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Abstract

Some connections between linear minimum mean square error estimators, maximum output
SNR filters and the least square solutions are presented. The notes have been prepared to be
distributed with EE 503 (METU, Electrical Engin.) lecture notes.

1 Linear Minimum Mean Square Error Estimators

The following signal model is assumed:

r = Hs + v (1)

Here r is a N × 1 column vector denoting the observations. In this model, s is the desired signal
vector, v is the interference vector on the observations. We assume that s and v are uncorrelated as
in all stochastic filtering applications.

It can be noted that the observations are linear combinations of desired quantities and interference.
Here the matrix H is an N × M matrix (N can be less than or greater than M , hence the system
can be under or over determined). H can be considered as the channel or the observation system or a
linear combiner for the modes where the modes are the columns of H. The column vector s contains
M entries each of which is to be estimated.

In class, we have derived the optimal linear minimum mean square error estimator as the solution
of the following system of equations:

RrW = Rrs (2)

Here Rr = E{rrH} is the auto-correlation matrix of the observations and Rrs = E{rsH} is the
cross-correlation matrix of observations and the desired variables. The minimum mean square error
estimate for s is given as follows:

ŝ = WHr (3)

The error covariance matrix for the minimum error estimator is as shown below:

Re = E{(s− ŝ)︸ ︷︷ ︸
e

(s− ŝ)H)︸ ︷︷ ︸
eH

} = E{e(sH − rHW)} (a)
= E{esH} − E{erH}︸ ︷︷ ︸

0

W

= E{(s−WHr)sH}
= Rs −WHRrs (4)

The zero matrix on the right hand side of equation shown with (a) is due to the orthogonality condition
of the optimal estimator.

Next, we explicitly calculate the estimator in terms of H, Rs and Rv matrices. The following can
be easily verified:

Rr = HRsHH + Rv

Rrs = HRs (5)
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Then the optimal filter is given as follows:

W = (HRsHH + Rv)−1HRs (6)

The estimator and its error covariance matrix is then

Linear Min. MMSE Estimator (Form 1)
ŝ = WHr = RsHH(HRsHH + Rv)−1r
Re = Rs −RsHH(HRsHH + Rv)−1HRs

(7)

This concludes the derivation of the estimator. In the following section, we present an alternative
form which is mathematically identical but has some implementation advantages if H matrix is tall
and long (N > M or the number of observations > the number of unknowns) which is the case of
interest for most of the time.

1.1 An Alternative Form for Linear MMSE Estimator

We follow the derivation given by Luenberger in [1, p.90].
The matrix identity

RWH(WRWH + Q)−1 = (WHQ−1W + R−1)−1WHQ−1 (8)

can be proven easily by pre and post multiplying both sides of the relation by WHQ−1W + R−1 and
WRWH + Q respectively. Using this identity we can write the following:

RsHH(HRsHH + Rv)−1 = (HHR−1
v H + R−1

s )−1HHR−1
v (9)

Replacing the related terms in (7), we get the second form of the estimator:

Linear Min. MMSE Estimator (Form 2)
ŝ = WHr = (HHR−1

v H + R−1
s )−1HHR−1

v r
Re = Rs − (HHR−1

v H + R−1
s )−1HHR−1

v HRs

= (HHR−1
v H + R−1

s )−1
(
(HHR−1

v H + R−1
s )Rs −HHR−1

v HRs

)
= (HHR−1

v H + R−1
s )−1

(10)

In many applications the number of observations is significantly larger than the number of variables
to estimate. As an example, if 10 observations are collected to estimate 2 variables; the first form
requires 10 × 10 matrix inversion, the second form requires 2 × 2 matrix inversion which makes a lot
of difference in the implementation.

2 Maximum SNR Filters

In many applications, SNR determines the performance of a system. Therefore its improvement is a
major goal in signal processing.

We assume that N observations of a WSS random process s[n] are made under additive noise
process v[n] which is also WSS and uncorrelated with s[n].

r[n] = s[n] + v[n] (11)

The SNR of the observations is defined as the input SNR.

(SNR)in =
E{s2[n]}
E{v2[n]} =

σ2
s

σ2
v

(12)

(It should be noted that both s[n] and v[n] are assumed to be zero-mean processes as we have assumed
during the lectures.)
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As we know, the output of a LTI filter with the input r[n] is known to be WSS stationary and its
variance can be calculated as follows.

y[n] =
N−1∑

k=0

h∗kr[n− k] = hHr[n] (13)

Here we assume that the LTI filter is FIR and with the impulse response of hn. The vectors h and r[n]
appearing on the right most side of (13) are column vectors which are defined as hT = [h0 . . . hN−1]T

and r[n]T = [r[n] r[n− 1] . . . r[n− (N − 1)] ]T .
The signal and noise term at the filter output can then be expressed as

y[n] = hHs[n]︸ ︷︷ ︸
signal

+hHv[n]︸ ︷︷ ︸
noise

(14)

The output SNR becomes as follows:

(SNR)out =
E{|hHs[n]|2}
E{|hHv[n]|2} =

hHRsh
hHRvh

(15)

The filter maximizing the output SNR can be found as the solution of the following optimization
problem:

h∗ = arg max
h

hHRsh
hHRvh

(16)

The filter maximizing this ratio is called as the maximum SNR filter h∗ and it can be shown that it
is the eigenvector of R−1

v Rs with the maximum eigenvalue.

h∗ ∝ eigenvector of (R−1
v Rs) with the maximum eigenvalue (17)

It should be noted that h∗ is uniquely determined apart from a constant scaling. It is clear that by
scaling h∗ with an arbitrary complex constant, we can achieve the same output SNR.

More information on the discussed optimization problem can be found in the linear algebra books
under the topic of Rayleigh quotient. It should also be noted that h∗ is also called the generalized
eigenvector of Rv and Rs with the maximum eigenvalue. (Matlab’s “eig.m” function has an option
of calculating the generalized eigenvectors.)

This concludes the discussion of maximum-SNR filters. Below we examine a special case which
naturally emerges in many applications.

In many applications, the auto-correlation matrix of s[n] is rank-1, that is

Rs = σ2
sppH (18)

For this special case, the maximum SNR filter and the maximum SNR value can be written as follows:

h∗ ∝ R−1
v p

max(SNR)out = pHR−1
v pσ2

s (19)

It should be noted that the maximum-SNR filter is well known whitened matched filter for this case.
It is the matched filter for the white noise case.

3 Connection Between Max-SNR and Min-MMSE Filters for Processes
with Rank-1 Spectral Expansion

It is intuitively clear that filtering the observations to remove the noise is helpful to improve the SNR.
In this section, we show that the min-MMSE filters and Max-SNR filters are (apart from a constant
complex scaling) identical for rank-1 Rs matrices. Hence min-MMSE filter is equivalent to Max-SNR
filter in the sense of optimizing the SNR for this type of processes.
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Let s[n] be a rank-1 process observed under additive white noise,

r = ps + v (20)

Here r,p and v are length N column vectors; s is a zero-mean scalar with variance σ2
s and v is a

complex valued process with zero-mean and covariance matrix Rv.
By substituting H → p, Rs → σ2

s in (10), we get

ŝ = wH
MMSEr =

1
pHR−1

v p + 1
σ2

s

pHR−1
v︸ ︷︷ ︸

wH
max−SNR

r. (21)

This equation shows that the min-MMSE filter is the scaled version of the max-SNR filter. Hence
they yield the same output SNR.

The minimum error of MMSE filter can also be written from (10):

σ2
e =

1
(pHRvp + 1

σ2
s
)

=
σ2

s

Max(SNR)out + 1
(22)

Here we have identified pHRvpσ2
s as the maximum SNR for rank-1 stochastic signals, see (19).

The last equation can be written in the following simple form

Max(SNR)out =
1

norm-min-MMSE
− 1 (23)

where ”norm-min-MMSE” is σ2
e

σ2
s

which is the normalized minimum mean square estimation error. The
generalized version of similar results are available in [2, around eq.25].

4 Connection Between MMSE and Weighted Least Square Filters

The minimum mean square error filter always produces an output even when the number of obser-
vations is less than the number of unknowns (undertermined case). This is due to a-priori moment
information about the observations and desired process.

As the a-priori information gets looser, that is less informing, the minimum mean square error
filter approaches weighted least square (LS) filter. The weighted LS filter is known to be optimal
for the estimation of non-random parameters which are observed with linear models under correlated
noise, [3].

The convergence of (MMSE) → (weighted LS) can be noted from (10) by substituting Rs →∞I:

ŝ = WH
MMSEr = (HHR−1

v H)−1HHR−1
v︸ ︷︷ ︸

weighted LS

r (24)

The last equation is the weighted least square solution of r = Hs equation system with the weight
matrix R−1

v . The mean square error covariance matrix becomes

Re = (HHR−1
v H)−1 (25)

When Rv is taken as unit variance white noise, the classical least square solution emerges. In com-
munications, the LS solution is also known as the zero-forcing solution.
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