
A gentle introduction to non-standard analysis

Burak Kaya

METU

burakk@metu.edu.tr

February 18, 2018

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 1 / 17



The birth of infinitesimal calculus

Sir Isaac Newton
(My 16th academic great-grandfather)
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The birth of infinitesimal calculus

Gottfried Wilhelm von Leibniz
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The complete ordered field of real numbers

The structure (R,+, ·, 0, 1,≤) forms a complete ordered field, that is,

For all x , y , z we have that (x + y) + z = x + (y + z) and
(x · y) · z = x · (y · z).

For all x there exists y such that x + y = 0.

For all x 6= 0 there exists y such that x · y = 1.

For all x we have that x + 0 = x and x · 1 = x .

For all x , y we have that x + y = y + x and x · y = y · x .

For all x , y , z we have that (x + y) · z = x · z + y · z .

For all x , y , z we have that if x ≤ y , then z + x ≤ z + y .

For all x , y we have that if 0 ≤ x , y , then 0 ≤ a · b.

(Dedekind-completeness) Any non-empty subset of R with an upper
bound has a least upper bound.
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Infinitesimals

An element ε of an ordered field is said to be an infinitesimal if

for every
natural number n we have that

−1 ≤ ε+ ε+ · · ·+ ε︸ ︷︷ ︸
n-times

≤ 1

Fact (Archimedean property)

There are no non-zero infinitesimals in (R,+, ·, 0, 1,≤).

Question

Are there ordered fields which has non-zero infinitesimals? Yes, R(x).

Question

Are there ordered fields “similar” to real numbers which has non-zero
infinitesimals?
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The rise of infinitesimal calculus

Abraham Robinson
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The field of hyperreal numbers

There exists an extension ∗R ⊇ R of real numbers such that

All elements r ∈ R, all subsets A ⊆ R, all functions f : Rn → R and
all relations R ⊆ Rn have “counterparts” ∗r ∈ ∗R, ∗A ⊆ ∗R,
∗f : ∗Rn → ∗R and ∗R ⊆ ∗Rn.

(Transfer principle) An “elementary” statement ϕ is true of the field
of real numbers if and only if the corresponding statement ∗ϕ, which
is obtained by replacing all objects by their counterparts, is true of the
field of hyperreal numbers.

Example

∀x ∈ R (0 ≤ x → ∃y ∈ R x = y · y) iff
∀x ∈ ∗R (0 ∗ ≤ x → ∃y ∈ ∗R x = y · y)

(∗R,∗+,∗ ·,∗ 0,∗ 1,∗≤) is an ordered field.

(∗R,∗+,∗ ·,∗ 0,∗ 1,∗≤) has non-zero infinitesimals.
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Standard parts

Theorem

For every limited hyperreal r ∈ ∗R there exists a unique real number
s ∈ R such that r ≈ s.

Proof.

Let A = {x ∈ R : x < r}. Since r is limited, A is bounded above and
hence has a least upper bound s ∈ R. Let δ > 0 be any real number.
Then we have s + δ ≥ r since s + δ /∈ A. Similarly, we have s − δ < r since
s is the least upper bound. Thus, for any real number δ > 0,
−δ < r − s < δ and hence r ≈ s.

Given a limited hyperreal r ∈ ∗R, the unique real number to which it is
infinitely close is called its standart part and denoted by st(r).
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Limits via infinitesimals

Theorem

Let f : R→ R be a function and c ∈ R. Then lim
x→c

f (x) = L if and only if

f (c + ε) ≈ L for every non-zero infinitesimal ε.

Let us find the limit of f (x) = x2 at c = 4 using this characterization. Let
ε be a non-zero infinitesimal.

lim
x→4

x2 = st((4 + ε)2) = st(42 + 8ε+ ε2) = 16

Theorem

Let f : R→ R be a function. Then lim
x→+∞

f (x) = L if and only if

f (w) ≈ L for every positive unlimited hyperreal w.
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Derivatives via infinitesimals

Theorem

Let x ∈ R and f : R→ R be a function. Then f ′(x) = L if and only if for
every non-zero infinitesimal ε we have

L = st

(
f (x + ε)− f (x)

ε

)

Let us compute the derivative of f (x) = x2 using this characterization.
Let x ∈ R be ε be any infinitesimal. Then

f ′(x) = st

(
(x + ε)2 − x2

ε

)
= st

(
x2 + 2xε+ ε2 − x2

ε

)
= st(2x+ε) = 2x
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Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b].

For every real δ > 0,
consider the partition {a, a + δ, a + 2δ, . . . , a + nδ, b} of [a, b] where n is
the greatest integer such that a + nδ < b. Consider the Riemann sum

n∑
k=0

f (xk)δ

where xk is the left-end point of the k-th interval. This defines a function
Sf (δ) given by

δ →
n∑

k=0

f (xk)δ

from positive real numbers to real numbers.The function Sf has an
extension ∗Sf defined on positive hyperreals.

Theorem

If f is Riemann integrable on [a, b], then
∫ b
a f (x)dx = st(Sf (ε)) for any

positive infinitesimal ε.

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 11 / 17



Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real δ > 0,
consider the partition {a, a + δ, a + 2δ, . . . , a + nδ, b} of [a, b] where n is
the greatest integer such that a + nδ < b. Consider the Riemann sum

n∑
k=0

f (xk)δ

where xk is the left-end point of the k-th interval.

This defines a function
Sf (δ) given by

δ →
n∑

k=0

f (xk)δ

from positive real numbers to real numbers.The function Sf has an
extension ∗Sf defined on positive hyperreals.

Theorem

If f is Riemann integrable on [a, b], then
∫ b
a f (x)dx = st(Sf (ε)) for any

positive infinitesimal ε.

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 11 / 17



Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real δ > 0,
consider the partition {a, a + δ, a + 2δ, . . . , a + nδ, b} of [a, b] where n is
the greatest integer such that a + nδ < b. Consider the Riemann sum

n∑
k=0

f (xk)δ

where xk is the left-end point of the k-th interval. This defines a function
Sf (δ) given by

δ →
n∑

k=0

f (xk)δ

from positive real numbers to real numbers.

The function Sf has an
extension ∗Sf defined on positive hyperreals.

Theorem

If f is Riemann integrable on [a, b], then
∫ b
a f (x)dx = st(Sf (ε)) for any

positive infinitesimal ε.

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 11 / 17



Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real δ > 0,
consider the partition {a, a + δ, a + 2δ, . . . , a + nδ, b} of [a, b] where n is
the greatest integer such that a + nδ < b. Consider the Riemann sum

n∑
k=0

f (xk)δ

where xk is the left-end point of the k-th interval. This defines a function
Sf (δ) given by

δ →
n∑

k=0

f (xk)δ

from positive real numbers to real numbers.The function Sf has an
extension ∗Sf defined on positive hyperreals.

Theorem

If f is Riemann integrable on [a, b], then
∫ b
a f (x)dx = st(Sf (ε)) for any

positive infinitesimal ε.

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 11 / 17



Definite integrals via infinitesimals

Let f be a bounded function defined on [a, b]. For every real δ > 0,
consider the partition {a, a + δ, a + 2δ, . . . , a + nδ, b} of [a, b] where n is
the greatest integer such that a + nδ < b. Consider the Riemann sum

n∑
k=0

f (xk)δ

where xk is the left-end point of the k-th interval. This defines a function
Sf (δ) given by

δ →
n∑

k=0

f (xk)δ

from positive real numbers to real numbers.The function Sf has an
extension ∗Sf defined on positive hyperreals.

Theorem

If f is Riemann integrable on [a, b], then
∫ b
a f (x)dx = st(Sf (ε)) for any

positive infinitesimal ε.

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 11 / 17



Uniform continuity via infinitesimals

Theorem

A function f : A→ R is uniformly continuous if and only if for all
hyperreals x , y ∈ ∗A we have that if x ≈ y, then f (x) ≈ f (y).

Corollary

Let f : [a, b]→ R be continuous. Then f is uniformly continuous.

Proof.

Let x , y ∈ ∗[a, b] such that x ≈ y . Then st(x) = c ∈ [a, b]. It follows
from the continuity of f that f (x) ≈ f (c) and f (y) ≈ f (c). Therefore,
f (x) ≈ f (y) and hence f is uniformly continuous.
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Intermediate Value Theorem via infinitesimals

The full form of Intermediate Value Theorem can easily be derived from
the following statement.

Theorem

If f : [a, b]→ R is a continuous function and d ∈ R such that
f (a) < d < f (b), then there exists c ∈ (a, b) such that f (c) = d.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every n ∈ N and 0 ≤ k ≤ n, set pk = a + k(b−a)
n . Consider the

function S : N→ R given by

n 7→ max{pk : f (pk) < d}

The function S has a non-standard extension ∗S : N→ R.
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Intermediate Value Theorem via infinitesimals

Proof.

Moreover, for each n ∈ N, we have that

a ≤ S(n) < b and f (S(n)) < d ≤ f (S(n) +
b − a

n
)

Therefore, by the Transfer Principle, this statement holds for every n ∈ ∗N.
Let N ∈ ∗N be an unlimited natural number. Since ∗S(N) is limited, it has
a standard part, say, c = st(∗S(N)). But b−a

N is infinitesimal and hence
∗S(N) + b−a

N ≈ ∗S(N) ≈ c . Since f is continuous and we have

f (∗S(N)) < d ≤ f (∗S(N) +
b − a

N
)

we have that f (c) ≈ d . However, both f (c) and d are in R and hence
f (c) = d .
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Compactness via infinitesimals

Theorem

A set A ⊆ R is closed if and only if for every r ∈ R, we have that r ∈ A
whenever r ≈ s for some s ∈ ∗A.

Theorem (Robinson’s criteria of compactness)

A subset A ⊆ R is compact if and only if for every x ∈ ∗A there exists
y ∈ A such that x ≈ y.
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Construction of a hyperreal field

Let U be a non-principal ultrafilter on N.

Let ∗R be the set of equivalence classes of the relation ∼ defined on
RN given by

(pn) ∼ (qn)←→ {n ∈ N : pn = qn} ∈ U

R embeds into ∗R diagonally.

Each function and relation on R can be canonically extended to ∗R.
For example,

[(pn)] ∗ ≤ [(qn)]←→ {n ∈ N : pn ≤ qn} ∈ U

Let ∗+,∗ ·,∗ 0,∗ 1,∗≤ be the canonical extensions of +, ·, 0, 1,≤.

The structure (∗R,∗+,∗ ·,∗ 0,∗ 1,∗≤) is a hyperreal field.
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Thank you!

Burak Kaya (METU) METU Math Club Workshop February 18, 2018 17 / 17


