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The birth of infinitesimal calculus

Sir Isaac Newton
(My 16th academic great-grandfather)
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The birth of infinitesimal calculus

Gottfried Wilhelm von Leibniz
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y, z we have that (x+y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,
e For all x,y, z we have that (x+y)+z=x+ (y + z) and
(x-y)-z=x-(y-2).
@ For all x there exists y such that x + y = 0.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

@ For all x there exists y such that x +y = 0.

@ For all x # 0 there exists y such that x-y = 1.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

@ For all x there exists y such that x +y = 0.

@ For all x # 0 there exists y such that x-y = 1.

@ For all x we have that x4+ 0= x and x-1 = x.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

For all x there exists y such that x +y = 0.

For all x # 0 there exists y such that x -y = 1.

For all x we have that x +0 = x and x-1 = x.

For all x,y we havethat x+y=y+xand x-y =y - x.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

For all x there exists y such that x +y = 0.

For all x # 0 there exists y such that x -y = 1.

For all x we have that x+ 0= x and x-1 = x.

For all x,y we havethat x+y=y+xand x-y =y - x.

For all x,y,z we have that (x+y)-z=x-z+y-z.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

For all x there exists y such that x +y = 0.

For all x # 0 there exists y such that x -y = 1.

For all x we have that x+ 0= x and x-1 = x.

For all x,y we havethat x+y=y+xand x-y =y - x.
For all x,y,z we have that (x+y)-z=x-z+y-z.

For all x,y,z we have that if x <y, then z+x < z+y.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

For all x there exists y such that x +y = 0.

For all x # 0 there exists y such that x -y = 1.

For all x we have that x+ 0= x and x-1 = x.

For all x,y we havethat x+y=y+xand x-y =y - x.
For all x,y,z we have that (x+y)-z=x-z+y-z.

For all x,y,z we have that if x <y, then z+x < z+y.

For all x,y we have that if 0 < x,y, then 0 < a- b.
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The complete ordered field of real numbers

The structure (R, +,-,0, 1, <) forms a complete ordered field, that is,

e For all x,y,z we have that (x +y)+z=x+ (y + z) and
(x-y)-z=x-(y-2)

For all x there exists y such that x +y = 0.

For all x # 0 there exists y such that x -y = 1.

For all x we have that x+ 0= x and x-1 = x.

For all x,y we havethat x+y=y+xand x-y =y - x.
For all x,y,z we have that (x+y)-z=x-z+y-z.

For all x,y,z we have that if x <y, then z+x < z+y.
For all x,y we have that if 0 < x,y, then 0 < a- b.

(Dedekind-completeness) Any non-empty subset of R with an upper
bound has a least upper bound.
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Infinitesimals

An element € of an ordered field is said to be an infinitesimal if
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Infinitesimals

An element € of an ordered field is said to be an infinitesimal iffor every
natural number n we have that

—1<et+e+---+e<1
—_——

n-times
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Infinitesimals

An element € of an ordered field is said to be an infinitesimal iffor every
natural number n we have that

—1<et+e+---+e<1
—_——

n-times

Fact (Archimedean property)

There are no non-zero infinitesimals in (R, +,-,0,1, <).
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Infinitesimals

An element € of an ordered field is said to be an infinitesimal iffor every
natural number n we have that

—1<et+e+---+e<1
—_——

n-times

Fact (Archimedean property)

There are no non-zero infinitesimals in (R, +,-,0,1, <).

Are there ordered fields which has non-zero infinitesimals?
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Infinitesimals

An element € of an ordered field is said to be an infinitesimal iffor every
natural number n we have that

—1<et+e+---+e<1
—_——

n-times

Fact (Archimedean property)

There are no non-zero infinitesimals in (R, +,-,0,1, <).

Are there ordered fields which has non-zero infinitesimals? Yes, R(x).
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Infinitesimals

An element € of an ordered field is said to be an infinitesimal iffor every
natural number n we have that

—1<e+e+---+e<1
N————

n-times

Fact (Archimedean property)

There are no non-zero infinitesimals in (R, +,-,0,1, <).

Are there ordered fields which has non-zero infinitesimals? Yes, R(x).

Are there ordered fields “similar” to real numbers which has non-zero
infinitesimals?
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The rise of infinitesimal calculus

7. A A 0 & B,

Abraham Robinson
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The field of hyperreal numbers

There exists an extension *R D R of real numbers such that
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The field of hyperreal numbers

There exists an extension *R D R of real numbers such that

@ All elements r € R, all subsets A C R, all functions f : R” — R and
all relations R C R" have “counterparts” *r € *R, *A C *R,
*f: *R" - *Rand *R C *R".
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The field of hyperreal numbers

There exists an extension *R D R of real numbers such that

@ All elements r € R, all subsets A C R, all functions f : R” — R and
all relations R C R" have “counterparts” *r € *R, *A C *R,
*f: *R" —» *Rand *R C *R".

o (Transfer principle) An “elementary” statement ¢ is true of the field
of real numbers if and only if the corresponding statement *¢, which

is obtained by replacing all objects by their counterparts, is true of the
field of hyperreal numbers.
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The field of hyperreal numbers

There exists an extension *R D R of real numbers such that

@ All elements r € R, all subsets A C R, all functions f : R” — R and
all relations R C R" have “counterparts” *r € *R, *A C *R,
*f: *R" —» *Rand *R C *R".

o (Transfer principle) An “elementary” statement ¢ is true of the field
of real numbers if and only if the corresponding statement *¢, which

is obtained by replacing all objects by their counterparts, is true of the
field of hyperreal numbers.

VxeER(O0<x—dyeRx=y-y)iff
Vxe*R(0*<x—>dye*Rx=y-y)
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The field of hyperreal numbers

There exists an extension *R D R of real numbers such that

@ All elements r € R, all subsets A C R, all functions f : R” — R and
all relations R C R" have “counterparts” *r € *R, *A C *R,
*f: *R" —» *Rand *R C *R".

o (Transfer principle) An “elementary” statement ¢ is true of the field
of real numbers if and only if the corresponding statement *¢, which

is obtained by replacing all objects by their counterparts, is true of the
field of hyperreal numbers.

VxeER(O0<x—dyeRx=y-y)iff
Vxe*R(0*<x—>dye*Rx=y-y)

o ("R*+,*-*0," 1, <) is an ordered field.
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The field of hyperreal numbers

There exists an extension *R D R of real numbers such that

@ All elements r € R, all subsets A C R, all functions f : R” — R and
all relations R C R" have “counterparts” *r € *R, *A C *R,
*f: *R" —» *Rand *R C *R".

o (Transfer principle) An “elementary” statement ¢ is true of the field
of real numbers if and only if the corresponding statement *¢, which

is obtained by replacing all objects by their counterparts, is true of the
field of hyperreal numbers.

VxeER(O0<x—dyeRx=y-y)iff
Vxe*R(0*<x—>dye*Rx=y-y)

o ("R*+,*-*0," 1, <) is an ordered field.
°

(*R,* +,*-,*0,* 1,* <) has non-zero infinitesimals.
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Standard parts

For every limited hyperreal r € *R there exists a unique real number
s € R such that r =~ s.
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Standard parts

For every limited hyperreal r € *R there exists a unique real number
s € R such that r =~ s.

| A

Proof.

Let A= {x € R: x < r}. Since r is limited, A is bounded above and
hence has a least upper bound s € R. Let 6 > 0 be any real number.
Then we have s+ 6 > r since s+ d ¢ A. Similarly, we have s — § < r since
s is the least upper bound. Thus, for any real number § > 0,

—d <r—s<9J and hence r = s. [

v
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Standard parts

Theorem

For every limited hyperreal r € *R there exists a unique real number
s € R such that r =~ s.

| A\

Proof.

Let A= {x € R: x < r}. Since r is limited, A is bounded above and
hence has a least upper bound s € R. Let 6 > 0 be any real number.
Then we have s+ 6 > r since s+ d ¢ A. Similarly, we have s — § < r since
s is the least upper bound. Thus, for any real number § > 0,

—d <r—s<9J and hence r = s. O

v

Given a limited hyperreal r € *R, the unique real number to which it is
infinitely close is called its standart part and denoted by st(r).
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Limits via infinitesimals

Let f : R — R be a function and ¢ € R. Then lim f(x) = L if and only if
X—C

f(c + €) = L for every non-zero infinitesimal €.
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Limits via infinitesimals

Let f : R — R be a function and ¢ € R. Then lim f(x) = L if and only if
X—C

f(c + €) = L for every non-zero infinitesimal €.

Let us find the limit of f(x) = x? at ¢ = 4 using this characterization. Let
€ be a non-zero infinitesimal.

lim x? = st((4 + €)?) = st(4? + 8e + ¢?) = 16

x—4
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Limits via infinitesimals

Let f : R — R be a function and ¢ € R. Then lim f(x) = L if and only if
X—C

f(c + €) = L for every non-zero infinitesimal €.

Let us find the limit of f(x) = x? at ¢ = 4 using this characterization. Let
€ be a non-zero infinitesimal.

lim x? = st((4 + €)?) = st(4? + 8e + ¢?) = 16

x—4

Let f : R — R be a function. Then

(x) = L if and only if

f(w) = L for every positive unlimited hyperreal w.

lim f
X——+00
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Derivatives via infinitesimals

Let x e R and f : R — R be a function. Then f'(x) = L if and only if for
every non-zero infinitesimal € we have

Lzst(f(x—i—e)—f(x))

€
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Derivatives via infinitesimals

Let x e R and f : R — R be a function. Then f'(x) = L if and only if for
every non-zero infinitesimal € we have

Lzst(f(x—i—e)—f(x))

€

Let us compute the derivative of f(x) = x? using this characterization.
Let x € R be ¢ be any infinitesimal. Then

2 .2 2 9 2 .2
f‘/(X) — St <(X—FE)X> — St <X + X€ + € X ) = St(2x+6) = 2X
€

€
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Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b].
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Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real § > 0,
consider the partition {a,a + d0,a + 24,...,a+ nd, b} of [a, b] where n is
the greatest integer such that a + nd < b. Consider the Riemann sum

i f(Xk)(5
k=0

where xi is the left-end point of the k-th interval.
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Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real § > 0,
consider the partition {a,a + d0,a + 24,...,a+ nd, b} of [a, b] where n is
the greatest integer such that a + nd < b. Consider the Riemann sum

i f(Xk)(5
k=0

where xi is the left-end point of the k-th interval. This defines a function
S¢(0) given by

§— Y F(x)d
k=0

from positive real numbers to real numbers.
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Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real § > 0,
consider the partition {a,a + d0,a + 24,...,a+ nd, b} of [a, b] where n is
the greatest integer such that a + nd < b. Consider the Riemann sum

i f(Xk)(5
k=0

where xi is the left-end point of the k-th interval. This defines a function
S¢(0) given by

§— Y F(x)d
k=0

from positive real numbers to real numbers.The function S¢ has an
extension *S¢ defined on positive hyperreals.

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 11 /17



Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real § > 0,
consider the partition {a,a + d0,a + 24,...,a+ nd, b} of [a, b] where n is
the greatest integer such that a + nd < b. Consider the Riemann sum

i f(Xk)(S
k=0

where xi is the left-end point of the k-th interval. This defines a function
S¢(0) given by

§— Y F(x)d
k=0

from positive real numbers to real numbers.The function S¢ has an
extension *S¢ defined on positive hyperreals.

If f is Riemann integrable on [a, b], then fab f(x)dx = st(S¢(€)) for any
positive infinitesimal €.
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Uniform continuity via infinitesimals

A function f : A — R is uniformly continuous if and only if for all
hyperreals x,y € *A we have that if x ~ y, then f(x) = f(y).
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Uniform continuity via infinitesimals

A function f : A — R is uniformly continuous if and only if for all
hyperreals x,y € *A we have that if x ~ y, then f(x) = f(y).

Let f : [a, b] = R be continuous. Then f is uniformly continuous. \
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Uniform continuity via infinitesimals

A function f : A — R is uniformly continuous if and only if for all
hyperreals x,y € *A we have that if x ~ y, then f(x) = f(y).

Let f : [a, b] = R be continuous. Then f is uniformly continuous.

Let x,y € *[a, b] such that x &~ y. Then st(x) = c € [a, b]. It follows
from the continuity of f that f(x) = f(c) and f(y) ~ f(c). Therefore,
f(x) ~ f(y) and hence f is uniformly continuous. O
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Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from
the following statement.

If f : [a, b] — R is a continuous function and d € R such that
f(a) < d < f(b), then there exists c € (a, b) such that f(c) = d.

We shall now give a proof of this statement using non-standard calculus.
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Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from
the following statement.

If f : [a, b] — R is a continuous function and d € R such that
f(a) < d < f(b), then there exists ¢ € (a, b) such that f(c) =

We shall now give a proof of this statement using non-standard calculus.

Proof.
For every neNand 0 < k < n, set py = a+

(b a)
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Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from
the following statement.

If f : [a, b] — R is a continuous function and d € R such that
f(a) < d < f(b), then there exists ¢ € (a, b) such that f(c) =

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every n€ Nand 0 < k < n, set py = a+ (b 2 Consider the
function S : N — R given by

n— max{px : f(px) < d}
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Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from
the following statement.

If f : [a, b] — R is a continuous function and d € R such that
f(a) < d < f(b), then there exists ¢ € (a, b) such that f(c) =

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every n€ Nand 0 < k < n, set py = a+ (b 2 Consider the
function S : N — R given by

n— max{px : f(px) < d}

The function S has a non-standard extension *S : N — R. OJ

v
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Intermediate Value Theorem via infinitesimals

Moreover, for each n € N, we have that

b—a

a< S(n)<band f(S(n) <d<f(S(n)+ )
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Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each n € N, we have that

b—a

a< S(n)<band f(S(n) <d<f(S(n)+ )

Therefore, by the Transfer Principle, this statement holds for every n € *N.
Let N € *N be an unlimited natural number.
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Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each n € N, we have that

b—a

a<S(n) < band f(5(n)) <d<f(S(n)+ )

Therefore, by the Transfer Principle, this statement holds for every n € *N.
Let N € *N be an unlimited natural number. Since *S(N) is limited, it has
a standard part, say, ¢ = st(*S(N)). But 252 is infinitesimal and hence
*S(N) + b2 = *S(N) ~ c.
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Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each n € N, we have that

b—a

a<S(n)<band f(S(n)) <d<f(S(n)+ )

Therefore, by the Transfer Principle, this statement holds for every n € *N.
Let N € *N be an unlimited natural number. Since *S(N) is limited, it has
a standard part, say, ¢ = st(*S(N)). But 252 is infinitesimal and hence
*S(N) + 252 ~ *S(N) =~ c. Since f is continuous and we have

FS(N)) < d < FCS(N) + 22

)

we have that f(c) = d.

v
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Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each n € N, we have that

b—a

a<S(n)<band f(S(n)) <d<f(S(n)+ )

Therefore, by the Transfer Principle, this statement holds for every n € *N.
Let N € *N be an unlimited natural number. Since *S(N) is limited, it has
a standard part, say, ¢ = st(*S(N)). But 252 is infinitesimal and hence
*S(N) + 252 ~ *S(N) =~ c. Since f is continuous and we have

FS(N)) < d < FCS(N) + 22

)

we have that f(c) ~ d. However, both f(c) and d are in R and hence
f(c)=d. O

v
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Compactness via infinitesimals

A set A C R is closed if and only if for every r € R, we have that r € A
whenever r =~ s for some s € *A.
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Compactness via infinitesimals

A set A C R is closed if and only if for every r € R, we have that r € A
whenever r =~ s for some s € *A. )

Theorem (Robinson’s criteria of compactness)

A subset A C R is compact if and only if for every x € *A there exists
y € A such that x =~ y.
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Construction of a hyperreal field

@ Let U be a non-principal ultrafilter on N.
@ Let *R be the set of equivalence classes of the relation ~ defined on
RN given by
(Pn) ~ (qn) «—{neN:py=qn}t €U
@ R embeds into *R diagonally.

@ Each function and relation on R can be canonically extended to *R.
For example,

[(pn)] * < [(gn)] = {nE€N:py < gnj €U

Let *+,*-,*0,* 1,* < be the canonical extensions of +,-,0,1, <.
@ The structure (*R,* +,*-*0,* 1,* <) is a hyperreal field.
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Thank you!
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