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C
onsider a multiple-input,
multiple-output (MIMO)
channel with Mt transmit
and Mr receive antennas.
The received sampled base-

band signal can be written as

y = Hx + z (1)

where H is the Mr × Mt matrix whose
(i, j)th element denotes the complex
channel gain between the jth transmit
and the i th receive antennas. We
assume that z is a zero-mean circularly
symmetric complex Gaussian noise with
covariance matrix Rz. Let Rx denote the
covariance matrix of the input vector x,
and let Ry be the covariance matrix of
the output vector y. Assuming that x
and z are uncorrelated with one anoth-
er, we have that

Ry
�= E [yy∗] =HRxH∗ + Rz, (2)

Rxy
�= E [xy∗] =RxH∗. (3)

We assume that H, Rx , and Rz are
known to the receiver and, hence, so are
Ry and Rxy. Under the above assump-
tions, the channel capacity is given by
(see, e.g., [1], [2])

C = log2
|Rz + HRxH∗|

|Rz|
bits per channel use. (4)

The covariance matrix Rx in (4) can
take on different values depending on the
channel state information available to
the transmitter (e.g., Rx ∼ I when the
transmitter has no channel information).
In what follows, we let Rx denote any of
these possible values of the input covari-
ance matrix, both for the sake of general-

ity and because doing so does not intro-
duce any additional difficulty.

The usual derivation of the capacity
formula in (4) relies on the maximiza-
tion, with respect to the density of x, of
the mutual information between y and x
(which is equal to the difference between
the differential entropies of y and z) [3],
[1]. This derivation might not be too
enlightening for a new student and as
such it might obscure the meaning of the
notion of capacity. In this note, we relate
the capacity C to the covariance matrix of
the linear minimum mean-squared-error
(LMMSE) estimate of x. As we will see,
doing so provides a clear interpretation of
the concept of capacity, as well as of some
optimal transceiver design schemes that
aim to achieve the channel capacity.

As is well known, the LMMSE esti-
mate of x and its covariance matrix are
given by 

x̂ = RxyR−1
y y, (5)

and

RLMMSE � E [(x̂ − x)(x̂ − x)∗]

= RxyR−1
y R∗

xy

− 2RxyR−1
y R∗

xy + Rx

= Rx − RxyR−1
y R∗

xy. (6)

It follows from (2), (3), and the matrix
inversion lemma (see, e.g., [4], [5]) that 

R−1
LMMSE = R−1

x + R−1
x Rxy

× (Ry − R∗
xyR−1

x Rxy)
−1

× R∗
xyR−1

x (7)

=R−1
x + H∗

× (Ry − HRxH∗)−1H (8)

= R−1
x + H∗R−1

z H. (9)

On the other hand, from (4) and a well-
known determinantal identity (see, e.g.,
[4], [5]), we have that 

C = log2 |I + R−1
z HRxH∗|

= log2 |I + H∗R−1
z HRx| (10)

= log2 |Rx| + log2

|R−1
x + H∗R−1

z H|. (11)

It follows from (9) and (11) that the
channel capacity can be rewritten as

C = log2

( |Rx|
|RLMMSE|

)
. (12)

The above expression relates, in a
simple manner, the channel capacity to
the covariance matrix of the LMMSE
estimate of x.

DISCUSSION
The channel capacity formula (12) has
an intuitive appeal. We can envisage the
LMMSE estimate x̂ as lying (with high
probability) in a “small cell” centered
around the codeword x. The volume of
the cell is proportional to |RLMMSE|.
The volume of the codebook space (in
which x lies with a high probability) is
proportional to |Rx| .  The ratio
ρ = (|Rx|)/(|RLMMSE|) gives the num-
ber of cells that can be packed into the
codebook space without significant
overlapping. The “center” of each such
cell, the codeword, can be reliably
detected, for instance, using x̂. The con-
clusion is that one can communicate
reliably using a codebook of size ρ ,
which contains log 2 ρ information bits;
this observartion provides an intuitive
motivation to the capacity formula in
(4) or, equivalently, (12). A similar
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argument for the single-input, single-
output (SISO) channel case can be
found in [3, Ch. 10.1].

In general, the matrix RLMMSE is not
diagonal, i.e., the LMMSE estimates of
the elements of x are correlated. These
correlations clearly contain useful infor-
mation for subsequent decoding proce-
dures. However, in practice, one often
encodes and decodes the elements of x
separately and, hence, ignores the afore-
mentioned correlations. This leads to a
loss of information. With (12) in mind,
we can quantify the capacity loss that
results as 

C loss =
Mt∑

k=1

log2[RLMMSE]kk

− log2 |RLMMSE|, (13)

where [RLMMSE]kk denotes the kth diag-
onal element of RLMMSE. According to
the Hadamard inequality [4], for any
K × K positive semidefinite matrix M

|M| ≤
K∏

k=1

Mkk, (14)

where the equality holds if and only if
M is diagonal. Hence C loss ≥ 0, and
there is no capacity loss if and only if
RLMMSE is diagonal.

Based on the above discussion, we see
that: 1) for general MIMO communication

channels, the use of the LMMSE estima-
tor followed by separate substream decod-
ing is not a capacity-wise optimal scheme;
and 2) if the channel matrix H is such that
RLMMSE is a diagonal matrix, then the use
of the LMMSE estimator may be the first
step of decoupled lossless information
processing. If channel state information is
available at the transmitter, then the
transmitter can use a precoder P to
obtain a virtual channel matrix

Hvt = HP, (15)

which is such that the corresponding
RLMMSE is diagonal. This explains why all
existing optimal linear transceiver designs
invariably lead to the diagonalization of
the matrix H∗H (see e.g.,  [6], [7] and the
references therein). Indeed, if Rx is diago-
nal and Rz ∼ I (as is usually assumed),
then it follows from (9) that Hvt must
have orthogonal columns for RLMMSE to
be diagonal. Then, a precoder P made
from the right singular vectors of H is the
optimal solution. Such a scheme, howev-
er, lacks flexibility since the singular value
decomposition is unique. If nonlinear pro-
cessing is allowed, such as the decision
feedback equalizer, one can design lossless
information transceivers in a more flexi-
ble manner, as demonstrated in [8].
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