A gentle introduction to non-standard analysis

Burak Kaya

METU
burakk@metu.edu.tr
February 18, 2018

The birth of infinitesimal calculus

Sir Isaac Newton
(My 16th academic great-grandfather)

The birth of infinitesimal calculus

Gottfried Wilhelm von Leibniz

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.
- For all x we have that $x+0=x$ and $x \cdot 1=x$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.
- For all x we have that $x+0=x$ and $x \cdot 1=x$.
- For all x, y we have that $x+y=y+x$ and $x \cdot y=y \cdot x$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.
- For all x we have that $x+0=x$ and $x \cdot 1=x$.
- For all x, y we have that $x+y=y+x$ and $x \cdot y=y \cdot x$.
- For all x, y, z we have that $(x+y) \cdot z=x \cdot z+y \cdot z$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.
- For all x we have that $x+0=x$ and $x \cdot 1=x$.
- For all x, y we have that $x+y=y+x$ and $x \cdot y=y \cdot x$.
- For all x, y, z we have that $(x+y) \cdot z=x \cdot z+y \cdot z$.
- For all x, y, z we have that if $x \leq y$, then $z+x \leq z+y$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.
- For all x we have that $x+0=x$ and $x \cdot 1=x$.
- For all x, y we have that $x+y=y+x$ and $x \cdot y=y \cdot x$.
- For all x, y, z we have that $(x+y) \cdot z=x \cdot z+y \cdot z$.
- For all x, y, z we have that if $x \leq y$, then $z+x \leq z+y$.
- For all x, y we have that if $0 \leq x, y$, then $0 \leq a \cdot b$.

The complete ordered field of real numbers

The structure $(\mathbb{R},+, \cdot, 0,1, \leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that $(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- For all x there exists y such that $x+y=0$.
- For all $x \neq 0$ there exists y such that $x \cdot y=1$.
- For all x we have that $x+0=x$ and $x \cdot 1=x$.
- For all x, y we have that $x+y=y+x$ and $x \cdot y=y \cdot x$.
- For all x, y, z we have that $(x+y) \cdot z=x \cdot z+y \cdot z$.
- For all x, y, z we have that if $x \leq y$, then $z+x \leq z+y$.
- For all x, y we have that if $0 \leq x, y$, then $0 \leq a \cdot b$.
- (Dedekind-completeness) Any non-empty subset of \mathbb{R} with an upper bound has a least upper bound.

Infinitesimals

An element ϵ of an ordered field is said to be an infinitesimal if

Infinitesimals

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

$$
-1 \leq \underbrace{\epsilon+\epsilon+\cdots+\epsilon}_{n \text {-times }} \leq 1
$$

Infinitesimals

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

$$
-1 \leq \underbrace{\epsilon+\epsilon+\cdots+\epsilon}_{n \text {-times }} \leq 1
$$

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R},+, \cdot, 0,1, \leq)$.

Infinitesimals

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

$$
-1 \leq \underbrace{\epsilon+\epsilon+\cdots+\epsilon}_{n \text {-times }} \leq 1
$$

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R},+, \cdot, 0,1, \leq)$.

Question

Are there ordered fields which has non-zero infinitesimals?

Infinitesimals

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

$$
-1 \leq \underbrace{\epsilon+\epsilon+\cdots+\epsilon}_{n \text {-times }} \leq 1
$$

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R},+, \cdot, 0,1, \leq)$.

Question

Are there ordered fields which has non-zero infinitesimals? Yes, $\mathbb{R}(x)$.

Infinitesimals

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

$$
-1 \leq \underbrace{\epsilon+\epsilon+\cdots+\epsilon}_{n \text {-times }} \leq 1
$$

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R},+, \cdot, 0,1, \leq)$.

Question

Are there ordered fields which has non-zero infinitesimals? Yes, $\mathbb{R}(x)$.

Question

Are there ordered fields "similar" to real numbers which has non-zero infinitesimals?

The rise of infinitesimal calculus

Shehemerem
Abraham Robinson

The field of hyperreal numbers

There exists an extension ${ }^{*} \mathbb{R} \supseteq \mathbb{R}$ of real numbers such that

The field of hyperreal numbers

There exists an extension ${ }^{*} \mathbb{R} \supseteq \mathbb{R}$ of real numbers such that

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^{n}$ have "counterparts" ${ }^{*} r \in{ }^{*} \mathbb{R},{ }^{*} A \subseteq{ }^{*} \mathbb{R}$, ${ }^{*} f:{ }^{*} \mathbb{R}^{n} \rightarrow{ }^{*} \mathbb{R}$ and ${ }^{*} R \subseteq{ }^{*} \mathbb{R}^{n}$.

The field of hyperreal numbers

There exists an extension ${ }^{*} \mathbb{R} \supseteq \mathbb{R}$ of real numbers such that

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^{n}$ have "counterparts" ${ }^{*} r \in{ }^{*} \mathbb{R},{ }^{*} A \subseteq{ }^{*} \mathbb{R}$, ${ }^{*} f:{ }^{*} \mathbb{R}^{n} \rightarrow{ }^{*} \mathbb{R}$ and ${ }^{*} R \subseteq{ }^{*} \mathbb{R}^{n}$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement * φ, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

The field of hyperreal numbers

There exists an extension ${ }^{*} \mathbb{R} \supseteq \mathbb{R}$ of real numbers such that

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^{n}$ have "counterparts" ${ }^{*} r \in{ }^{*} \mathbb{R},{ }^{*} A \subseteq{ }^{*} \mathbb{R}$, ${ }^{*} f:{ }^{*} \mathbb{R}^{n} \rightarrow{ }^{*} \mathbb{R}$ and ${ }^{*} R \subseteq{ }^{*} \mathbb{R}^{n}$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement * φ, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

Example

$\forall x \in \mathbb{R}(0 \leq x \rightarrow \exists y \in \mathbb{R} x=y \cdot y)$ iff
$\forall x \in{ }^{*} \mathbb{R}\left(0^{*} \leq x \rightarrow \exists y \in{ }^{*} \mathbb{R} x=y \cdot y\right)$

The field of hyperreal numbers

There exists an extension ${ }^{*} \mathbb{R} \supseteq \mathbb{R}$ of real numbers such that

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^{n}$ have "counterparts" ${ }^{*} r \in{ }^{*} \mathbb{R},{ }^{*} A \subseteq{ }^{*} \mathbb{R}$, ${ }^{*} f:{ }^{*} \mathbb{R}^{n} \rightarrow{ }^{*} \mathbb{R}$ and ${ }^{*} R \subseteq{ }^{*} \mathbb{R}^{n}$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement * φ, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

Example

$\forall x \in \mathbb{R}(0 \leq x \rightarrow \exists y \in \mathbb{R} x=y \cdot y)$ iff
$\forall x \in{ }^{*} \mathbb{R}\left(0^{*} \leq x \rightarrow \exists y \in{ }^{*} \mathbb{R} x=y \cdot y\right)$

- $\left({ }^{*} \mathbb{R},{ }^{*}+,{ }^{*} \cdot,{ }^{*} 0,{ }^{*} 1,{ }^{*} \leq\right)$ is an ordered field.

The field of hyperreal numbers

There exists an extension ${ }^{*} \mathbb{R} \supseteq \mathbb{R}$ of real numbers such that

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^{n}$ have "counterparts" ${ }^{*} r \in{ }^{*} \mathbb{R},{ }^{*} A \subseteq{ }^{*} \mathbb{R}$, ${ }^{*} f:{ }^{*} \mathbb{R}^{n} \rightarrow{ }^{*} \mathbb{R}$ and ${ }^{*} R \subseteq{ }^{*} \mathbb{R}^{n}$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement * φ, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

Example

$\forall x \in \mathbb{R}(0 \leq x \rightarrow \exists y \in \mathbb{R} x=y \cdot y)$ iff
$\forall x \in{ }^{*} \mathbb{R}\left(0^{*} \leq x \rightarrow \exists y \in{ }^{*} \mathbb{R} x=y \cdot y\right)$

- $\left({ }^{*} \mathbb{R},{ }^{*}+,{ }^{*} \cdot,{ }^{*} 0,{ }^{*} 1,{ }^{*} \leq\right)$ is an ordered field.
- ($\left.{ }^{*} \mathbb{R},{ }^{*}+,{ }^{*} \cdot,{ }^{*} 0,{ }^{*} 1,{ }^{*} \leq\right)$ has non-zero infinitesimals.

Standard parts

Theorem

For every limited hyperreal $r \in{ }^{*} \mathbb{R}$ there exists a unique real number $s \in \mathbb{R}$ such that $r \approx s$.

Standard parts

Theorem

For every limited hyperreal $r \in{ }^{*} \mathbb{R}$ there exists a unique real number $s \in \mathbb{R}$ such that $r \approx s$.

Proof.

Let $A=\{x \in \mathbb{R}: x<r\}$. Since r is limited, A is bounded above and hence has a least upper bound $s \in \mathbb{R}$. Let $\delta>0$ be any real number. Then we have $s+\delta \geq r$ since $s+\delta \notin A$. Similarly, we have $s-\delta<r$ since s is the least upper bound. Thus, for any real number $\delta>0$, $-\delta<r-s<\delta$ and hence $r \approx s$.

Standard parts

Theorem

For every limited hyperreal $r \in{ }^{*} \mathbb{R}$ there exists a unique real number $s \in \mathbb{R}$ such that $r \approx s$.

Proof.

Let $A=\{x \in \mathbb{R}: x<r\}$. Since r is limited, A is bounded above and hence has a least upper bound $s \in \mathbb{R}$. Let $\delta>0$ be any real number. Then we have $s+\delta \geq r$ since $s+\delta \notin A$. Similarly, we have $s-\delta<r$ since s is the least upper bound. Thus, for any real number $\delta>0$, $-\delta<r-s<\delta$ and hence $r \approx s$.

Given a limited hyperreal $r \in{ }^{*} \mathbb{R}$, the unique real number to which it is infinitely close is called its standart part and denoted by $s t(r)$.

Limits via infinitesimals

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $c \in \mathbb{R}$. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if $f(c+\epsilon) \approx L$ for every non-zero infinitesimal ϵ.

Limits via infinitesimals

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $c \in \mathbb{R}$. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if $f(c+\epsilon) \approx L$ for every non-zero infinitesimal ϵ.

Let us find the limit of $f(x)=x^{2}$ at $c=4$ using this characterization. Let ϵ be a non-zero infinitesimal.

$$
\lim _{x \rightarrow 4} x^{2}=s t\left((4+\epsilon)^{2}\right)=s t\left(4^{2}+8 \epsilon+\epsilon^{2}\right)=16
$$

Limits via infinitesimals

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $c \in \mathbb{R}$. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if $f(c+\epsilon) \approx L$ for every non-zero infinitesimal ϵ.

Let us find the limit of $f(x)=x^{2}$ at $c=4$ using this characterization. Let ϵ be a non-zero infinitesimal.

$$
\lim _{x \rightarrow 4} x^{2}=s t\left((4+\epsilon)^{2}\right)=s t\left(4^{2}+8 \epsilon+\epsilon^{2}\right)=16
$$

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then $\lim _{x \rightarrow+\infty} f(x)=L$ if and only if $f(w) \approx L$ for every positive unlimited hyperreal w.

Derivatives via infinitesimals

Theorem

Let $x \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then $f^{\prime}(x)=L$ if and only if for every non-zero infinitesimal ϵ we have

$$
L=s t\left(\frac{f(x+\epsilon)-f(x)}{\epsilon}\right)
$$

Derivatives via infinitesimals

Theorem

Let $x \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then $f^{\prime}(x)=L$ if and only if for every non-zero infinitesimal ϵ we have

$$
L=s t\left(\frac{f(x+\epsilon)-f(x)}{\epsilon}\right)
$$

Let us compute the derivative of $f(x)=x^{2}$ using this characterization. Let $x \in \mathbb{R}$ be ϵ be any infinitesimal. Then
$f^{\prime}(x)=s t\left(\frac{(x+\epsilon)^{2}-x^{2}}{\epsilon}\right)=s t\left(\frac{x^{2}+2 x \epsilon+\epsilon^{2}-x^{2}}{\epsilon}\right)=s t(2 x+\epsilon)=2 x$

Definite integrals via infinitesimals

Let f be a bounded function defined on $[a, b]$.

Definite integrals via infinitesimals

Let f be a bounded function defined on $[a, b]$. For every real $\delta>0$, consider the partition $\{a, a+\delta, a+2 \delta, \ldots, a+n \delta, b\}$ of $[a, b]$ where n is the greatest integer such that $a+n \delta<b$. Consider the Riemann sum

$$
\sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

where x_{k} is the left-end point of the k-th interval.

Definite integrals via infinitesimals

Let f be a bounded function defined on $[a, b]$. For every real $\delta>0$, consider the partition $\{a, a+\delta, a+2 \delta, \ldots, a+n \delta, b\}$ of $[a, b]$ where n is the greatest integer such that $a+n \delta<b$. Consider the Riemann sum

$$
\sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

where x_{k} is the left-end point of the k-th interval. This defines a function $S_{f}(\delta)$ given by

$$
\delta \rightarrow \sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

from positive real numbers to real numbers.

Definite integrals via infinitesimals

Let f be a bounded function defined on $[a, b]$. For every real $\delta>0$, consider the partition $\{a, a+\delta, a+2 \delta, \ldots, a+n \delta, b\}$ of $[a, b]$ where n is the greatest integer such that $a+n \delta<b$. Consider the Riemann sum

$$
\sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

where x_{k} is the left-end point of the k-th interval. This defines a function $S_{f}(\delta)$ given by

$$
\delta \rightarrow \sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

from positive real numbers to real numbers. The function S_{f} has an extension ${ }^{*} S_{f}$ defined on positive hyperreals.

Definite integrals via infinitesimals

Let f be a bounded function defined on $[a, b]$. For every real $\delta>0$, consider the partition $\{a, a+\delta, a+2 \delta, \ldots, a+n \delta, b\}$ of $[a, b]$ where n is the greatest integer such that $a+n \delta<b$. Consider the Riemann sum

$$
\sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

where x_{k} is the left-end point of the k-th interval. This defines a function $S_{f}(\delta)$ given by

$$
\delta \rightarrow \sum_{k=0}^{n} f\left(x_{k}\right) \delta
$$

from positive real numbers to real numbers. The function S_{f} has an extension ${ }^{*} S_{f}$ defined on positive hyperreals.

Theorem

If f is Riemann integrable on $[a, b]$, then $\int_{a}^{b} f(x) d x=\operatorname{st}\left(S_{f}(\epsilon)\right)$ for any positive infinitesimal ϵ.

Uniform continuity via infinitesimals

Theorem
A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous if and only if for all hyperreals $x, y \in{ }^{*} A$ we have that if $x \approx y$, then $f(x) \approx f(y)$.

Uniform continuity via infinitesimals

Theorem

A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous if and only if for all hyperreals $x, y \in{ }^{*} A$ we have that if $x \approx y$, then $f(x) \approx f(y)$.

Corollary

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.

Uniform continuity via infinitesimals

Theorem

A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous if and only if for all hyperreals $x, y \in{ }^{*} A$ we have that if $x \approx y$, then $f(x) \approx f(y)$.

Corollary

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.

Proof.

Let $x, y \in{ }^{*}[a, b]$ such that $x \approx y$. Then $\operatorname{st}(x)=c \in[a, b]$. It follows from the continuity of f that $f(x) \approx f(c)$ and $f(y) \approx f(c)$. Therefore, $f(x) \approx f(y)$ and hence f is uniformly continuous.

Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from the following statement.

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } f:[a, b] \rightarrow \mathbb{R} \text { is a continuous function and } d \in \mathbb{R} \text { such that } \\
& f(a)<d<f(b) \text {, then there exists } c \in(a, b) \text { such that } f(c)=d \text {. }
\end{aligned}
$$

We shall now give a proof of this statement using non-standard calculus.

Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that $f(a)<d<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=d$.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every $n \in \mathbb{N}$ and $0 \leq k \leq n$, set $p_{k}=a+\frac{k(b-a)}{n}$.

Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that $f(a)<d<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=d$.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every $n \in \mathbb{N}$ and $0 \leq k \leq n$, set $p_{k}=a+\frac{k(b-a)}{n}$. Consider the function $S: \mathbb{N} \rightarrow \mathbb{R}$ given by

$$
n \mapsto \max \left\{p_{k}: f\left(p_{k}\right)<d\right\}
$$

Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that $f(a)<d<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=d$.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every $n \in \mathbb{N}$ and $0 \leq k \leq n$, set $p_{k}=a+\frac{k(b-a)}{n}$. Consider the function $S: \mathbb{N} \rightarrow \mathbb{R}$ given by

$$
n \mapsto \max \left\{p_{k}: f\left(p_{k}\right)<d\right\}
$$

The function S has a non-standard extension ${ }^{*} S: \mathbb{N} \rightarrow \mathbb{R}$.

Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each $n \in \mathbb{N}$, we have that

$$
a \leq S(n)<b \text { and } f(S(n))<d \leq f\left(S(n)+\frac{b-a}{n}\right)
$$

Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each $n \in \mathbb{N}$, we have that

$$
a \leq S(n)<b \text { and } f(S(n))<d \leq f\left(S(n)+\frac{b-a}{n}\right)
$$

Therefore, by the Transfer Principle, this statement holds for every $n \in{ }^{*} \mathbb{N}$. Let $N \in{ }^{*} \mathbb{N}$ be an unlimited natural number.

Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each $n \in \mathbb{N}$, we have that

$$
a \leq S(n)<b \text { and } f(S(n))<d \leq f\left(S(n)+\frac{b-a}{n}\right)
$$

Therefore, by the Transfer Principle, this statement holds for every $n \in{ }^{*} \mathbb{N}$. Let $N \in{ }^{*} \mathbb{N}$ be an unlimited natural number. Since ${ }^{*} S(N)$ is limited, it has a standard part, say, $c=s t\left({ }^{*} S(N)\right)$. But $\frac{b-a}{N}$ is infinitesimal and hence ${ }^{*} S(N)+\frac{b-a}{N} \approx * S(N) \approx c$.

Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each $n \in \mathbb{N}$, we have that

$$
a \leq S(n)<b \text { and } f(S(n))<d \leq f\left(S(n)+\frac{b-a}{n}\right)
$$

Therefore, by the Transfer Principle, this statement holds for every $n \in{ }^{*} \mathbb{N}$. Let $N \in{ }^{*} \mathbb{N}$ be an unlimited natural number. Since ${ }^{*} S(N)$ is limited, it has a standard part, say, $c=s t\left({ }^{*} S(N)\right)$. But $\frac{b-a}{N}$ is infinitesimal and hence ${ }^{*} S(N)+\frac{b-a}{N} \approx{ }^{*} S(N) \approx c$. Since f is continuous and we have

$$
f\left({ }^{*} S(N)\right)<d \leq f\left({ }^{*} S(N)+\frac{b-a}{N}\right)
$$

we have that $f(c) \approx d$.

Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each $n \in \mathbb{N}$, we have that

$$
a \leq S(n)<b \text { and } f(S(n))<d \leq f\left(S(n)+\frac{b-a}{n}\right)
$$

Therefore, by the Transfer Principle, this statement holds for every $n \in{ }^{*} \mathbb{N}$. Let $N \in{ }^{*} \mathbb{N}$ be an unlimited natural number. Since ${ }^{*} S(N)$ is limited, it has a standard part, say, $c=s t\left({ }^{*} S(N)\right)$. But $\frac{b-a}{N}$ is infinitesimal and hence ${ }^{*} S(N)+\frac{b-a}{N} \approx{ }^{*} S(N) \approx c$. Since f is continuous and we have

$$
f\left({ }^{*} S(N)\right)<d \leq f\left({ }^{*} S(N)+\frac{b-a}{N}\right)
$$

we have that $f(c) \approx d$. However, both $f(c)$ and d are in \mathbb{R} and hence $f(c)=d$.

Compactness via infinitesimals

Theorem

A set $A \subseteq \mathbb{R}$ is closed if and only if for every $r \in \mathbb{R}$, we have that $r \in A$ whenever $r \approx s$ for some $s \in{ }^{*} A$.

Compactness via infinitesimals

TheoremA set $A \subseteq \mathbb{R}$ is closed if and only if for every $r \in \mathbb{R}$, we have that $r \in A$whenever $r \approx s$ for some $s \in{ }^{*} A$.
Theorem (Robinson's criteria of compactness)
A subset $A \subseteq \mathbb{R}$ is compact if and only if for every $x \in{ }^{*} A$ there exists$y \in A$ such that $x \approx y$.

Construction of a hyperreal field

- Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}.
- Let ${ }^{*} \mathbb{R}$ be the set of equivalence classes of the relation \sim defined on $\mathbb{R}^{\mathbb{N}}$ given by

$$
\left(p_{n}\right) \sim\left(q_{n}\right) \longleftrightarrow\left\{n \in \mathbb{N}: p_{n}=q_{n}\right\} \in \mathcal{U}
$$

- \mathbb{R} embeds into ${ }^{*} \mathbb{R}$ diagonally.
- Each function and relation on \mathbb{R} can be canonically extended to ${ }^{*} \mathbb{R}$. For example,

$$
\left[\left(p_{n}\right)\right]^{*} \leq\left[\left(q_{n}\right)\right] \longleftrightarrow\left\{n \in \mathbb{N}: p_{n} \leq q_{n}\right\} \in \mathcal{U}
$$

Let ${ }^{*}+,{ }^{*} \cdot,{ }^{*} 0,{ }^{*} 1,{ }^{*} \leq$ be the canonical extensions of $+, \cdot, 0,1, \leq$.

- The structure $\left({ }^{*} \mathbb{R},{ }^{*}+,{ }^{*} \cdot,{ }^{*} 0,{ }^{*} 1,{ }^{*} \leq\right)$ is a hyperreal field.

Thank you!

