(ŝ− ηbs)2}
= (s− ηbs)2 + E{(ŝ− ηbs)2}
= bias2 + estimator-variance (2)

The last equation shows that the mean square estimation error is a function of the unknown parameter
s. This is due to the first term in the MSE relation, i.e. bias2 term. In the random parameter
estimation problem (that is when the parameter s is random), the expectation in (2) is taken with
respect to both r and s and this removes the dependence of MSE on the realization of s.

One may proceed as follows:

1. Take ŝ = c for all observations. Then the estimator-variance is zero and the MSE is (s− c)2.

Comments: This approach eliminates error-variance at the cost of bias. There is no effort done
to eliminate the bias which can be significant in many problems. The suggested estimator is a
realizable estimator but its performance is questionable to say the least. An estimator making
use of the observations would be more pleasing.
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2. Choose ŝ = g(r) = s for all observations. The estimator maps the observation to the correct s
value. The bias, estimator-variance and the overall MSE is zero.

Comments: This is the ideal estimator. It reduces the error to zero, but the estimator is not
realizable. (It depends on the unknown parameter s.) This is the degenerate solution of the
optimization problem and this solution is not realizable.

3. Choose ŝ such that it is guaranteed to be unbiased, then try to minimize MSE (estimator
variance) under this constraint.

Comments: This approach, if it is feasible, guarantees that bias = 0 and proceeds to minimize
the estimator-variance under the zero bias constraint. This is indeed a reasonable approach. In
these notes, we examine the feasibility of this approach and construction of the estimator for the
linear observation model. (More information about the unbiased minimum variance estimators
is given in [2, chap.2].)

We should remember that the the linear (not affine) MMSE estimator for random parameters can
be biased. The amount of bias can be calculated and it is possible to subtract the calculated bias off
from every estimate making the estimator unbiased.

To understand the significance of bias a little further, let’s consider a simple communication channel
such as r = s + n. Here s is +1 or -1 with equal probability. (E{s} = 0 and its variance is 1.) Since
we have information on the joint statistics of s and n, we can construct an estimator for s. Let’s say
that this estimator produces either +1 or -1 with equal probability. Then E{ŝ} = 0 showing that
the estimator is unbiased. The question on the goodness of this estimator is not yet answered. The
unbiasedness condition says that the center of mass of the histogram of the estimates and the quantity
to be estimated are the same. As an example, lets say that the estimator produces wrong estimates
all the time, that is its probability of error is 100%. In this case, it is still unbiased; but its MSE is
the largest possible value.

For the same problem, we may choose to interpret s in r = s + n as a non-random parameter. In
this case, the unbiasedness condition guarantees that the estimates are on the average on the correct
s, that is the center of mass of the estimate histogram is on the value that we are looking for. This is
a minor but an important difference in the bias considerations.

2 Maximum Likelihood Estimation

The maximum likelihood (ML) estimation does not aim to minimize a cost over the observation space,
i.e. it does not aim to minimize a cost such as E{(s − ŝ)2}. Instead, the aim is the solution of the
following problem:

ŝ = arg max
s

fr(r; s) (3)

Here fr(r) is the density function of the observation and s is the non-random parameter that we are
trying to estimate. The function fr(r; s) should not be interpreted as a conditional density such as
fr(r|A) where A is an event. The function fr(r; s) should be interpreted as an ordinary function with
a parameter s whose value is not known. With this interpretation, it is clear that the maximum
likelihood estimation problem is a deterministic optimization problem.

It should also be noted that we are not maximizing the probability of finding correct s. The
parameter s is a non-random quantity, therefore it does not have an associated probability space. For
this reason, the approach is called maximum likelihood not maximum probability.

We study the following problem to illustrate the maximum likelihood procedure. We assume that
a cosine function with unknown amplitude (α) and frequency (ω where 0 < ω < 1/2) is observed
under additive white Gaussian noise:

r[n] = s[n] + v[n] = α cos(2πωn) + v[n], n = {0, . . . , N − 1}
Here v[n] is zero-mean i.i.d. Gaussian distributed random variables with variance σ2

v . The average
signal power is limN→∞ 1

N

∑N
n=1 s2[n] = α2

2 provided that ω is not close to 0 or 1 (If that is the case,
the average signal power becomes α2.) The SNR is defined as the ratio of average signal power over
σ2

v .
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Figure 1: SNR = 10 dB, N = 10. The cost function
has some spread around the true values.
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Figure 2: SNR = 10 dB, N = 40. The cost function
has less spread around the true values in compari-
son to the SNR = 10 dB, N = 10 case.

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0

0.005

0.01

0.015

α

SNR= 16 dB; N=10

ω

Figure 3: SNR = 16 dB, N = 10. The cost function
has almost the same spread around the true values
when compared with the SNR = 10 dB, N = 40
case. (Why ?)
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Figure 4: SNR = 16 dB, N = 40. The cost function
has the least spread around the true values.
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The density of fr(r;α, ω) can be written as follows:

fr(r; α, ω) =
1

(2πσ2
v)

N
2

exp

(
−1
2σ2

v

N−1∑

n=0

(r[n]− α cos(2πωn)2
)

(4)

We treat the density function as an ordinary function and by taking the partial derivatives of (4)
with respect to α and ω, it is possible to find the peak points of the cost function. Note that the r[n]
values in the cost function are the observations which are provided to us, therefore the only unknowns
in this function are α and ω. For this problem ω is periodic with 1, that is if ωx is a peak location,
so is ωx + k (k is an integer). Furthermore cosine function is an even function, therefore, −ωx and
−ωx + k are also peak locations. Because of this reason, we choose to the range of 0 ≤ ωx ≤ 1

2 and
−∞ < α < ∞ for the search domain of ω and α.

In these notes, we do not pursue the mechanics of the optimization process, but try to understand
the estimation procedure. Figures 1 to 4 show the objective function in the optimization as a function
of α and ω at different operational conditions. For the generation of these figures, an r[n] sequence of
length N at an operational SNR is generated. In all figures, the true α and ω values are 0.8 and 0.2
respectively. The coordinates of the peak observed in all figures are the ML estimates of α and ω for
that r[n] sequence. (You can examine the Matlab code given in Appendix A.2 for the details of search
process for ML estimation.) It can be noted that ML estimate works well for the examples shown here.
It can be also noted that frequency estimation is much more accurate than the amplitude estimate. (In
these notes, we do not provide any details on the performance of ML procedure. Interested students
can examine [2] and other texts for this important topic. This topic is mostly discussed in EE535 in
our curriculum.)

The ML estimate in general has no known optimality properties. But in some special cases, it is
known to be the efficient estimator. (The efficient estimator is the estimator meeting the Cramer-Rao
lower bound. [1, 2].) Also, it is known that (under fairly general conditions) as SNR → ∞ and/or
N → ∞, the ML estimate is unbiased, efficient and normal distributed. Hence the ML estimate is
asymptotically unbiased and efficient.

3 Unbiased, Minimum Variance Estimators For the Linear Obser-
vation Model

We examine the details of a setting frequently emerging in applications. The non-random vector x of
the dimensions L× 1 is observed with a linear observation system as shown below:

r = Hx + v (5)

The matrix H is a N × L matrix denoting the observation system. The vector v is due to noise.
For the unbiased minimum variance estimators, it is assumed that N ≥ L, that is the number of
observations is greater than the number of unknowns. (This condition is not necessary for Bayesian
estimators.) The error vector is assumed to be zero-mean and has the auto-correlation matrix of Rv.
An estimator in the form of

x̂ = KHr (6)

is to be designed to minimize the total estimation error variance, E{||x − x̂||2}. (As we have noted
earlier, the problem is not well defined under this general setting. We introduce the unbiasedness
condition shortly which makes the solution realizable.)

The error can be expressed as shown below:

E{||x− x̂||2} = E{||(I−KHH)x−KHv||2}
= ||(I−KHH)x||2 + E{||KHv||2}
(a)
= ||(I−KHH)x||2 + E{trace{KHvvHK}}
= ||(I−KHH)x||2 + trace{KHRvK} (7)

4



In the line shown with (a) the identity trace{AB} = trace{BA} is utilized. The first term in the last
equation depends on x and it is eliminated if KHH = I condition is satisfied. As expected, with this
condition E{x̂} = x, therefore the estimator becomes unbiased.

It should be noted that I is a L × L identity matrix and KH is a L × N (fat and short) matrix.
If L = N (the number of observations is equal to the number of unknowns), K matrix is unique and
it is KH = H−1, assuming H is invertible. If N > L, there are infinitely many K matrices satisfying
the condition KHH = I. (Why?)

The problem of minimizing E{||x− x̂||2} for the unbiased estimator can be expressed as follows:

min
K

trace{KHRvK} such that KHH = I (8)

It should be noted that Rv matrix is positive semi-definite therefore the optimization problem is well
defined. The same optimization problem can be written as follows:

min
K

L∑

j=1

kH
j Rvkj such that KHH = I (9)

In the last relation kH
j vector is the j’th row of the KH matrix. If we focus on the optimization of

kH
j , that is the estimator for the j’th unknown variable; then the optimization problem becomes

min
kj

kH
j Rvkj such that kH

j H = eH
j (10)

or

min
kj

kH
j Rvkj such that HHkj = ej (11)

Here ej denotes the canonical L× 1 vector whose j’th entry is 1 and the rest are 0. (In the very last
equation, we have taken the Hermitian of the constraint equation.)

The last problem can be recognized as the minimum norm solution problem for the under-
determined equation system of HHkj = ej under the weighted Euclidean norm of kH

j Rvkj. The
minimum norm solution for kj is

kj = R−1
v H(HHR−1

v H)−1ej (12)

This concludes the derivation for kj. Readers can find the details of the minimum norm solution in
Appendix A.1.

If we return to the original problem given in (9), it can be noted that the individual optimization
of kj vectors is sufficient to optimize the overall cost function. That is the cost function function can
be expressed as the summation of L smaller dimensional cost functions such as the one given in (11).

Finally by taking the Hermitian of kj given in (12), we can get the j’th row of KH matrix. By
concatenating the rows of KH matrix, we get the unbiased minimum variance estimator as follows:

x̂ = KHr = (HHR−1
v H)−1HHR−1

v︸ ︷︷ ︸
KH

r (13)

It should be noted that the minimum variance estimator is nothing but the the weighted least square
solution of the equation system r = Hs where the norm is calculated according to ||e||2 = eHR−1

v e.
The error covariance matrix for the minimum variance unbiased estimator can be found as follows:

E{eeH} = E{(KHv)(KHv)H}
= E{KHvvHKH}
= KHRvK

= (HHR−1
v H)−1 HHR−1

v RvR−1
v H(HHR−1

v H)−1

︸ ︷︷ ︸
I

= (HHR−1
v H)−1 (14)
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An important special case is the case of white noise, that is when Rv = σ2
vI. Under this condition,

the estimate is x̂ = KHr = (HHH)−1HHr, i.e the classical least solution. Note that the estimate
does not depend on noise variance. Under this condition the error covariance matrix is σ2

v(H
HH)−1.

As a last note, we would like to mention that the minimum variance, unbiased estimator for the
linear observations can be interpreted as the least square solution of the whitened input as shown in
Figure 5.

LS
Solutionr r2

Min-Var Unbiased Est.

Figure 5: Minimum variance unbiased estimator interpreted as the whitened least square solution.

The first block, shown in Figure 5, whitens the process using R
−1

2
v matrix. In an earlier part of the

course, we have studied different methods of whitening or decorrelating random vectors. The R
−1

2
v

can be calculated using the methods discussed in that part of the course.

The relation between the desired vector x and the whitened observations (output of R
−1

2
v block)

can be written as

r2 = R
−1

2
v H︸ ︷︷ ︸
H2

x + v2. (15)

Calling H2 = R
−1

2
v H, we can immediately write the least square solution as x̂ = (HH

2 H2)−1HH
2 r2,

which is identical to the estimator given in (13). This result shows that the whitened LS solution is
the minimum variance, unbiased estimator for the linear observation model.

A Appendices

A.1 Minimum Norm Solution of Underdetermined Equation System

The problem is finding the solution of an under-determined equation of Ax = b that minimizes the
cost of ||x||2R = xHRx. (The dimensions of the matrix A is assumed to be L×N where L < N .)

The problem can be expressed as follows:

minxHRx such that Ax = b (16)

The constraint optimization problem can be formulated as unconstrainted optimization problem with
the Lagrange multipliers.

J(x) = xHRx + λT (Ax− b) (17)

Here λ is the vector of Lagrange multipliers, that is λ = [λ1 λ2 . . . λL]. L constraints to be satisfied
are imposed in the cost function J(x) through the Lagrange multipliers.

By taking gradient with respect to x and λ and equating them to zero, we get the following
equations:

∇xJ(x) = 2Rx + ATλ = 0 (18)
∇λJ(x) = Ax− b = 0 (19)

Solving x from (18), we get x = 1
2R

−1ATλ. Replacing x into (19), we get a solution for λ, λ =
2(AR−1AT)−1b. By substituting λ back into the first equation, we get the solution as follows:

xopt = R−1AT(AR−1AT)−1b

(20)
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A.2 Matlab Code of the Illustrations Given in ML Estimation Section

1 omega=0.2;
2 alpha=0.8;
3 N=40;
4 n=0:N −1;
5 SNRdB=16;
6

7 SNR=10ˆ(SNR dB/10);
8 signalvar=alphaˆ2 * 1/2; %average signal power
9 noisevar= signalvar/SNR;

10

11 x=alpha * cos(2 * pi * omega* n)+sqrt(noisevar) * randn(1,N); %observations
12

13 %construct the grid
14 [ag,og]=meshgrid(0:1/128:1 −1/128,0:1/256:1/2 −1/256);
15

16 %sketch the cost function for ML search
17 dum=zeros(size(ag));
18 for thisn=n,
19 dum=dum+(x(thisn+1) −ag. * cos(2 * pi * og* (thisn))).ˆ2;
20 end ;
21 cost1=exp( −1/2/noisevar * (dum)); %unnecessary constants are not included
22 mesh(ag,og,cost1);
23 xlabel( ' \alpha ' , ' fontsize ' ,10);
24 ylabel( ' \omega' , ' fontsize ' ,10);
25 title([ ' SNR= ' num2str(SNR dB) ' dB; N=' num2str(N)])
26 view( −22,46);
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