Quiz: Convolutions

This quiz is designed to test your knowledge of convolutions of 2π -periodic functions.

In this entire quiz, the expression f*g denotes convolution of f and g, while the expression fg denotes the pointwise product of f and g. The expression \hat{f} denotes the Fourier transform of f, thus $\hat{f}(n)$ is the n^{th} Fourier coefficient of f.

Discuss this quiz

(Key; correct, incorrect, partially correct.)

1. Let f and g be continuously differentiable 2π -periodic functions. The derivative (f*g)' of the convolution f*g is given by

$$A. \cap (f') * g$$

B.
$$\cap f * (g') + (f') * g$$

$$(f')*(g')$$

D.
$$\bigcirc$$
 $(g')*(f')$

$$E \cap f * (g')$$

- F. C In general, there is no simple formula available.
- 2. Let f and g be continuously differentiable 2π -periodic functions, and let n be an integer. The $n^{ ext{th}}$ Fourier coefficient $\widehat{f*g}(n)$ of the convolution f*g is given by

A. O.
$$\hat{f} * g(n)$$

B. C
$$\hat{f}(n)\hat{g}(n)$$

$$\hat{f} * \hat{g}(n)$$

D. C
$$\hat{f}(n) + \hat{g}(n)$$

$$\hat{f}(n)g + f\hat{g}(n)$$

- F. C In general, there is no simple formula available.
- 3. Let f and g be continuously differentiable 2π -periodic functions. The average value of f*g is equal to
 - A. $^{ extsf{C}}$ The difference between the average value of f and the average value of g.
 - B. C The average of the average value of f and the average value of g.
 - C. \Box The convolution of the average value of f and the average value of g.
 - D. $^{\circ}$ The product of the average value of f and the average value of g.
 - E. C The sum of the average value of f and the average value of g.
 - F. C In general, there is no simple formula available.
- 4. Let f , g , h be continuous 2π -periodic functions. The expression f*(g+h) can also be written as

$$(f+g)*h$$

B.
$$\bigcirc f * h + g * h$$

$$g * f + f * h$$

D. O
$$f*(g*h)$$

- E. O g*(f+h)
- F. O None of the above.
- 5. Let f , g , h be continuous 2π -periodic functions. The expression (f+3h)*(2g) can also be written as
 - A. $0 \ 2(f*g) + 6(h*g)$
 - B. C 6 * f * g * h
 - $c. \bigcirc 2*f*g+3*h*g$
 - D. $\bigcirc (2f) * g + (3h) * g$
 - 6*h*g+2*f*g
 - F. C None of the above.
- 6. Let f,g,h be continuous 2π -periodic functions. The expression f*(gh) can also be written as
 - A. \bigcirc (fg)*h
 - B. \cap (f*g)(f*h)
 - f * g + f * h
 - D. O f(g+h)
 - $E. \cap f(g*h)$
 - F. O None of the above.
- 7. Let f,g be 2π -periodic functions. If f is continuously differentiable, and g is twice continuously differentiable, then the best we can say about f*g is that it is 2π -periodic and
 - A. C Riemann integrable.
 - B. C Piecewise continuous.
 - C. C Continuous.
 - D. C Continuously differentiable.
 - E. C Twice continuously differentiable.
 - F. C Three times continuously differentiable.
 - G. C Infinitely differentiable.
- 8. Let f,g be 2π -periodic functions. If f is continuously differentiable, and g is twice continuously differentiable, then the best we can say about f+g is that it is 2π -periodic and
 - A. C Riemann integrable.
 - B. C Piecewise continuous.
 - C. C Continuous.
 - D. C Continously differentiable.
 - E. C Twice continuously differentiable.
 - F. C Three times continuously differentiable.
 - G. C Infinitely differentiable.
- 9. Let f,g be 2π -periodic functions. If f is continuously differentiable, and g is twice continuously differentiable, then the best we can say about fg is that it is 2π -periodic and
 - A. C Riemann integrable.
 - B. C Piecewise continuous.
 - C. C Continuous.

- D. C Continously differentiable.
- E. C Twice continuously differentiable.
- F. C Three times continuously differentiable.
- G. C Infinitely differentiable.
- 10. Let f,g be 2π -periodic functions. If f and g are Riemann integrable, then the best we can say about f*g is that it is 2π -periodic and
 - A. C Bounded.
 - B. C Riemann integrable.
 - C. C Piecewise continuous.
 - D. C Continuous.
 - E. C Continously differentiable.
 - F. C Twice continuously differentiable.
 - G. C Infinitely differentiable.
- 11. Let f,g be 2π -periodic functions. If f and g are Riemann integrable, then the best we can say about fg is that it is 2π -periodic and
 - A. C Bounded.
 - B. C Riemann integrable.
 - C. C Piecewise continuous.
 - D. C Continuous.
 - E. C Continously differentiable.
 - F. C Twice continuously differentiable.
 - G. C Infinitely differentiable.
- 12. Let f be a 2π -periodic function, and let 1 be the constant function 1. Then f*1 is

 - B. C The value of f(x) at the point x=0.
 - C. C The constant function with value equal to f(1).
 - D. O 0.
 - E. C The same function as f.
 - F. C The constant function 1.
- 13. Let f be a continuous 2π -periodic function, and let K_n be a family of approximations to the identity (a.k.a. good kernels). Which of the following statements is true?
 - A. \circ The functions $f*K_n$ converge to zero as n goes to infinity.
 - B. C For each x, $K_n(x)$ converges to f(x) as n goes to infinity.
 - C. C For each n, $f * K_n(x)$ converges to f(x) as x goes to infinity.
 - D. C For each x and each n, we have $f * K_n(x) = f(x)$.
 - E. C For each x, $f * K_n(x)$ converges to f(x) as n goes to infinity.
 - F. C For each x, $f * K_n(x)$ converges to 1 as n goes to infinity.

Score: 0/130

Expand all answers