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Abstract 
A common way to model Decision Maker (DM) preferences in Multiple Criteria Decision 

Making (MCDM) problems is through the use of utility functions. The elicitation of the 

parameters of these functions is a major task that directly affects the validity and practical value 

of the decision making process. This paper proposes a novel Bayesian method that estimates 

the weights of criteria in linear additive utility functions by asking the DM to rank or select the 

best alternative in groups of decision alternatives. Our method computes the entire probability 

distribution of weights and utility predictions based on the DM’s answers. Therefore, it enables 

the DM to estimate the expected value of weights and predictions, and the uncertainty regarding 

these values. Additionally, the proposed method can estimate the weights by asking the DM to 

evaluate few groups of decision alternatives since it can incorporate various types of inputs 

from the DM in the form of rankings, constraints and prior distributions. Our method 

successfully estimates criteria weights in two case studies about financial investment and 

university ranking decisions. Increasing the variety of inputs, such as using both ranking of 

decision alternatives and constraints on the importance of criteria, enables our method to 

compute more accurate estimations with fewer inputs from the DM. 
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1 Introduction 
 
While classical optimization theory deals with problems that aim to maximize or minimize a 

single criterion, most realistic decision making problems have multiple conflicting criteria. 

Since all criteria cannot be simultaneously optimized, special methods from Multiple Criteria 

Decision Making (MCDM) domain are used for these problems (Belton and Stewart 2002; 

Greco et al. 2016). Generally speaking, a criterion is a measure of effectiveness that needs to 

be considered for the problem at hand, for example, profit. When the direction of improvement 

is added to the criterion, we obtain an objective, like maximizing profit. In general, a multiple 

objective problem with n maximization objectives can be formulated as in (1): 

Maximize	𝑓(𝑥) = .𝑓/(𝑥), … , 𝑓2(𝑥)3,			subject	to	𝑥 ∈ 𝑋 (1) 

where x is the decision variable vector, X is the feasible region in decision space and fi is the ith 

objective function. Let us denote the feasible region in objective space by Z. This set is the 

image set of X. A vector z = (z1, …, zn) ∈ Z is called nondominated if and only if there does not 

exist some y ∈ Z such that yi ≥ zi for all i = 1, …, n and yi > zi for at least one i. Otherwise, it is 

called dominated. The decision variable vector that has a nondominated objective value vector 

is called an efficient solution. Efficient solutions are candidate best solutions for the Decision 

Maker (DM) of the problem. Different DMs may have different preferences for the criteria 

involved in a problem, and hence may value different efficient solutions the highest. In fact, 

theoretically, for each of the efficient solutions involved, there can be a DM who will prefer it 

above the others. As a result, to determine the best solution (or decision alternative) for a DM, 

individual preferences have to be integrated in the decision making process. When this decision 

making process takes place in a continuous solution space, i.e. when X is continuous, the 

problem falls under the category of Multiple Criteria Optimization (MCO). On the other hand, 

when X is discrete, the problem is of the Multiple Criteria (Attribute) Decision Analysis 

(MCDA) type. MCO and MCDA are the two basic subproblems under MCDM (Steuer 1986). 

In various MCDM approaches, the emphasis the DM places on different criteria is represented 

in the form of weights for those criteria. However, for most approaches, these weights are 

assumed to be known and the main effort is spent on the phases carried out with the assumed 

parameters. For example, the widely-used ranking method TOPSIS uses weighted distance 

metrics to calculate its ranking measure, but offers no mechanism to derive the weights.  Two 

most popular outranking methods, ELECTRE and PROMETHEE, depend on the weights of 

criteria to determine pairwise relations of preferability among alternatives, but again work with 

preset weight values (see Pomerol and Barba-Romero, 2012 for descriptions of TOPSIS, 

ELECTRE and PROMETHEE). In a limited number of studies, approaches to estimate 
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preferential parameters of decision models have been proposed (see Greco et al. 2016 for a 

survey on such studies, some of which will be mentioned in the literature review). Eliciting and 

modeling the preferences of the DM is a main challenge in MCDM problems as they result in 

more realistic and practical solution outcomes.  

Utility or value functions are widely used to represent the preferences of DMs. Although these 

two terms are sometimes used interchangeably, utility functions are developed for alternatives 

whose outcomes are uncertain whereas value functions work under certainty (Belton and 

Stewart 2002;  Keeney and Raiffa 1993). With the certainty assumption, utility functions reduce 

to value functions so they are more general forms of preference. These functions aggregate the 

evaluations of alternatives in different criteria into an overall measure, and show the value of 

different solutions to the DM involved. They can be used for choosing the best alternative, 

choosing a set of best alternatives, ranking alternatives in preference order or sorting them into 

preference-ordered classes (see Greco et al. 2016 for a general review of such approaches and 

Doumpos and Zopounidis, 2002 for a specific review of sorting methods). The utility functions 

that represent the preferences of the DMs can be modeled in different forms including linear, 

additive, quasiconcave and general monotone. In this paper, we work in an MCDA setting 

where DM preferences on discrete solutions are modeled with a linear additive utility function. 

The DM’s preferences for the criteria are expressed in the form of weights. The weights for the 

criteria are accepted to sum up to one, and the overall value of a solution to the DM is calculated 

by means of a weighted sum. Although the DM knows these weights implicitly, we realistically 

assume that it is difficult to express them explicitly. We propose a Bayesian method that 

indirectly elicits criteria weights by showing the DM small sets of decision alternatives and 

asking the DM to rank the alternatives in each set. We illustrate and evaluate this method by 

using two MCDM case studies about investment portfolio and university selection. Our method 

offers various benefits over previous techniques for estimating criteria weights, some of which 

are explained below:  

1. Our method estimates the entire probability distribution of weights and utility 

prediction as it is a Bayesian method. This provides the DM both the expected value 

and uncertainty regarding the weights and utilities.  

2. It is flexible in terms of the inputs required. Rather than ranking decision alternatives, 

the DM can also provide the best alternative or partial ranking of alternatives in each 

set.  

3. Prior knowledge about the relative importance of weights can easily be incorporated in 

our method as prior distributions or constraints on weight distributions. This enables 

our method to estimate weights with a smaller number of evaluation inputs from the 

DM.  
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4. It asks the DM to rank elements of multiple sets each containing a small number of 

decision alternatives. This is an improvement over previous techniques which require 

the assessment of a large number of alternatives, since this brings cognitive burden on 

the DM and hinders consistency.  

In the remainder of this paper, Section 2 reviews the relevant studies on preference elicitation, 

Section 3 presents our method, Section 4 illustrates and evaluates the method by using two 

MCDM case studies, and Section 5 concludes the paper. 

2 Literature Review 
In MCDM problems, preferences of the DM about the alternatives are usually expressed 

through utility functions of certain forms. Using the evaluations in each criterion involved, 

these functions make an aggregation and provide a single measure of desirability for the 

alternatives. Several previous approaches that employ such functions assumed that the 

preferential parameters of the model are known beforehand. This assumption greatly reduces 

the practical value of the algorithms carried out for decision making. In this section, we review 

studies that try to elicit DM preferences and/or account for the imprecision of the parameters 

of utility functions. 

A classical and widely used form of utility function is the additive function. Fishburn (1967) 

presented an early review of methods for estimating additive utilities. He categorized several 

utility estimation methods with respect to factors related to the use of probabilities, type of 

preference judgments, the number of factors involved in judgments and the nature of solution 

space for the problem. One can refer to Keeney and Raiffa (1993) and Wakker (1989) for the 

foundations and theoretical background for additive representations of preferences. Jacquet-

Lagrèze and Siskos (1982) introduced the UTA method that dwells on additive utility functions. 

Analyzing the preference information provided by the DM about the alternatives, the UTA 

method aims to find compatible additive utility functions. The DM is expected to express 

preferences in the form of strong preference, weak preference and indifference. Siskos and 

Yannacopoulos (1985) proposed an improved version of UTA, the UTASTAR method. They 

show that UTASTAR has better performance than the original UTA in terms of precision and 

the number of iterations required. The UTA method was the start of the ordinal regression 

paradigm in MCDM, and several forms of utility functions were considered since (see Siskos 

et al., 2016 for a survey). In the traditional ordinal regression-based methods, utility functions 

that are compatible with the decision problem are derived, and one of them is selected according 

to some principle. Seeing this selection as an arbitrary process, Greco et al. (2008) proposed 

the robust ordinal regression approach in which the whole set of utility functions compatible 

with the DM preferences are considered. In another approach aimed at achieving a general 
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assessment of alternatives, Kadzinski and Tervonen (2013) proposed a probabilistic study for 

robust evaluation of alternatives. Their approach calculates the probability of an alternative 

being preferred over another by taking the whole set of preference-compatible functions into 

account. Moreover, they also calculate probabilities for alternatives for achieving a certain 

position in the rank of preference.  

Some researchers argued that some assumptions about the underlying utility functions of DMs 

could be restrictive and make the process of deriving a preference-compliant function infeasible. 

Angilella et al. (2004) discussed that the utility model assumptions of UTA may prevent the 

discovery of a function that is in line with DM preferences. To overcome this problem, they 

proposed a fuzzy integrals framework which can work with non-additive functions that are able 

to model interactions between criteria. Marichal and Roubens (2000) studied interacting criteria 

and fuzzy integrals too. They employed partial ranking information about criteria, alternatives 

and interactions. Benabbou et al. (2015) stated that nonlinear aggregation functions offer 

increased flexibility to the preference elicitation process. They used a minimax regret approach 

to elicit parameters of such functions.  

Other studies in the literature attempted to cope with imprecise and incomplete information in 

the preference elicitation procedure. Salo and Hämäläinen (2001) accepted and worked with 

imprecise preference statements by the DM in order to reduce the effort necessary for MCDM. 

Sarabando and Dias (2010) worked with only ordinal information about the weights of criteria 

and also the values of alternatives in the criteria. They used Monte-Carlo simulation techniques 

to estimate the parameters of an additive aggregation model. Ahn and Park (2008) compared 

methods for MCDM where ordinal information (as opposed to cardinal) about weights are 

present. To account for the cases where the DM is unable to differentiate between certain 

alternatives, the issue of indifference has also been addressed in the literature. Branke et al. 

(2015) used indifference thresholds in robust ordinal regression. In their approach, one 

alternative is accepted to be preferable to another only if its value is higher by at least some 

threshold number. Branke et al. (2017) studied further in the area of indifference and worked 

on several heuristics to reduce interaction with the DM until the preferred solution is reached. 

See Pirlot and Vincke (2013) for the general use of thresholds in preference contexts.  

Some mathematical programming approaches have also been used to estimate the weights of 

criteria. Pekelman and Sen (1974) proposed two models as early examples of such approaches. 

In their study, they first find the ideal vector of the most preferred values of the criteria. They 

ask the DM to make a pairwise comparison of all alternatives. Their approach asserts that the 

weighted distance of the preferred alternative to the ideal vector should be smaller than the 

distance of the other alternative to the ideal vector. Then a mathematical model is solved to find 
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the weights that minimize the violation of this condition in DM’s responses considering all 

alternative pairs.  

AHP, which is one of the most commonly used methods in MCDM, also includes a mechanism 

to elicit the weights of criteria from a DM (see Saaty, 2008 for a detailed explanation of AHP). 

AHP uses pairwise comparisons between the criteria and also the alternatives the DM considers. 

Firstly, the DM makes pairwise comparisons of criteria. The DM’s degree of preference is 

stated in a scale between 1 (equally important) and 9 (extremely more important). Afterwards, 

each criterion is assigned a weight based on these comparisons. Next, the DM compares pairs 

of alternatives with respect to each criterion using a similar scale. This generates scores for 

each alternative in every criterion. Using these weights and scores, AHP computes overall 

scores for each alternative. AHP requires the DM to make repetitive comparisons. As the 

number of alternatives and criteria increase, this causes cognitive load and difficulty in making 

consistent preferences for the DM.  

Several studies modeled utility function as a random variable and used Bayesian inference to 

either learn it from data or elicit it from domain experts (Chajewska et al. 2000; Chajewska and 

Koller 2000; Guo and Sanner 2010). Chajewska and Koller (2000) used Bayesian learning and 

model selection approaches on a database of partially elicited utility functions to estimate the 

utility distribution and structure. Chajewska et al. (2000) used value of information analysis to 

define the questions to elicit the utility distribution and decide when to stop. Guo and Sanner 

(2010) proposed an approximate preference elicitation framework and heuristics for query 

selection to elicit utility distributions. Bayesian models and networks have been also used for 

other tasks in MCDM problems than eliciting utility function parameters (e.g. see Fenton and 

Neil, 2001, Watthayu and Peng, 2004, Dorner et al., 2007, Sedki et al., 2010 and Delcroix et 

al., 2013 for MCDM applications of Bayesian models). 

The focus of our study is a Bayesian framework that uses cognitively easy tasks to elicit 

preference information. Hence, it is flexible in terms of the form of preference information and 

prior knowledge used. Our framework is able to incorporate ranked or best alternative 

preferences from a group of alternatives, and represent prior knowledge in terms of constraints 

of distributions. The following section presents the details of the proposed framework.  

3 Bayesian Approach 
In this section, we present a novel Bayesian approach that estimates criteria weights. We focus 

on estimating the weights of a linear additive utility function as in (2) in this paper. 
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=𝑤?𝑥?@

2

?A/

= 𝑣@ (2) 

where wi is the weight given to criterion i, n is the number of criteria, xij is the value of criterion 

i for decision alternative j and vj is the utility of decision alternative j. Keeney et al. (2006) 

argued that a linear additive utility function is a reasonable and accessible approach to evaluate 

MCDM alternatives if the criteria are appropriately chosen. Nevertheless, other types of utility 

functions can also be used in our method. Our aim is to elicit the values of weights wi for a 

particular DM, where all weights are positive, and their sum is 1.  

=𝑤? = 1
2

?A/

 (3) 

𝑤? ≥ 0				𝑖 = 1,2, … , 𝑛 (4) 

Since direct elicitation of these weights is not viable as discussed in Section 1, we indirectly 

elicit them by showing the DM random groups of decision alternatives, and asking the DM to 

either rank the decision alternatives or select the best alternative in each group. We use a 

Bayesian model that updates the prior distribution of the weights based on this information.  

3.1.1 Eliciting Weights by Ranking Decision Alternatives 

Let �̅�j denote the vector of criteria values of alternative j. Suppose we show a set of k random 

decision alternative vectors X = {�̅�1, �̅�2, … , �̅�k} to the DM. We ask the DM to rank these 

alternatives, and suppose the DM ranks them as in (5): 

�̅�J ≽ �̅�JL/ ≽ ⋯ ≽ �̅�/ (5) 

where �̅�k is the vector of criteria values of the best alternative, �̅�k-1 is the vector of the second 

best alternative, and so on. Let vj and vl denote the comprehensive value of alternative j and l, 

respectively.  In order to model this ranking in our model, we define a step function u(tjl) as: 

𝑡@O = 𝑣@ − 𝑣O (6) 

𝑢.𝑡@O3 = R
1		if	𝑡@O ≥ 0
0	if	𝑡@O < 0  (7) 

We need to ensure that u(tjl) is 1 for the rankings given by the DM. For example, if the DM 

states that �̅�2 ≽ �̅�1, the value of u(t21) must be 1 in the Bayesian model. This constraint is 

modeled by introducing a Bernoulli variable z21 for u(t21) and entering 1 as an observation to 

this Bernoulli variable. The general form of such Bernoulli variable for u(tjl) is shown in (8): 
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𝑧@O~Bernoulli(𝑢.𝑡@O3) (8) 

In order to model the DM’s ranking for the set of k decision alternatives vk ≥ vk-1 ≥ … ≥ v1, we 

need k – 1 step functions as shown by (9)-(11): 

𝑡@[/	@ = 𝑣@[/ − 𝑣@  (9) 

𝑢.𝑡@[/	@3 = R
1	if		𝑡@[/	@ ≥ 0
0	if		𝑡@[/	@ < 0 (10) 

𝑧@[/	@~Bernoulli(𝑢.𝑡@[/	@3) (11) 

where j = 1, 2, …, k – 1. We call this technique the Ranked Decision Alternatives (RDA) 

approach in the remainder of the paper. 

  

 

Figure 1 Bayesian Network Illustration of the RDA Model for Indirect Estimation of Weights  
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Figure 1 shows a Bayesian network representation of the proposed RDA approach. This 

example has two criteria and two decision alternatives. The variables on which we enter 

observations have boxes on them where the value of the observation is written. The posterior 

probability distributions of the rest of the variables are estimated by the model using Bayesian 

inference algorithms such as Markov Chain Monte Carlo (MCMC) sampling. MCMC sampling 

is an established and widely used inference technique for Bayesian models, and its technical 

details are beyond the scope of this paper (see Casella and George, 1992, Gelman et al., 2013 

and Hasting, 1970  for technical details regarding MCMC).  

For example, we enter the values 0.7 and 0.4 to x11 and x21 respectively before we run the model, 

whereas the probability distributions of w1, w2 and v1 are estimated by the model. Below we 

describe each part of the model in Figure 1: 

1. Weights: This part contains the probability distributions of weights w1 and w2 that we 

aim to estimate, and a constraint that ensures the sum of the weights is equal to 1. Some 

MCDM approaches do not require the weights to sum up to 1. In that case, the 

constraint can be simply removed from the Bayesian model to relax this assumption. 

2. Decision Alternative 1: The values of the criteria and utility function for decision 

alternative 1 is modeled in this part. The DM knows the values of decision criteria x11 

and x21, and enters them to the model. In this example, the values of x11 and x21 are 0.7 

and 0.4 respectively. We use the linear additive utility function shown by (12) for v1. 

Other types of utility functions can also be used in our framework by simply changing 

(12). However, convergence of MCMC must be carefully assessed for different forms 

of functions especially when there are multimodal distributions.   

𝑣/ = 𝑤/𝑥// + 𝑤]𝑥/] (12) 

The decision alternative 2 has the same model structure but obviously different input 

values for its decision criteria. More decision alternatives can be added by replicating 

this model structure. 

3. Ranking 𝒙_𝟏 ≽ 𝒙_𝟐: This part models the ranking provided by the DM. In this example, 

the DM states that the utility value of the vector of criteria values of decision alternative 

1, �̅�/, is greater than or equal to the utility value of �̅�]. Therefore, a step function u(v1 

– v2) is added to the model, and the value of this step function is ensured to be 1 by 

entering a Bernoulli variable z12 as its child and entering 1 to this variable as an 

observation. The probability distribution of z12 is shown in (13): 

𝑧/]~Bernoulli(𝑢(𝑡/])) 

 
(13) 
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After the observations about w1+w2, x11, x12, x21, x22 and z12 are entered to the model, the 

posteriors of w1 and w2 can be calculated by using MCMC sampling in JAGS (Plummer 2018), 

Dynamic Discretization (DD) in AgenaRisk (Agena Ltd 2018; Fenton and Neil 2014) or a 

similar software. More criteria, decision alternatives and ranking constraints can be easily 

added to the model by using the structure described above.  Note that, providing a larger number 

of rankings by the DM leads to a more precise estimation of weights. Since ranking a large 

number of alternatives can be difficult and time consuming for the DM, the decision alternatives 

can be divided into groups and each group can be ranked separately.  For example, we ask the 

DM to rank 4 random groups of decision alternatives each with 5 elements in the case study 

presented in Section 4.2. Our method is flexible in terms of collecting inputs from the DM. 

In the following section, we present a simpler but less precise variation of our approach that 

only requires the DM to select the best alternative from a group of decision alternatives, rather 

than ranking all the alternatives in the group.  

3.1.2 Eliciting Weights by Selecting the Best Alternative 

Our second approach requires the DM to only select the Best Decision Alternative (BDA) from 

a set of alternatives. Suppose we show a set of k random decision alternative vectors X = {�̅�1, 

�̅�2, … , �̅�k} to the DM. The DM selects the best criteria value vector �̅�m from X. In this case, our 

model must ensure that all other elements of X are equally preferred as or less preferred than 

�̅�m, and revise the priors of the weights accordingly. This is modeled as in (14)-(16): 

𝑡bc = 𝑣b − 𝑣c  (14) 

𝑢(𝑡bc) = d1	if	𝑡bc ≥ 0
0	if		𝑡bc < 0 (15) 

𝑧bc~Bernoulli(𝑢(𝑡bc)) (16) 

for each decision alternative r such that �̅�r ∈ 𝑋\{�̅�m}. This model requires less effort from the 

DM; but we expect it to be less accurate since ranking between the other elements is not 

provided to the model.  

3.1.3 Prior Distributions and Constraints between Weights 

Our model offers the benefit of incorporating prior knowledge about the weights of the DM. 

We could either define informative prior distributions for the weights or introduce constraints 

on the values of weights. For example, if the DM believes that the weight of a decision criterion 

is centered on a value, we can use a Truncated Normal (TNormal) distribution with a lower 

bound (LB) of 0 and upper bound (UB) of 1 as shown in (17): 
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𝑤?~TNormal(𝜇 = 0.7, 𝜎 = 0.2, 𝐿𝐵 = 0, 𝑈𝐵 = 1) (17) 

If the DM believes that the weight of the criterion i is greater than or equal to the weight of the 

criterion h, we can introduce constraints between the weights as in (18)-(20): 

𝑝?q = 𝑤? − 𝑤q (18) 

(𝑝?q) = d1	if		𝑝?q ≥ 0
0	if		𝑝?q < 0 (19) 

𝑐?q~Bernoulli(𝑢(𝑝?q)) (20) 

where u(pih) is a step function that is 1 if wi ≥ wh, and it is 0 otherwise; and cih is a Bernoulli 

variable that ensures the posterior distribution of wi is greater than equal to the posterior 

distribution of wh  when an observation value of 1 is entered on it.  

Finally, if no prior information about the weights are available, uniform distributions could be 

used as ignorant priors: 

𝑤?~Uniform(0,1) (21) 

3.1.4 Predictive Distributions 

Our Bayesian model also offers the benefit of using the whole probability distribution of the 

weights when predicting the utility of a new set of decision alternatives. This enables the DM 

to estimate and assess the uncertainty regarding the model’s weight estimations and predictions. 

The predictive distributions for new decision alternatives are computed as shown by (22): 

=𝑤?𝑥?t

2

?A/

= 𝑣tu (22) 

where wi corresponds to the posterior weight distribution from our Bayesian model and 𝑣vw  is 

the predicted utility distribution of the alternative j. In the following section, we illustrate our 

Bayesian approach and evaluate its performance by using two case studies. 

3.1.5 Inconsistencies 

In any procedure that progresses with a DM, inconsistencies in DM responses may arise. As 

the process continues, the DM may give evaluations that conflict with previous ones. This can 

be due to the limited rationality of the human mind, an actual change of preferences on behalf 

of the DM or a better understanding of preferences as new alternatives become available (see 

Chapter 2 of French et al., 2009 for a discussion of biases and inconsistencies in decision 

making). Inconsistent DM responses can make the underlying models of algorithms infeasible 

at certain iterations. To deal with this issue, the cases that cause inconsistency can be removed 
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from the procedure or the degree of infeasibility caused by inconsistency can be minimized. 

For example, Mousseau et al. (2003) worked on a multiple criteria evaluation model where 

DMs provide constraints on preference parameters of the model. When the newly added 

constraints cause inconsistency, subsets of constraints whose removal will lead to a consistent 

model are identified. One can see Chinneck (2008) for different ways of handling infeasibility 

in algorithms.  

In the proposed Bayesian approach, inconsistent answers of the DM may increase the posterior 

probability of weight values that are associated with those answers and were previously 

considered to be unlikely. In other words, inconsistent answers may lead to more uncertain and 

wider weight posteriors, but the inference does not necessarily stop and fail. As iterations 

continue, if the DM starts to provide consistent evaluations, the posterior probabilities around 

the true weights will start to increase again. The proposed approach can become infeasible and 

stop when inconsistent answers are associated with a weight that is considered to be impossible 

and has zero probability. This is a well-known modeling error that can be prevented by avoiding 

zero probabilities in priors (see Chapter 10 of Korb and Nicholson, 2010). Moreover, if the 

inference is done by MCMC algorithms, sufficient burn-in and sample sizes must be assigned 

and convergence of the algorithm must be assessed. When the DM’s true utility function is non-

linear or if weights are not independent, the preferences of the DM would be conceived as 

inconsistent for the linear utility function assumption of our approach and lead to worse 

predictive performance. Detecting and removing the cause of inconsistencies, however, is 

beyond the focus of our approach in this paper. 

4 Case Studies 
In this section, we present two case studies. In each case study, we made two experiments: one 

for the RDA approach (described in Section 3.1.1) and the other for the BDA approach 

(described in Section 3.1.2). In each experiment, we showed the DM multiple sets of decision 

alternatives and asked the DM to rank the alternatives or select the best alternative in each set. 

Our experiments were simulations. We used a virtual DM who ranks the alternatives or selects 

the best alternative according to the utility values computed by the assumed weights for the 

DM. We inputted this information to the RDA and BDA models to compute the posterior 

distributions of the weights of criteria. Note that, the true utility values were not entered to the 

model to estimate the weights, only the rankings given by the DM were entered.  

Ranking a large number of decision alternatives could be challenging and time consuming for 

a DM. Therefore, we ran our experiments in multiple iterations. In each iteration, we showed 

the DM a set of five decision alternatives, and asked the DM to rank or select the best one only 

among the decision alternatives in that set. The DM ranks the alternatives in each set separately. 
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For example, in the second iteration, we successively enter two separate sets each having five 

alternatives to the model, rather than entering a single set with ten alternatives. Alternatives are 

evaluated with two and five criteria in our first and second case studies, respectively. Since 

estimating five criteria weights is a more difficult task than estimating two, it requires more 

preference information. Accordingly, we presented the DM two sets of alternatives in the first 

case study and four sets in the second. These values produced satisfactory results in our 

experiments; however, different values can be used as well, and the DM can also be consulted 

about the number of sets to evaluate. 

We used JAGS to compute the posteriors of all Bayesian models in our case studies. We used 

the R2jags package (Su and Yajima 2015) in R as an interface to JAGS, and the mcmcplots 

package (Curtis et al. 2017) in R to draw diagrams. We discarded the first 15,000 samples in 

MCMC as the burn-in samples. We then used the autojags function from the R2jags package 

to compute the posteriors of the model. The autojags function updates the model in iterations 

until the model converges. We used 𝑅y = 1.01 as the convergence parameter, and updated the 

model with 100,000 samples at each iteration. We also assessed convergence by using sample 

and autocorrelation plots.  

4.1 Case Study 1: Investment Portfolio Optimization 

This section presents a two criteria MCDM example to illustrate the use of our approach. An 

investment decision is a classical MCDM example with conflicting criteria. The aim of a typical 

DM is to select an investment option with high return and low risk. However, the investment 

options with higher returns often have higher risks. Therefore, the optimal decision changes 

with the weights given to return and risk criteria according to the risk behavior of the DM. 

Some studies used more than two criteria in the portfolio problem (Koksalan and Tuncer Sakar 

2016; Tuncer Sakar and Koksalan 2014). For example, some investors may want to consider 

multiple measures of risk such as variance, mean absolute deviation, Value at Risk and 

Conditional Value at Risk (CVaR), and others may be interested in additional indicators like 

liquidity and dividends. In this case study, we consider a portfolio problem with two criteria: 

expected return and CVaR, the latter being a risk measure of extreme losses. In the remainder 

of this section, we first describe how the investment portfolio alternatives are generated for the 

case study (Section 4.1.1), then we estimate the weights of a DM by using the proposed model 

(Section 4.1.2). 

4.1.1 Generating Investment Portfolio Alternatives 

We used 50 shares from the NASDAQ stock market (see Table 1) to generate investment 

portfolios for the DM. We collected daily prices of these stocks between August 2015 and July 

2016. Using these prices, we calculated weekly returns for the stocks and computed the average 
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return and CVaR values from these returns. We treated the weekly return values of the stocks 

as equiprobable discrete scenarios. CVaR at λ probability level is the expectation of losses in 

the worst (1–λ) probable cases. We used the linear model of Rockafellar and Uryasev (2000) 

to obtain CVaR values. Like in confidence interval calculations, 0.9 is a commonly chosen 

parameter for CVaR (Rockafellar and Uryasev 2000; 2002), so we have set λ to 0.9. The model 

is provided by (23)-(25): 

Minimize	𝜏 + 	
1

(1 − 𝜆)
	=𝑎}

~

}A/

𝑝} (23) 

𝑎} ≥ −𝑥�𝑟} − 𝜏								∀	𝑠 = 1, … , 𝑞 (24) 

𝑎} ≥ 0								∀	𝑠 = 1,… , 𝑞 (25) 

where x is the vector of proportions of stocks in the overall portfolio, q is the number of 

scenarios, 𝑟} is the vector of returns of stocks in scenario s, 𝑝} is the probability of scenario s 

occurring, 𝑎} is the auxiliary variable used for scenario s, and 𝜏 is the auxiliary variable used 

to calculate excess losses.  

Table 1 NASDAQ Shares used in Case Study 1 

NASDAQ Stock Symbol 
AAPL DIS F GEVO AXP ARNA AMAT CELG NWBO BOFI 
FB NFLX GILD ETP CRM BA SKLN PTN LUV USAT 
TSLA GOOGL BBRY CHK LC XOM TGRP VG XRX RTN 
MSFT GOOG SIRI FCX ETE CVX CLF SLCA LMT CNC 
AMZN NVDA DB AA ATVI SDRL SLV SENS ARRY QGEN 

 

To obtain discrete portfolio alternatives for this two criteria continuous problem, we used the 

augmented version of the ε-constraint method (Haimes et al. 1971). The ε-constraint method 

operates by optimizing one of the objective functions while the others are treated as constraints 

and restricted by bounds. Its general formulation for a problem where all objectives are in 

minimization form can be represented as:  

Minimize	𝑓J(𝑥) (26) 

𝑓?(𝑥) ≤ 𝜀?							∀	𝑖 ≠ 𝑘 (27) 

𝑥 ∈ 𝑋 (28) 

where 𝑓?(𝑥) is objective function i, 𝜀?	 is the upper bound used to constrain objective i and X is 

the set of feasible points. In the augmented version, the objective function is augmented by the 

objective functions other than k with small coefficients; this is done to ensure obtaining efficient 

solutions.  
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In our applications, we treated expected return as the constraint and divided its range into 

equally spaced values to generate 50 efficient portfolios. The return and CVaR values of these 

portfolios were then normalized between 0 and 1, where 1 is the best value for both criteria.  

4.1.2 Estimating Criteria Weights 

In order to evaluate our model, we made simulation experiments by using a virtual DM. Our 

DM is risk averse: her/his true decision weights for maximizing return is 0.4, and minimizing 

CVaR is 0.6. We assume that the DM has a linear additive utility function so the utility vj of 

each decision alternative j is: 

0.4 ∗ 𝑥/@ + 0.6 ∗ 𝑥]@ = 𝑣@  (29) 

where x1j and x2j are the return and CVaR values for decision alternative j, respectively. In the 

first case study, we showed the DM 2 sets of portfolio alternatives in each experiment. 

Table 2 Two Sets of Portfolio Alternatives Ranked by the DM 

 Set 1   Set 2  
Return CVaR Rank Return CVaR Rank 
0.694 0.573 5 0.980 0.051 5 
0.327 0.960 2 0.612 0.686 2 
0.408 0.925 1 0.653 0.629 3 
0.122 0.997 4 0.306 0.965 1 
0.592 0.714 3 0.061 0.999 4 

 

For example, Table 2 shows the return and CVaR values of 2 sets of portfolio alternatives. The 

DM ranked the alternatives in each set according to the linear additive utility function presented 

above, and these ranks are also shown in Table 2. Our method estimated the entire probability 

distribution of the weights and utility predictions as it is based on a Bayesian model. Figure 2 

shows the probability distribution of weights computed by the RDA approach after the ranks, 

return and CVaR values in Table 2 are entered to the Bayesian model as described in Section 

3. Our approach can predict the utility values of new portfolio alternatives after the posteriors 

of weights are estimated. For example, Figure 3 shows the utility distribution and 95% credible 

interval of a portfolio alternative predicted by using the weight distributions in Figure 2, and 

CVaR and return values of the portfolio. The return and CVaR values of this portfolio are 0.571 

and 0.743, and the true utility value is 0.674. The expected value and 95% credible interval of 

this portfolio computed by our approach are 0.674 and (0.665,0.694) respectively. These 

probability distributions offer a more elaborate way of decision analysis as it enables us to see 

how confident the model is about the estimates. 
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Figure 2 Posterior Probability Distributions of Weights of a) Return and b) CVaR 

 
Figure 3 Predicted Utility of a Portfolio Alternative 

Figures 4a and 4b show how the probability distribution of the weight of return criterion is 

updated after the DM uses the BDA and RDA approaches respectively. The expected value of 

the weights approaches to the true value and uncertainty around it decreases after every iteration. 

Moreover, the posteriors computed by RDA have smaller uncertainty compared to BDA. This 

is expected as we enter more information to the model by ranking decision alternatives than by 

selecting the best decision alternative. 
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Figure 4 Posterior Probability Distribution of Weight of Return in the a) BDA b) RDA Approaches 

We used 5-fold cross validation to evaluate our approach. We randomly divided the portfolios 

into 5 equal-sized sets. In each iteration, we estimated the weights by using one of these sets 

(training set), and predicted the other 4 sets (validation set) with these estimated weights. In the 

portfolio case study, the data contains the returns and CVaRs of 50 portfolios, therefore we 

estimate the weights by using 10 portfolios, and predict the value of other 40 portfolios in each 

iteration. Note that, we showed the training set to the DM in groups of 5 decision alternatives 

as described above. By the generation method (i.e. the augmented ε-constraint method), all of 

the decision alternatives in the dataset were non-dominated.  

We used Kullback – Leibler Divergence (KLD) to measure the difference between the 

estimated weights and the true weights. KLD is used for measuring the difference between 

probability distributions. Smaller KLD values indicate similarity between the probability 

distributions, a KLD value of 0 shows that the estimated and the true distribution are exactly 

the same. Since the weights in our model have similar properties as probability distributions, 

i.e. the sum of the weights is 1 and each weight’s value is between 0 and 1, we found KLD a 

suitable measure for the accuracy of weights. The KLD between the true weights P and the 

estimated weights Q is computed as shown by (30):  

𝐷��(𝑃 ∥ 𝑄) ==𝑃(𝑖)
?

log
𝑃(𝑖)
𝑄(𝑖)

 (30) 

Figure 5 shows how the KLD of the expected values of weights changes for the BDA and RDA 

approaches after each set of decision alternatives. Although the RDA approach’s KLD is 

slightly higher when the first 5 decision alternatives are shown to the DM, it becomes smaller 
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than the BDA approach when the second 5 decision alternatives are shown. Although both 

approaches have similar KLD values, the RDA approach estimates the weights with less 

uncertainty as shown in Figure 4. Since KLD metric only uses the expected values of the 

weights, it disregards this additional information. 

  

Figure 5 KLD of Estimated and True Weights in Case Study 1 

In the cross validation, we predicted the utilities of the decision alternatives in the validation 

set. We used mean square error (MSE) to assess the predictive performance of the approach.  

𝑀𝑆𝐸 = E �.E(𝑣vw) − 𝑣@3
]
� (31) 

Since MSE requires point values, we used the expected value of the predicted distribution 

	𝐸(𝑣vw)  for the predicted value. Therefore, MSE does not take the uncertainty around the 

expected values into account. Figure 6 shows the MSEs for the BDA and RDA approaches. 

The behavior of MSEs are similar to KLD values. In the following section, we present another 

MCDM case study with a higher number of criteria.  

  

Figure 6 MSE of Utility Predictions in Case Study 1 
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4.2 Case Study 2: University Ranking  

Times Higher Education (THE) is a journal that focuses on the news and issues about higher 

education and universities. Every year, THE reports university rankings for the leading 

universities around the world. The rankings are prepared in different categories such as world 

university ranking, emerging economies ranking and subject rankings. The rank of a university 

is defined by an overall score that is computed by a weighted average of five performance 

indicators. These indicators are: 

• Teaching (the learning environment) 

• International outlook (staff, students and research) 

• Research (volume, income, and reputation) 

• Citations (research influence) 

• Industry income (knowledge transfer) 

The weights of the performance indicators are different for different ranking categories. Table 

3 shows the weights for the world university ranking category for 2015/2016 rankings. A 

detailed description of THE’s ranking methodology is described by (Times Higher Education 

2015). 

Table 3 Weights of Performance Indicators 

 Teaching International 
Outlook 

Research Citations Industry 
Income 

THE World University Ranking 0.3 0.075 0.3 0.3 0.025 
 

In our second case study, we selected 100 universities that are not dominated by each other 

from THE’s 2015/2016 World University Rankings. In our experiments, the DM selects 

universities with a linear additive utility function where decision criteria and weights are the 

same as THE’s World University Rankings: 

0.3 ∗ 𝑥/@ + 0.075 ∗ 𝑥]@ + 0.3 ∗ 𝑥�@ + 0.3 ∗ 𝑥�@ + 0.025 ∗ 𝑥�@ = 𝑣@ (32) 

where x1j, x2j, x3j, x4j, and x5j are the performance indicators of teaching, international outlook, 

research, citations, and industry income for university j, respectively.  
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Table 4 Four Sets of Universities Ranked by the DM 

  Set1    
Teaching Int. Outlook Research Citations Ind. Income Rank 

0.206 0.702 0.300 0.790 0.366 4 
0.355 0.587 0.206 0.840 0.329 2 
0.264 0.890 0.267 0.412 0.859 5 
0.354 0.744 0.439 0.665 0.395 1 
0.272 0.901 0.354 0.669 0.434 3 

  Set2    
Teaching Int. Outlook Research Citations Ind. Income Rank 

0.278 0.214 0.157 0.960 0.446 3 
0.329 0.320 0.454 0.342 0.969 5 
0.356 0.301 0.353 0.837 0.574 1 
0.323 0.485 0.270 0.813 0.823 2 
0.447 0.481 0.235 0.657 0.295 4 

  Set3    
Teaching Int. Outlook Research Citations Ind. Income Rank 

0.285 0.583 0.398 0.818 0.303 1 
0.610 0.442 0.558 0.071 0.285 4 
0.609 0.253 0.686 0.204 0.403 2 
0.453 0.293 0.427 0.494 0.747 3 
0.260 0.888 0.287 0.443 0.456 5 

  Set 4    
Teaching Int. Outlook Research Citations Ind. Income Rank 

0.341 0.934 0.333 0.689 0.357 1 
0.449 0.275 0.278 0.528 0.998 4 
0.443 0.196 0.460 0.361 0.962 5 
0.335 0.899 0.351 0.663 0.285 2 
0.323 0.874 0.329 0.641 0.608 3 

 

In the second case study, we need to estimate 5 weights and 4 of them are independent. As 

stated earlier, since this is a more challenging task than the portfolio case study, we showed the 

DM 4 sets each having 5 universities in this case study. Table 4 shows 4 sets of universities 

shown to the DM. We again asked the DM to rank the universities in these sets; the ranks are 

also shown in Table 4. Figure 7 and Figure 8 show the posteriors of weights after the 

information in Table 4 is entered to the model. 
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Figure 7 Posteriors of Weights in Case Study 2 Shown Separately 

 
Figure 8 Posteriors of Weights in Case Study 2 Shown Together 

We also predicted the scores of different universities by using the probability distributions 

estimated by the model. For example, Figure 9 shows the predicted score of Aalborg University 

by using the posteriors shown in Figure 8. The true utility score of Aalborg University is 0.446 

in THE, and the posterior computed by the RDA approach has an expected value of 0.452, and 

its 95% credible interval is (0.430,0.475). 
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Figure 9 Predicted Utility for Aalborg University 

Figure 10 shows the posteriors of the weight of teaching after the DM ranks or selects the best 

in each set of 5 universities in Table 4. In other words, this figure shows behavior of the 

proposed approach as the preference information increases. The posterior expected value of the 

RDA approaches the true value, and its uncertainty decreases after each set is ranked by the 

DM. The BDA approach has wider credible intervals, and its results do not seem to change 

after the third set of alternatives.  

 
Figure 10 Posteriors of Weight of Teaching in the a) BDA b) RDA Approaches 

We again used 5-fold cross validation in this case study. Our data contains 100 universities, the 

training sets in each iteration have 20 universities. Note that, we asked the DM to rank these 20 

universities in 4 separate sets each having 5 universities. Figure 11 shows the KLD of the RDA 

and BDA approaches after each set of universities is shown to the DM. KLD gets smaller as 

more sets of universities are shown to the DM. The RDA approach consistently has lower KLD 

values than the BDA approach.  
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Figure 11 KLD of Weights in Case Study 2 

We also used the MSEs of utility, rather than rankings, to evaluate the performance in the 

second case study as rankings tend to exaggerate small differences (Keeney et al. 2006). For 

example, if multiple universities have very similar scores, and the model makes very small 

errors when predicting their scores, rankings of these universities can differ in great amounts 

while their predicted scores do not differ significantly. MSE, however, penalizes large errors 

in score predictions more than small errors regardless of the similarities in the true score. Figure 

12 shows the MSEs for our approaches. The MSEs of the RDA approach are consistently better 

than the BDA approach.  

  

Figure 12 MSE of Utility Predictions in Case Study 2 
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If a DM is able to rank the importance of different criteria, without necessarily stating numerical 

values, we can also incorporate this information in our approach. In this section, we examine 
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needs to be estimated. We add the weight constraints in (33) to both the RDA and BDA 

approaches described in Section 3.1.3: 

𝑤/ ≥ 𝑤], 			𝑤] ≥ 𝑤�, 			𝑤� ≥ 𝑤], 				𝑤� ≥ 𝑤] (33) 

where w1, w2, w3, w4 and w5 are the weights of the teaching, international outlook, research, 

citation and industrial income criterion, respectively. Figure 13 and Figure 14 show the 

posteriors of the teaching weight for the RDA and BDA approaches with and without the weight 

constraints. In the BDA approach, the expected value of the posterior is closer to the true value 

when the weight constraints are added. In the RDA approach, the weight constraints enable the 

model to be more confident about the value of weights even when a small number of 

universities are evaluated by the DM.  After entering ranks of 4 sets of universities, the RDA 

approach computes approximately the same posterior with and without the weight constraints.  

 

 
Figure 13 Posterior of Teaching with and without Weight Constraints in the BDA 
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Figure 14 Posterior of Teaching with and without Weight Constraints in the RDA 

Figure 15 and Figure 16 show the KLD and MSE values for these approaches. These metrics 

only consider the expected value of the posterior. Adding weight constraints enabled the 

approaches to have very close expected values to the true values, and ranking additional sets of 

universities did not increase the accuracy of KLD and MSE. In summary, weight constraints 

enabled our method to find more accurate and less uncertain results with fewer number of inputs 

from the DM. 

  

Figure 15 KLD of Weights in Case Study 2 with Weight Constraints 
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Figure 16 MSE of Utility Predictions in Case Study 2 with Weight Constraints 

4.4 Comparison with UTASTAR 

In order to assess the performance of our method, this section compares its results to the weights 

inferred by the UTASTAR method by using the university ranking case study. UTASTAR is 

selected for comparison as it is a widely used technique for finding additive utility functions 

compatible with DM preferences and, its way of eliciting these preferences is similar to our 

method.  In UTASTAR, the preferences can be stated as either a complete ranking of the 

alternatives shown to the DM or a set of pairwise preferences between a subset of alternatives. 

Although UTASTAR is not specially designed for inferring specific weights of the utility 

function, it can be used to infer weights by making post optimality analysis on its results (see 

Siskos and Yannacopoulos, 1985 and Siskos et al., 2016 for a detailed description of 

UTASTAR).  

In our benchmark evaluation, we made 5-fold cross validation using UTASTAR.  We assumed 

that the DM is able to identify very small differences between the utilities of alternatives and 

the utility function is linear as the case study is based on a linear additive utility function. We 

again showed the DM groups of 5 decision alternatives, and the DM ranked the alternatives in 

each group. In addition to this, we also used a complete ranked order of the all decision 

alternatives shown to the DM with UTASTAR. This second approach uses more information 

than RDA as ranking within groups of 5 can provide only a partial ranked order of the decision 

alternatives shown. However, this task is cognitively more difficult for a human DM.  

Figures 17 and 18 show the KLD and MSE of RDA and UTASTAR with group ranking of 

alternatives and UTASTAR with complete ranking of alternatives in the university ranking case 

study. Using a complete ranking or ranking within each group of decision alternatives does not 

cause a major change in the performance of the UTASTAR approach. RDA estimates criteria 

weights and predicts utility scores consistently better than UTASTAR even when UTASTAR 

uses more information about preferences than RDA. This illustrates the ability of our method 
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to estimate weights by using a limited amount of information from the DM. However, it should 

be noted that estimation of precise weights is not the primary aim of UTASTAR.  

 

Figure 17 KLD of RDA and UTASTAR in Case Study 2 

 

Figure 18 MSE of RDA and UTASTAR in Case Study 2 

5 Conclusions 
This paper proposed a novel Bayesian method that estimates the weights of decision criteria by 

asking a DM to select the best of or rank a set of decision alternatives. Our method offers several 

beneficial features for eliciting DM preferences: 

• Our method estimates the entire probability distribution of weights and predicts utility 

values. This enables the DM to assess the uncertainty and confidence regarding these 

estimations.  

• It can accurately estimate weights of decision criteria by asking the DM to rank 

multiple groups of a few decision alternatives. This is beneficial as ranking a large 

number of decision alternatives can be difficult and time-consuming for a DM. 

• It is flexible. We proposed two variations of our method, one that ranks decision 
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utility function. However, other variations, such as the minimal or partial order of 

decision alternatives, or utility functions such as nonlinear functions, can be 

implemented as the Bayesian framework offers this flexibility.  

• It is also able to incorporate constraints about the relative importance of weights. For 

example, if the DM thinks that one weight is more important than another without being 

able to state any numerical value, we can incorporate this information in our model to 

increase the accuracy of estimations. 

We illustrated and evaluated the performance of our method by using two case studies. The 

first case study used a dataset of 50 investment portfolios evaluated by 2 criteria. The second 

case study used a dataset of 100 universities from THE university rankings that had 5 criteria. 

In both case studies, we asked the DM to select the best of or rank multiple sets each containing 

5 alternatives. We entered this information to our Bayesian model and computed the posteriors 

of weights. We also evaluated the performance of the method by using 5-fold cross validation. 

In both case studies, the RDA approach had more accurate and less uncertain estimations than 

the BDA approach. The accuracy of the estimations increased as more number of sets were 

ranked by the DM. Adding weight constraints further increased the accuracy and decreased the 

uncertainty of the estimations. Weight constraints enabled the method to find more accurate 

posteriors with fewer number of inputs from the DM. We also tested our method against another 

preference elicitation approach, UTASTAR, and observed that our method produced superior 

results in terms of the accuracy of the weight estimates. 

Our method asked the DM to rank random sets of non-dominated decision alternatives. As 

further research, we plan to identify the sets of decision alternatives that would decrease the 

uncertainty most drastically, and ask these questions to the DM. We expect the method to 

converge to the true weights much faster in this way. As another issue, in some decision 

problems, the weights of the DM may change over time. For example, an investor may become 

more risk averse as time passes. An adaptive Bayesian model can be used to identify changing 

weights and utility function structure. In addition, we plan to expand the method with features 

to detect and remove inconsistencies with DM’s answers.  
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