
 1 

Integrating Risk into Project Control using Bayesian 

Networks 

Erhan Pişirira,b, Yasemin Süb, Barbaros Yetb* 

aDepartment of Statistics, Hacettepe University, Ankara, Turkey 

bIndustrial Engineering Department, Hacettepe University, Ankara, Turkey 

*Corresponding author: byet@metu.edu.tr 

Electronic version of an article published as International Journal of Information Technology 

& Decision Making, Vol. 19, No. 5 (2020) 1327-1352, DOI: 10.1142/S0219622020500315 

©World Scientific Publishing Company https://www.worldscientific.com/worldscinet/ijitdm 

Abstract 

Projects are, by definition, risky and uncertain ventures. Therefore, the performance and risk of 

major projects should be carefully controlled in order to increase their probability of success. 

Quantitative project control techniques assist project managers in detecting problems, thus 

responding to them early on, by comparing the baseline plan with the project progress. 

However, project risk and uncertainty are rarely considered by these techniques. This paper 

proposes a project control framework that integrates the project uncertainty and associated risk 

factors into project control. Our framework is based on Earned Value Management (EVM), 

which is an effective and widely used quantitative project control technique. The framework 

uses hybrid Bayesian Networks (BNs) to enhance EVM with the ability to compute the 

uncertainty associated with its parameters and risk factors. The framework can be applied to 

projects from different domains, and we illustrate its use with a simple example and a case study 

of a construction project.  

Keywords: Project management, Project control, Risk analysis, Bayesian Networks, Earned 

Value Management 
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1. Introduction 

Projects are key elements to implement the strategy of most organisations. Despite extensive 

research in project management, many projects fail to meet their schedule and cost objectives, 

with poor estimation being the largest contributor to these failures (Price Waterhouse Cooper, 

2012). Quantitative project control techniques provide project managers with a greater 

understanding of the project performance often in multiple success criteria (Hazir, 2015). This 

enables them to respond to potential problems in earlier stages, which can increase the 

probability of success. Quantitative project control techniques typically monitor the project’s 

progress, and compare it to the baseline plan to assess any deviations (W. H. Lipke, 2003; PMI, 

2011). These techniques can provide an accurate assessment of the performance when the 

baseline plan and project progress can be precisely estimated. However, there is a great deal of 

uncertainty involved with both of these elements (Atkinson et al., 2006; Hall, 2012). Firstly, 

projects are subject to risk which may affect the baseline plan. Both the plan and project 

performance assessments may need to be adjusted when risk factors realise. Secondly, 

completion rate of activities needs to be determined in order to assess project progress. 

However, it is often difficult to give a precise estimate of completion rate especially for unique 

and complicated activities.   

In this paper, we propose a novel project control framework that uses Bayesian Networks (BNs) 

to incorporate uncertainty and risk factors associated with the success measures of a project into 

project control. Our framework computes these factors when estimating project control metrics. 

It enables project managers to assess their confidence on these metrics, and to make ‘what-if’ 

analysis for different risk scenarios. The proposed model is based on a widely accepted project 

control approach called Earned Value Management (EVM) (PMI, 2011). This paper enhances 

the EVM approach, and extends the previous modelling work in this area (Khodakarami & 

Abdi, 2014b), by providing a comprehensive and widely applicable project control framework 
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that enables EVM to take uncertainty and risk factors into account in project control, and 

expects minimal technical requirements regarding uncertainty modelling from project 

managers. We also present an associated Python script for the proposed framework, i.e. 

PRObabilistic Project COntrol Tool (PROPCOT, 2020), to enable a wider use of the tool. The 

parameters for PROPCOT can be defined in a spreadsheet for ease of use and then PROPCOT 

can automatically populate the proposed BN framework based on these parameters.  

In the remainder of this paper, Section 2 introduces the EVM project control approach and 

reviews previous attempts to incorporate uncertainty into this approach. Section 3 gives a recap 

of BNs and reviews its previous uses in project management and control. Section 4 describes 

the proposed Bayesian EVM framework and illustrates its use with a simple project example, 

and Section 5 applies the proposed approach to a case study of a construction project. Finally, 

Section 6 presents our conclusions and discusses the possible future steps. 

2. Project Control  

Many frameworks are available for measuring project success as its definition is not 

straightforward (Atkinson, 1999; Ika, 2009; Jugdev & Moller, 2006). A useful framework must 

take three basic constraints of projects into consideration. These are the time constraint, budget 

constraint, and completion of work adhering to a baseline plan with technical specifications. 

EVM is a widely used project control approach, recommended by the Project Management 

Institute (PMI, 2013) as it is able to monitor a project in terms of these three elements. It has 

been used in different domains including defence (E. H. Kim et al., 2003), construction 

(Fleming & Koppelman, 1997), and software (Boehm, 2003) industries.  

EVM compares the value of the work completed in the project with the baseline plan and actual 

expenditures. The parameters of EVM can be used to make predictions about completion time 

and budget of the project. Calculations regarding EVM are simple and have been implemented 
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in many project management software packages. EVM uses three parameters as inputs and 

calculates several performance indices to estimate project progress in terms of time, cost and 

work plans. The input parameters for EVM calculations are as follows: 

• Planned Value (PV) is the estimated total value of the project in the project plan. 

• Earned Value (EVt) is the planned value of the completed work at the time of project 

control t, and it is calculated by multiplying the total PV of the project by the percentage 

of completion of the project at t (PCt). 

𝐸𝑉𝑡 = 𝑃𝑉 × 𝑃𝐶𝑡 

• Actual Cost (ACt): ACt is the resources spent for the completed work up to t.  

PV, EVt and ACt are measured in the same unit. Typically, they are measured by using the 

budgeted cost or effort estimate of the project activities. Using these three main parameters, 

EVM calculates absolute and relative time and cost performance indicators for the project. The 

time performance indicators of EVM are as follows: 

• Schedule Performance Index at t (SPIt) is the ratio of EVt to the cumulative planned 

value of the project until t, i.e. PVt. 

𝑆𝑃𝐼𝑡 = 𝐸𝑉𝑡/𝑃𝑉𝑡 

• Schedule Variance at t (SVt) is the difference between EVt and PVt. 

𝑆𝑉𝑡 = 𝐸𝑉𝑡 − 𝑃𝑉𝑡 

Similarly, cost performance indicators are as follows: 

• Cost Performance Index at t (CPIt) is the ratio of EVt to ACt. 

𝐶𝑃𝐼𝑡 = 𝐸𝑉𝑡/𝐴𝐶𝑡 

• Cost Variance (CVt) is the difference between EVt and ACt. 
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𝐶𝑉𝑡 = 𝐸𝑉𝑡 − 𝐴𝐶𝑡 

EVM metrics can also be used to predict the total cost and duration of the project at the 

completion. Estimate at Completion (EAC) predicts the cost of the whole project at the 

completion date. It is calculated by the ratio of the total PV of project to the project CPIt. 

𝐸𝐴𝐶 =
𝑃𝑉

𝐶𝑃𝐼𝑡
 

Time Estimate at Completion (TEAC) predicts the duration of the whole project at the 

completion data, and it is calculated by the ratio of the initial estimation for the project duration 

(PD) to project SPIt. 

𝑇𝐸𝐴𝐶 =
𝑃𝐷

𝑆𝑃𝐼𝑡
 

Table 1 shows a simple project example that consists of four activities to demonstrate the use 

of EVM. This example is a student project that is planned to be completed in 6 months. The 

project activities are reviewing the relevant studies, developing a quantitative model, 

conducting simulated experiments on the model and analysing their results. Table 1 shows PV 

of these activities in each month.  

Table 1 Student Project Activities (hours) 

Activities Jan Feb Mar Apr May Jun TOTAL 

Literature review 75 100 75      250 

Modelling   30 45 75    150 

Experiments       162 18   180 

Analysis       8 32 40 80 

PROJECT       580 hours 

 

Suppose the student is now in the end of 4th month of the project and would like to assess the 

project progress in terms of time and effort spent. PV of the modelling, literature review, 
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experiment and analysis activities are respectively 250, 150, 162 and 8 hours for the end of 4th 

month. The student also needs to assess the PC and the AC for each activity. The student 

estimates that she completed 80% of the literature review, 70% of the modelling, 40% of the 

experiments and 30% of the analysis, and she spent 230, 100, 35 and 30 hours for these activities 

respectively. The EV, SPI, CPI, EAC and TEAC are calculated from these values as shown 

above. Table 2 shows the EVM calculations for this project, and Figure 1 shows a graphical 

illustration of EVM measures. EV and AC values stop at the time of project control that is the 

end of April whereas PV values are calculated for the whole duration of the project. The EVM 

results show that the project is progressing delayed but slightly under the planned effort as SPI 

is less than 1 and CPI is greater than 1. This can also be seen from the difference between PV 

and EV, and AC and EV in the end of April in Figure 1. EAC for the project is 650 hours of 

work, and about 2.5 months of delay is expected.  

Table 2 Traditional EVM for Student Project Example 

Project Definition Project Progress Metrics Predictions 

Work Package 
PVTotal 

(hours) 
PVApril 

(hours) 
PC 
% 

AC 
(hours) 

EV 
(hours) 

SPI CPI 
TEAC 

(months) 
EAC 

(hours) 

Lit. Review 250 250 80% 230 200 0.80 0.87   

Modelling 150 150 70% 100 105 0.70 1.05   

Experiments 180 162 40% 35 72 0.44 2.06   

Analysis 80 8 30% 30 24 3.00 0.80   

PROJECT 660 570 60% 395 401 0.70 1.02 ~ 8.5 650 
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Figure 1 Project Example EVM for April 

Since the schedule performance of EVM is measured by comparing the budgeted cost of 

completed work and the planned work, schedule performance indicators normalise as the 

activity is close to completion, regardless of the delays. In order to overcome this limitation 

Lipke (2003) proposes Earned Schedule Management (ESM). ESM calculates the schedule 

performance based on earned schedule (ES), which is the duration for the project when the 

initial PV should have been the equal to the EVt at project control moment t. In order to calculate 

the ES at t, i.e. ESt, we need to find the time increment t' where the earned value of the project 

EVt is greater than or equal to the PVt’, and is less than PVt’+1 as follows: 

𝐸𝑆𝑡 = 𝑡′ +
𝐸𝑉𝑡 − 𝑃𝑉𝑡′

𝑃𝑉𝑡′+1 − 𝑃𝑉𝑡′
 

where 𝐸𝑉𝑡 ≥ 𝑃𝑉𝑡′ and 𝐸𝑉𝑡 < 𝑃𝑉𝑡′+1. 

Absolute and relative schedule performance indicators for ESM are calculated as follows: 
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𝑆𝑃𝐼𝑡 =
𝐸𝑆𝑡
𝑡

 

𝑆𝑉𝑡 = 𝐸𝑆𝑡 − 𝑡 

In the student project example, ES is 3.31 for the end of 4th month. SPI and TEAC based on ES 

are 0.83 and 7.25 months respectively. 

In order EVM and ESM to work accurately, a project manager needs to know PV and PCt 

precisely, but both factors are uncertain by nature. The completion percentage of most activities 

can be precisely known only when they have not yet started or been fully completed. Otherwise, 

it is often not possible for project managers to determine, for example, the difference between 

whether an activity is 35% or 40% complete. PV of activities represent the baseline plan which 

is subject to many risk and opportunity factors that can adjust PV when they realise (Akintoye 

& MacLeod, 1997; Lukas, 2012; Tesch et al., 2007). Traditional EVM and ESM disregard the 

uncertainty regarding these factors.  

Several previous studies tried to incorporate uncertainty in EVM and ESM, mostly for 

predicting project completion time and cost based on these methods. Lipke et al. (2009) used 

log-normal distribution to define confidence intervals of performance indices. Similarly, Caron 

et al. (2013) modelled the indices with log-normal distribution and used Bayesian model and 

Gibbs sampling method to update the model with new observed data. Pajares & Lopez-Paredes 

(2011) used Monte Carlo simulation to calculate probability distribution of project completion 

time and project cost to implement uncertainty into EVM. Naeni et al. (2011) developed an 

EVM method with fuzzy logic to estimate cost and schedule under uncertainty. In the fuzzy 

EVM method planned values of activities are defined as ordinal variables such as ‘low’, 

‘moderate’ and ‘high’, and then converted into fuzzy numbers for calculations. Narbaev & De 

Marco (2014) proposed a new cost estimate at completion method based on Gompertz Growth 

Model, which is mainly used to model growth in animals and plants. Colin & Vanhoucke (2014) 
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designed a statistical process control approach that analyses the probability of project falling 

behind the schedule. This approach defines tolerance limits for EVM/ESM parameters. 

Batselier & Vanhoucke (2017) developed an Exponential Smoothing-based Method (XSM). 

This method uses EVM parameters in exponential smoothing formulas. Khesal et al. (2019) 

attempted to overcome shortcomings of EVM regarding cost, quality, risk, and schedule control 

by using linear and Taguchi-based quality methods. The study integrated new variables such as 

“quality earned value”, “quality actual cost”, and “quality performance index” to the core 

structure of EVM to include quality and risk management into estimations. Kim and Pinto 

(2019) attempted to integrate uncertainty into EVM by considering possible trajectories of the 

CPT parameters. Their study focussed only on CPI and cost overrun probabilities and assigned 

a probability distribution to only EAC. Acebes et al. (2014) used Monte Carlo simulation in 

their study to explain time and cost variances in projects. They defined parameters like 

completion percentage, cost at completion, and time of the cost to run simulations. As a result, 

they calculated probability distributions and confidence intervals for cost and schedule. In a 

similar study, Acebes et al. (2015) proposed to use earned value instead of project completion 

percentage parameter.  

Caron et al. (2013) draws an analogy between using project performance indices of EVM and 

“driving a car while looking just in the rear-view mirror”. They argue that it is not realistic to 

assume future events will be similar to the past events in an area with high risks and uncertainty 

like project management. For more accurate estimations, risk factors that affected the past 

events and those might affect the future ones should be taken into consideration. Our proposed 

framework complements previous studies by incorporating the uncertainty and risk factors 

associated with specific project activities in project control and using a unified framework that 

calculates the project performance metrics based on these uncertainties and risk factors. In the 

following section, we give an overview of BNs, which is the probabilistic modelling technology 
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that we use for our framework, and in Section 4 we describe the proposed Bayesian EVM 

framework. 

3. Bayesian Networks 

Bayesian networks (BNs) are probabilistic graphical models that are composed of a graphical 

structure and a set of parameters (Pearl, 1988). The graphical structure is a directed acyclic 

graph (DAG) with nodes representing variables and directed edges between the nodes 

representing causal and probabilistic relations between those variables. When two nodes A and 

B are directly connected, i.e. A → B, A and B are respectively the parent and child of each other. 

Each node has associated parameters that represent its conditional probability distribution 

(CPD) with its parents. These CPDs are often represented in a tabular structure for discrete 

nodes. Other representations include tree-structured (Boutilier et al., 2013) and rule-based 

CPDs (Poole & Zhang, 2003). 

Projects are done to create unique products and services, thus if relevant data is available it is 

often scarce. This limits the use of purely data-driven learning algorithms in project 

management as scarce data must be supported with expert knowledge. Moreover, they involve 

uncertainty that must be considered in planning, execution and control stages. BNs offer a 

suitable modelling approach for project management due to their ability to incorporate expert 

knowledge for probabilistic reasoning. The graphical structure of a BN is suitable for modelling 

causal relations and therefore offer a suitable medium for using expert knowledge. Efficient 

algorithms are available for computing discrete BNs (Lauritzen & Spiegelhalter, 1988) and 

hybrid BNs that contain both discrete and continuous variables (Neil et al., 2007; Salmerón et 

al., 2018). Different types of probabilistic reasoning can be done with BNs including predictive 

and diagnostic inference and ‘explaining away’. Hence, once a BN is built it can be used to 

make predictions, diagnosis or ‘what-if’ types of scenario analysis. As a result, BNs have been 

used in a wide variety of domains for decision analysis and risk assessment problems including 
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medicine (Yet et al., 2014), reliability (Mahadevan et al., 2001), sports (Constantinou et al., 

2012, 2013) and legal domains (Fenton et al., 2013, 2014).  

Despite these advantages, the use of BNs in the project management domain has been relatively 

limited. They have been mainly used in the software project management domain due to 

proximity of this domain to computer scientists. Moreover, BNs have not been widely used for 

project control despite the need for incorporating uncertainty and probabilistic analysis in this 

problem (see Yet (2017) for a review of BNs in project management). Fan & Yu (2004) 

developed a BN that estimates project risks at different stages of software projects. Fenton et 

al. (2004) designed a BN structure that considers the trade-off between quality, time, and cost 

in order to select which software project to invest. Project managers can use this structure as a 

decision support system. Jenzarli (1997) modelled the uncertainties in project schedule by 

transforming Program Evaluation and Review Technique (PERT) networks to hybrid BNs. 

Since computation of hybrid BNs are challenging, (E. N. Cinicioglu & Shenoy, 2006; E. 

Cinicioglu & Shenoy, 2009) offered two methods that respectively use mixture of Gaussians 

and truncated exponentials to compute PERT BNs. Khodakarami et al. (2007) used dynamic 

discretization algorithm to solve a similar BN that models project schedule uncertainties based 

on the critical path method. These models are not designed to be used as a general project 

control tool as they do not give any insight about project cost. De Melo & Sanchez (2008) 

developed a discrete BN that estimates delays in software maintenance projects. Luu et al. 

(2009) also developed a discrete BN model for the same purpose. These BNs do not model 

parameter uncertainty and cannot take dynamic changes into consideration. Fineman et al. 

(2009) developed a BN that models the trade-off between quality, time, and cost for projects. 

Lee et al. (2009) aimed to estimate the budget, time, and missing requirement risks with a BN 

they designed for shipbuilding projects. Hu et al. (2013) developed a BN for software project 

risks which is based on data and then updated with expert opinion. Khodakarami & Abdi 
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(2014b) used BNs to estimate project cost with its causes. Perkusich et al. (2015) aimed to 

determine problems in software development process using BNs. Sanchez et al. (2020) used 

BNs for to improve project management maturity by estimating and reducing cost overrun risks. 

Yet et al. (2016) developed a BN model that estimates the project return and analyses the 

associated risk. This model can be used for project selection, and it can take causal factors and 

parameter uncertainty into account for this task. Yet et al. (2020) expanded this BN model and 

applied it to evaluate real agricultural development projects under socio-political and 

environmental risks. However, both of these studies were not aimed for project control as they 

do not estimate potential variations in project schedule. 

This paper builds on and addresses the gaps of the hybrid BN model proposed by  Khodakarami 

& Abdi (2014a), and transforms it into a widely applicable project control framework. Their 

model estimates the EVM parameters and the probability distributions of CPI and EAC under 

risk scenarios. They present the BN structure by using a specific example where risk factors are 

modelled as naive BNs connected to PV and AC parameters for each activity, and PC and EV 

parameters are modelled as single variables representing the whole project. However, 

replicating or adapting this BN model to a different project is not trivial. Issues including how 

to define a unified PC variable from multiple PC distributions, or how to model a partially 

completed PV variable were not addressed. These issues can be challenging especially to 

experts who are not familiar with BNs. This paper extends their model into a generalized 

probabilistic project control framework. The proposed framework offers repeatable and 

reusable BN fragments for modelling risk factors, activities and their relations to the project 

progress. Therefore, the framework can be applied to different projects by duplicating these 

fragments and defining their parameters according to project activities. The user does not need 

to consider, or manually amend, the structure or relations between activity and project progress 

fragments. Modelling of PCs and PVs of incomplete activities are taken into account in these 



 13 

fragments. Moreover, we also present the PROPCOT Python script for the proposed framework 

that collects the inputs regarding the project control task from a spreadsheet and does not require 

extensive technical knowledge regarding BNs and can be adapted to different projects with 

reasonable effort (see Section 5). In the following section, we present our BN framework for 

incorporating uncertainty and risk factors into project control. 

4. Proposed Bayesian Framework 

Our framework models EVM or ESM of a project by using a hybrid BN that contains both 

discrete and continuous variables. This enables to incorporate the uncertainty regarding planned 

values or completion rates of each activity and risk factors associated with these activities into 

project control. Several efficient algorithms are available for computing such hybrid BNs 

including Markov Chain Monte Carlo (MCMC) sampling or Dynamic Discretization (DD) 

(Neil et al., 2007; Salmerón et al., 2018), and these are readily implemented in several 

commercial (AgenaRisk, 2015) or open-source software (Salvatier et al., 2016). The PROPCOT 

script is based on PyMC (Salvatier et al., 2016).  

The BN structure is based on the well-established principles of EVM and ESM. Figure 2 shows 

an overview of the proposed BN framework where each node represents a BN fragment. The 

framework is composed of three types of BN fragments. The ‘Risk Factors’ fragment is a 

discrete BN that models the relations between the risk factors. The ‘Activity i Progress’ 

fragments model the progress by using PV, EV and AC regarding each project activity i. Each 

activity progress fragment has the same BN structure, but their parameters are different due to 

different PV and completion rates of activities. The ‘Project Progress’ fragment models the 

overall project performance metrics and predictions regarding completion time and budget of 

the project. In the remainder of this section, the structure and parameters of each of these 

fragments are described. 
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Figure 2 Model Overview 

4.1 Risk Factors 

Figure 3 shows an example of a ‘Risk Factors’ fragment where RFi represents the risk factor i. 

Risk factors are typically binary variables that represent the realisation of the risk factor or 

ordinal variables with ranked states, such as ‘low’, ‘medium’ and ‘high’, that represent the 

degree of the risk factor. Risk factors may adjust the planned values of certain activities when 

they realise.  

4.2 Activity i Progress 

Figure 3 shows a BN fragment for modelling activity progress using the EVM approach. The 

probability distributions of the planned value and percentage of completion of activity i at time 

t, i.e. APVi and apci,t respectively, need to be defined in the BN fragment. We define APVi is by 

a mixture distribution that is conditioned on the associated risk factors. For example, Table 3 

shows a case where two risk factors RF1 and RF2 affect APVi, and its probability distribution is 

defined by a mixture of Normal and Triangular. The probability distribution of apci,t represents 

the project managers’ assessment regarding activity completion. Since it is often difficult for 

project managers to estimate an accurate single value for completion percentage, we define it 

by using a probability distribution bounded between 0 and 1 in our framework. For example, a 

Uniform (0.6, 0.8) distribution can be used if the project manager thinks the completion 
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percentage of the activity is between 60% and 80%. The actual cost of activity i at time t aaci,t 

is an observed value as the project manager can track resources spent for the activity. 

Table 3 Parameters of PVi 

 RF1 = True, 

RF2 = True 

RF1 = False, 

RF2 = True 

RF1 = True, 

RF2 = False 

RF1 = False, 

RF2 = False 

APVi Normal(20,3) Normal(13,2) Triangular(10,13,14) Normal(10,1) 

 

The rest of the variables in the ‘Activity i Progress fragment’ are defined by functions 

conditioned on their parents. The earned value of activity i at time t aevi,t is defined by the 

planned value of i APVi and percentage of completion of i at t apci,t as follows: 

𝑎𝑒𝑣𝑖,𝑡 = 𝐴𝑃𝑉𝑖 × 𝑎𝑝𝑐𝑖,𝑡 

apvi,t represents the work that is expected to be completed until t in the project plan: 

𝐴𝑃𝑉𝑖 =∑𝑎𝑝𝑣𝑖,𝑡
𝑡

 

The SPIt, CPIt, SVt and CVt performance indices of specific activities can be calculated as 

described in Section 2 in our framework.  
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Figure 3 Risk Factors and EVM Activity Progress Fragments 

ESM can also be adopted in our framework. Figure 4 shows the BN fragment for modelling 

activity progress in ESM. Since aevi,t and apvi,t are probability distributions in our framework, 

we use their expected values to calculate the earned schedule of activity i at t aesi,t,  

𝑎𝑒𝑠𝑖,𝑡 = 𝑡′ +
𝑎𝑒𝑣𝑖,𝑡 − 𝑎𝑝𝑣𝑖,𝑡′

𝑎𝑝𝑣𝑖,𝑡′+1 − 𝑎𝑝𝑣𝑖,𝑡′
 

where t' is the time increment where the expected value of aevi,t is greater than or equal to the 

expected planned value at t’, and is less than the expected planned value at t’+1, i.e. 

𝐸(𝑎𝑒𝑣𝑖,𝑡) ≥ 𝐸(𝑎𝑝𝑣𝑖,𝑡′) 

𝐸(𝑎𝑒𝑣𝑖,𝑡) < 𝐸(𝑎𝑝𝑣𝑖,𝑡′+1) 
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Figure 4 ESM Activity Progress Fragment 

4.3 Project Progress 

Figure 5 shows the relation between activity progress fragments and the project progress 

fragment. The planned value PVt, earned value EVt and actual costs ACt of the project at t are 

calculated by summing up apvi,t and aevi,t distributions and aaci,t values from each activity i 

fragment as follows:  

𝑃𝑉𝑡 =∑𝑎𝑝𝑣𝑖,𝑡
𝑖

 

𝐸𝑉𝑡 =∑𝑎𝑒𝑣𝑖,𝑡
𝑖

 

𝐴𝐶𝑡 =∑𝑎𝑎𝑐𝑖,𝑡
𝑖
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CV, SV, SPI, CPI, EAC and TEAC metrics are calculated from these distributions as described 

in Section 2. 

 

Figure 5 Project Progress Fragment 

4.4 Application: Student Project 

We used the student project example shown in Section 2 to demonstrate the application of the 

proposed Bayesian EVM approach, and to illustrate its differences and capabilities compared 

to the traditional EVM approach. 

The traditional EVM disregards the uncertainties regarding completion percentages and 

planned values in its calculations. Although the student thinks she completed 30% of the 

analysis activity, it is often difficult to provide an accurate figure for this especially when the 

activity is not close to completion. Our approach extends the traditional EVM analysis in three 

aspects: 

1. The proposed framework enables the project manager to define completion rates by 

using statistical distributions to reflect the uncertainty regarding their estimates. The 
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Beta distribution is a suitable statistical distribution for this case as it is bounded 

between 0 and 1, and it has a flexible shape. Other distributions that are bounded 

between 0 and 1 can also be used for defining the completion percentages. Table 4 

shows the statistical distributions used for defining each activity completion percentage, 

their mean and 90% confidence interval.  

Table 4 Completion Percentage Distributions for Student Project Example 

 Literature Review Modelling Experiments Analysis 

Distribution Beta(80,20) Beta(70,30) Beta(20,30) Beta(6,14) 

Mean (90% CI) 0.80 (0.73 – 0.86) 0.70 (0.62 – 0.77) 0.40 (0.29 – 0.52) 0.30 (0.15 – 0.48) 

 

2. Our framework enables the modelling of the causal relations between the risk factors 

and project activities. In this example, the student identified technical problems 

regarding the modelling software, problems regarding acquiring data, having 

unexpected results from the experiments and high workload in the exam period as the 

four main risk factors. These risk factors were modelled by a BN fragment and their 

relations to the PV of different activities are defined as shown in Figure 6. The 

parameters of the risk factors BN fragment are shown in Table 5. 

 

Figure 6 Risk Factors Fragment for Student Project Example 
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Table 5 Parameters of Risk Factors for Student Project Example 

Parameters of Risk Factors BN Fragment 

P(Exams) = 0.8 

P(Technical Problems) = 0.3 

P(Data Problems) = 0.4 

P(Unexpected Results| Data Problems) = 0.50 

P(Unexpected Results | ¬ Data Problems) =  0.17 

  

3. The planned values are also defined by statistical distributions in our framework to 

reflect the uncertainty regarding plans. If PV of an activity could be affected by a risk 

factor, we use a mixture distribution conditioned on the risk factor for defining the PV. 

In this example, the student used mixtures of normal distributions to define the 

uncertainty regarding PV (Table 6). 

Table 6 Parameters of PV for Student Project Example 

 Exams: True Exams: False   

Literature Normal(260, 10) Normal(210,15)   

 Tech. Pr.: True, 

Exams: True 

Tech. Pr.: True, 

Exams: False 

Tech. Pr.: False, 

Exams: True 

Tech. Pr.: False, 

Exams: False 

Modelling Normal(220,20) Normal(160,15) Normal(130,15) Normal(105,10) 

 Data Pr.: True, 

Exams: True 

Data Pr.: True, 

Exams: False 

Data Pr.: False, 

Exams: True 

Data Pr.: False, 

Exams: False 

Experiments Normal(230,25) Normal(215,15) Normal(150,15) Normal(140,10) 

 Unexp. Res.: True, 

Exams: True 

Unexp. Res.: True, 

Exams: False 

Unexp. Res.: False, 

Exams: True 

Unexp. Res.: False, 

Exams: False 

Analysis Normal(130,30) Normal(120,30) Normal(60,15) Normal(50,10) 

 

AC values of each activity are known as shown in Table 2 and these are instantiated in the BN 

model. Once the PV and completion percentage distributions and AC values were defined, we 

calculated the posterior distribution of EV, SPI and CPI by using our framework. Figure 7 

shows the posterior distributions of the project EV, SPI, CPI, EAC and TEAC values.  
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Figure 7 Posterior distributions of Bayesian EVM model for student project 

As parameters are defined as probability distributions in our Bayesian EVM model, the 

posterior distributions of performance indices were calculated. The posterior distribution of the 

overall project EV has the mean value of 380.07 and standard deviation of 55.67; and with 90% 

probability it is between the values of 290.36 and 474.34. This gives us more information than 

the point value of 401 we get from traditional EVM calculations. SPI of the project has the 

mean value of 0.70, standard deviation of 0.07 and with 90% probability the SPI is between 

0.59 and 0.83. Project CPI is a distribution with the mean value of 0.96 and standard deviation 

of 0.14. CPI is between 0.74 and 1.20 with 90% probability. Note that, unlike the proposed BN 

model, the traditional EVM approach shown in Section 2 did not provide any information about 

the uncertainty of these performance indices. 

The posterior distribution of EAC has the mean value of 644.42 and standard deviation of 70.26. 

The uncertainty of this estimate is large due to high variance in the estimates of risk factor 

effects. With 90% probability, EAC is between the values of 545.74 and 770.44. This shows 
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that if everything goes as planned project completion may cost much less than what the student 

would believe based on traditional EVM method. However, if risk factors affect the flow of the 

project heavily, it might cost much more than what she estimated using only the traditional 

EVM method. Including risks and uncertainties in the calculations would assist the student to 

understand the variance and uncertainty regarding the project control metrics. The posterior of 

TEAC has the mean value of 8.62, the standard deviation of 0.91. Depending on the risk factors, 

TEAC can be between 7.26 and 10.21 months with 90% probability.  

Including risk factors in the model enables us to make scenario analyses in project control. For 

example, suppose the student did not have a high workload in the exam period, and she 

experienced technical problems regarding the use of the modelling software. We instantiated 

those variables in the BN model and calculate it to update the EVM metrics (see Table 7). 

Entering this scenario to the BN decreased the expected value and standard deviation of PV of 

each activity. In other words, the amount of work expected to complete each work is smaller 

under given scenario, as a higher workload in exam period was initially considered to be very 

likely and expected to affect all activities but this did not happen in this scenario.  

Table 7 Scenario Analysis Results for Student Project, Exams = False and Tech. Pr. = True 

 Default BN 
Scenario 

Exams = False, Tech. Pr. = True 

 Mean SD 5% 95% Mean SD 5% 95% 

Lit. Rev. PV 250.27 27.19 195.31 288.28 209.52 14.20 185.81 232.37 

Modelling PV 137.05 38.60 90.29 224.57 105.10 9.88 88.46 121.07 

Experiments PV 163.32 39.75 117.33 249.94 140.03 9.71 124.35 155.79 

Analysis PV 63.37 30.83 27.72 120.14 49.68 10.41 33.12 67.50 

Project EV 380.07 55.67 290.36 474.34 312.15 20.53 278.34 345.55 

Project SPI 0.70 0.07 0.59 0.83 0.70 0.03 0.65 0.76 

Project CPI 0.96 0.14 0.74 1.20 0.79 0.05 0.70 0.87 

EAC 644.42 70.26 545.74 770.44 639.66 31.26 589.74 693.00 

TEAC 8.62 0.91 7.26 10.21 8.59 0.41 7.93 9.29 
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4.6 PROPCOT 

The proposed framework and the examples and case studies shown in this paper can be 

calculated by the PROPCOT Python script and are available in PROPCOT (2020). PROPCOT 

is able to collect input parameters for the framework from a spreadsheet file. For simplicity of 

use, at most two binary risk factor parents can be defined for each work package in the 

spreadsheet. The source code for PROPCOT is also available to enable building of more 

complex risk factor models and extending of the tool.  

5. Case Study: Construction of a Biofuel Refinery 

In this section, we apply the proposed method to data from a real construction project of a 

biofuel refinery. The project data is taken from the project database of Gent University 

Operations Research & Scheduling Research Group (Batselier & Vanhoucke, 2015; Vanhoucke 

et al., 2016). The project consists of 23 activities that are planned to be completed between 2nd 

March 2015 and 15th July 2016. We evaluate the project’s progress on 29th July 2015. Note that, 

both fixed and variable costs were recorded for each activity in the project dataset (Batselier & 

Vanhoucke, 2015; Vanhoucke et al., 2016). We only used variable costs of each activity for PV 

and EV calculations as variable costs reflected activity progress in the project dataset. We 

excluded activities with zero variable costs as these activities represented lead times and waiting 

times in the project. As a result, we considered 16 activities for EVM, and five of these activities 

are planned to be started and actually started before 29th July 2015, i.e. “Tanks-Preparation”, 

“Skids-Preparation”, “Civil-Preparation”, “Automation-Preparation” and “Analytics-

Preparation”. Table 8 shows the activity details and observed parameters. The first group in 

Table 8 contains the five activities that have started before the project control moment; the 

second group contains is the future activities that do not affect the current project control 

parameters.  
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Table 8 Biofuel Refinery Construction Activities 

ID Work Package PD PV PC AC 

1 Tanks – Preparation  249 day(s) € 56,025.00 43% € 24,300.00 

3 Skids – Preparation  45 day(s) € 10,125.00 100% € 10,125.00 

12 Civil – Preparation  85 day(s) € 38,250.00 74% € 28,350.00 

19 Automation – Preparation  220 day(s) € 49,500.00 10% € 5,175.00 

21 Analytics – Preparation  260 day(s) € 58,500.00 17% € 9,675.00 

2 Tanks – On Site 1 day(s) € 1,350.00 0% € 0.00 

6 Skids – On Site 1 65 day(s) € 117,000.00 0% € 0.00 

7 Skids – On Site 2 20 day(s) € 36,000.00 0% € 0.00 

8 Skids – Commissioning  45 day(s) € 121,500.00 0% € 0.00 

10 Utilities – Lead Time 140 day(s) € 94,500.00 0% € 0.00 

11 Tie-inns 5 day(s) € 2,250.00 0% € 0.00 

13 Civil – On Site 80 day(s) € 360,000.00 0% € 0.00 

14 Labo Container 100 day(s) € 90,000.00 0% € 0.00 

16 Piping – On Site 55 day(s) € 99,000.00 0% € 0.00 

18 Electrical – On Site 30 day(s) € 13,500.00 0% € 0.00 

20 Automation – On Site 20 day(s) € 4,500.00 0% € 0.00 

22 Analytics – On Site 25 day(s) € 5,625.00 0% € 0.00 

 

The traditional EVM results are given in Table 9. SPI for the project is greater than 1. CPI is 

less than 1 by a small margin. Based on these values, Project cost at completion is estimated to 

be € 81,208.09 and project is expected to take approximately 13.8 months to complete.  

Table 9 Traditional EVM for Biofuel Refinery Construction 

Project Definition Project Progress Metrics Predictions 

Work Package 
PVTotal  

(€) 

PVJuly (€) PC 

% 

AC  

(€) 
EV (€) 

SPI CPI TEAC 

(Months) 

EAC  

(€) 

Tanks 55000 19800 40% 24300 22000 1.11 0.91   

Skids 9000 9000 100% 10125 9000 1.00 0.89   

Civil 38000 25080 70% 28350 26600 1.06 0.94   

Automation 50000 5000 10% 5175 5000 1.00 0.97   

Analytics 58000 5220 20% 9675 11600 2.22 1.20   

PROJECT 210000 64100 67% 77625 74200 1.16 0.96 ~ 13.8 81208.09 

 

5.1 Application of Bayesian EVM to Case Study 

The project data from database (Batselier & Vanhoucke, 2015; Vanhoucke et al., 2016) only 

contained planned values, completion percentages and actual cost of each activity. In order to 
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illustrate the application and capabilities of the proposed framework, we defined risk factors 

for the activities that have started, and probability distributions associated with planned values 

and completion percentages in this case study. Figure 8 shows the BN fragment of the risk 

factors in the case study, the marginal probabilities of each risk factor are given in Table 10.  

 

Figure 8 Risk Factors Fragment for Biofuel Refinery Construction 

 

Table 10 Probabilities of Risk Factors for Biofuel Refinery Construction 

Probabilities in Risk Factors BN Fragment 

P(EH) = 0.4 P(DE | EH, SH) = 0.6 P(EL | MP, FP) = 0.55 

P(SH) = 0.3 P(DE | EH, ¬SH) = 0.4 P(EL | MP, ¬FP) = 0.22 

P(MP) = 0.4 P(DE | ¬EH, SH) = 0.15 P(EL | ¬MP, FP) = 0.43 

P(FP) = 0.18 P(DE | ¬EH, ¬SH) = 0.1 P(EL | ¬MP, ¬FP) = 0.18 

P(SP | FP) = 0.6   

P(SP | ¬FP) = 0.2   

 

PVs are defined as mixture distributions in Bayesian EVM models. PV values for the activities 

that are affected by risk factors and the distributions that define them are given in Table 11. 

Probability distributions representing the activity completion percentages of this project is 
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shown in Table 12. Note that, we avoided defining highly precise completion rates for the 

expected values of the completion rates due to the difficulties regarding this as discussed in 

Sections 4.2 and 4.4.  

 

 

Table 11 Parameters of PV for Biofuel Refinery Construction 

 SP: True SP: False   

Tanks Normal(60000,1000) Normal(55000,1000)   

 DE: True, 

EL: True 

DE: True, 

EL: False 

DE: False, 

EL: True 

DE: False, 

EL: False 

Skids Normal(12000,1000) Normal(10000,1000) Normal(11000,1000) Normal(9000,1000) 

 

Table 12 Completion Percentage Distributions for Student Project Example 

 Tanks Skids Civil Automation Analytics 

Distribution Beta(40,60) 1 Beta(7, 3) Beta(1,9) Beta(10,40) 

Mean (90% CI) 0.40 (0.32 – 0.48) 1 0.70 (0.45 – 0.90) 0.10 (0.01 – 0.28) 0.20 (0.12 – 0.30) 

 

Figure 9 shows the posterior distributions of the project EV, SPI, CPI, EAC and TEAC values 

from the Bayesian EVM model. The expected value of SPI is above 1 while CPI is below 1. 

The probability that SPI is greater than 1 is 0.97, whereas the probability that CPI is greater 

than 1 is 0.20. EAC of this project, which represents the cost estimate of the project, is between 

€ 202,072.90 and € 247,846.70 with 90% probability. TEAC, which represents the duration 

estimate of this project, i.e. TEAC, has an expected value of 13.92 months, and it is between 

12.53 and 15.62 months with 90% probability. In other words, the project is likely to be on time 

and over budget. This example shows the limitations of decision support provided when using 

only expected values, and the necessity for calculating the uncertainty regarding project 

performance estimates. Note that, the amount of discrepancy between values of indices depends 

on the risk factor probabilities and probability distributions of activity completion times used 
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while calculating the uncertainty in project control. The proposed approach guides the project 

manager to think about and plan these uncertainties and compute their effects on the project 

progress.  

 

Figure 9 Posterior distributions of Bayesian EVM model for Biofuel Refinery Construction 

We can use our framework for a ‘what-if’ risk scenario analysis in this case study. The BN 

model also enables the use of diagnostic inference by instantiating the targeted performance 

indices and revising the probability distribution of other EVM parameters according to these 

targets. Suppose there has been a sales problem before the project control moment, and we 

would like to assess the activity PC, and project PV and EV values are likely to be if the project 

is completed in time and within budget under this scenario. We instantiated the value of ‘Sales 

Problem’ variable as ‘True’, and the values of SPI and CPI to be greater than or equal to 1 and 

revised the posteriors of EVM parameters in the BN. Note that, the SPI and CPI values greater 

than or equal to 1 reflect the case that the project is expected to be completed on time and within 

budget. Table 14 shows that the expected CR of activities are 2% - 7% higher than our current 
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estimates, and the expected value of the project EV is 84154 when the SPI and CPI are greater 

than or equal to 1.  

Table 13 Scenario Analysis Results for Biofuel Refinery Construction, CPI ≥ 1 and SPI ≥ 1  

 
Scenario 

Sales Problem = True 

Scenario 

Sales Problem = True, CPI ≥ 1, SPI ≥ 1 

 Mean SD 5% 95% Mean SD 5% 95% 

Skids PC 1 0 1 1 1 0 1 1 

Civil PC 0.70 0.14 0.45 0.90 0.77 0.11 0.58 0.93 

Automation PC 0.10 0.09 0.01 0.28 0.14 0.10 0.01 0.33 

Tanks PC 0.40 0.05 0.32 0.48 0.42 0.05 0.34 0.49 

Analytics PC 0.20 0.06 0.12 0.30 0.22 0.06 0.13 0.32 

Project EV 77108.0 8476.8 63439.0 91272.0 84154.0 82968.0 78108.0 94328.0 

Project PV 66796.0 1644.8 64170.0 69575.0 67055.0 1666.7 64431.0 69848.0 

 

6. Conclusion 

This paper presented a Bayesian framework for project control that models EVM and ESM 

using BNs. The proposed approach overcomes a limitation of EVM and ESM by incorporating 

uncertainty and risk factors associated with projects into project control. In the proposed 

approach, the uncertainty regarding planned values and activity completion percentages can be 

modelled with statistical distributions, and the effect of different risk factors to these variables 

can be explicitly modelled and computed. The proposed approach calculates the probability 

distribution and uncertainty of all project control metrics and enables ‘what-if’ scenario analysis 

for different risk scenarios. We used a student project example to illustrate the use of the 

proposed approach and applied it to real project data from a construction project to demonstrate 

its applicability to larger projects in different domains. 

Defining planned values and activity completion percentages by probability distributions is a 

major benefit of the proposed approach, since both of these factors are inherently uncertain. It 

is often difficult to determine what percentage of the work related to an activity is completed 

unless it has not been started yet or it is fully finished. For example, the difference between 

55% complete or 65% complete may not be accurately stated for an R&D related activity in a 
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project. The proposed approach overcomes this by defining PC by using a probability 

distribution. The project manager may use a distribution of Triangular (0.4, 0.5, 0.7) to represent 

the judgement that the activity is more than 40% and less than 70% complete, and it is most 

probably 50% complete. Similarly, the uncertainties regarding PVs can be represented by using 

probability distributions, and the Bayesian framework enables using the whole probability 

distributions of these variables, rather than using only summary statistics, in its computations 

for EVM and ESM.   

Integrating risk factors into EVM aids project managers to explicitly plan the relevant 

uncertainty and risks therefore enables more accurate estimation of project planned values and 

a more realistic approach for project control. Project planned values are often estimated by 

project managers or the responsible managers for specific activities. It is often easier for domain 

experts to estimate planned values under different scenarios and to combine them by using a 

modelling tool rather than giving an aggregate estimate which covers all possible scenarios. 

Moreover, when some risk factors realise, project managers often need to adjust the plan 

regarding the effect of those factors. Hence the parameters of the EVM approach need to be 

adjusted too according to the change in plans. Our approach enables these adjustments to be 

done by the modelling tool. This also makes it possible to do ‘what-if’ scenario analysis at any 

stage of the project by instantiating risk factors in the BN model and updating the posterior 

probability distributions of the project metrics. Risk factors are modelled as discrete variables 

in our framework as project risks are often considered in terms occurrence of specific risk 

events. The framework also supports a continuous or a hybrid BN fragment for risk factors 

when required as the rest of the BN structure is also a hybrid BN.  

Our proposed approach offers an extended EVM and ESM-based project control by handling 

uncertainty using Bayesian reasoning. Diagnostic reasoning can be used in our tool by 

instantiating targeted TEAC, EAC or performance indices and revising the probability 
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distributions of risk factors and EVM parameters. This will aid the decision maker to examine 

the project progress and risk expectation required to achieve these targets. However, there is a 

limitation of EVM and ESM-based approaches in diagnosing the cause of the delay or extra 

costs. In EVM and ESM a project that is delayed or over-budget may have two causes. Firstly, 

planning may be insufficient or inaccurate so that even though the project is progressing with 

normal conditions, the performance indices may be worse due to inaccuracies of PVs. Secondly, 

PVs may be accurate, but the project may be progressing slower or more costly due to other 

risk factors. A limitation of EVM, ESM, and therefore the proposed approach, is that they 

cannot distinguish which of these causes led to delay or over-budget. In other words, EVM and 

ESM shows us the schedule and cost performance of a project, but they do not show us what 

caused this. As further research, we plan to modify our Bayesian EVM framework to exploit 

the ‘explain-away’ type of reasoning in BNs to add this functionality. MCDM approaches could 

also be integrated to BNs (Yet & Tuncer Şakar, 2019) and other predictive approaches to 

provide improved project control (Kou et al., 2012, 2014). We also plan to extend PROPCOT 

by developing comprehensive and user-friendly application interfaces to enable integrating the 

proposed approach with widely available project management software.  
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