A gentle introduction to non-standard analysis

Burak Kaya

METU

burakk@metu.edu.tr

February 18, 2018

Burak Kaya (METU)

METU Math Club Workshop

February 18, 2018 1 / 17

The birth of infinitesimal calculus

Sir Isaac Newton (My 16th academic great-grandfather)

Burak Kaya (METU)

METU Math Club Workshop

February 18, 2018 2 / 17

The birth of infinitesimal calculus

Gottfried Wilhelm von Leibniz

The structure $(\mathbb{R},+,\cdot,0,1,\leq)$ forms a complete ordered field, that is,

• For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.
- For all x we have that x + 0 = x and $x \cdot 1 = x$.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.
- For all x we have that x + 0 = x and $x \cdot 1 = x$.
- For all x, y we have that x + y = y + x and $x \cdot y = y \cdot x$.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.
- For all x we have that x + 0 = x and $x \cdot 1 = x$.
- For all x, y we have that x + y = y + x and $x \cdot y = y \cdot x$.
- For all x, y, z we have that $(x + y) \cdot z = x \cdot z + y \cdot z$.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.
- For all x we have that x + 0 = x and $x \cdot 1 = x$.
- For all x, y we have that x + y = y + x and $x \cdot y = y \cdot x$.
- For all x, y, z we have that $(x + y) \cdot z = x \cdot z + y \cdot z$.
- For all x, y, z we have that if $x \le y$, then $z + x \le z + y$.

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.
- For all x we have that x + 0 = x and $x \cdot 1 = x$.
- For all x, y we have that x + y = y + x and $x \cdot y = y \cdot x$.
- For all x, y, z we have that $(x + y) \cdot z = x \cdot z + y \cdot z$.
- For all x, y, z we have that if $x \le y$, then $z + x \le z + y$.
- For all x, y we have that if $0 \le x, y$, then $0 \le a \cdot b$.

The structure $(\mathbb{R},+,\cdot,0,1,\leq)$ forms a complete ordered field, that is,

- For all x, y, z we have that (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- For all x there exists y such that x + y = 0.
- For all $x \neq 0$ there exists y such that $x \cdot y = 1$.
- For all x we have that x + 0 = x and $x \cdot 1 = x$.
- For all x, y we have that x + y = y + x and $x \cdot y = y \cdot x$.
- For all x, y, z we have that $(x + y) \cdot z = x \cdot z + y \cdot z$.
- For all x, y, z we have that if $x \le y$, then $z + x \le z + y$.
- For all x, y we have that if $0 \le x, y$, then $0 \le a \cdot b$.
- (Dedekind-completeness) Any non-empty subset of ℝ with an upper bound has a least upper bound.

- 4 同 6 4 日 6 4 日 6

An element ϵ of an ordered field is said to be an infinitesimal if

Image: Image:

э

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

Image: A matrix

3

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R}, +, \cdot, 0, 1, \leq)$.

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R}, +, \cdot, 0, 1, \leq)$.

Question

Are there ordered fields which has non-zero infinitesimals?

イロト イ理ト イヨト イヨト

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R}, +, \cdot, 0, 1, \leq)$.

Question

Are there ordered fields which has non-zero infinitesimals? Yes, $\mathbb{R}(x)$.

イロト イ理ト イヨト イヨト

An element ϵ of an ordered field is said to be an infinitesimal iffor every natural number n we have that

Fact (Archimedean property)

There are no non-zero infinitesimals in $(\mathbb{R}, +, \cdot, 0, 1, \leq)$.

Question

Are there ordered fields which has non-zero infinitesimals? Yes, $\mathbb{R}(x)$.

Question

Are there ordered fields "similar" to real numbers which has non-zero infinitesimals?

Burak Kaya (METU)

METU Math Club Workshop

The rise of infinitesimal calculus

Mahan Rohmon

Abraham Robinson

Burak Kaya (METU)

The field of hyperreal numbers

There exists an extension ${}^*\mathbb{R}\supseteq\mathbb{R}$ of real numbers such that

The field of hyperreal numbers

There exists an extension ${}^*\mathbb{R}\supseteq\mathbb{R}$ of real numbers such that

• All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f : \mathbb{R}^n \to \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^n$ have "counterparts" $*r \in *\mathbb{R}, *A \subseteq *\mathbb{R}, *f : *\mathbb{R}^n \to *\mathbb{R}$ and $*R \subseteq *\mathbb{R}^n$.

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f : \mathbb{R}^n \to \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^n$ have "counterparts" $*r \in *\mathbb{R}$, $*A \subseteq *\mathbb{R}$, $*f : *\mathbb{R}^n \to *\mathbb{R}$ and $*R \subseteq *\mathbb{R}^n$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement *φ, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f : \mathbb{R}^n \to \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^n$ have "counterparts" $*r \in *\mathbb{R}$, $*A \subseteq *\mathbb{R}$, $*f : *\mathbb{R}^n \to *\mathbb{R}$ and $*R \subseteq *\mathbb{R}^n$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement $*\varphi$, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

Example

 $\forall x \in \mathbb{R} \ (0 \le x \to \exists y \in \mathbb{R} \ x = y \cdot y) \text{ iff } \\ \forall x \in \mathbb{R} \ (0^* \le x \to \exists y \in \mathbb{R} \ x = y \cdot y)$

・ 何 ト ・ ヨ ト ・ ヨ ト

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f : \mathbb{R}^n \to \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^n$ have "counterparts" $*r \in *\mathbb{R}$, $*A \subseteq *\mathbb{R}$, $*f : *\mathbb{R}^n \to *\mathbb{R}$ and $*R \subseteq *\mathbb{R}^n$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement $*\varphi$, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

Example

 $\forall x \in \mathbb{R} \ (0 \le x \to \exists y \in \mathbb{R} \ x = y \cdot y) \text{ iff } \\ \forall x \in \mathbb{R} \ (0^* \le x \to \exists y \in \mathbb{R} \ x = y \cdot y)$

• (* \mathbb{R} ,*+,*·,*0,*1,* \leq) is an ordered field.

- 4 同 6 4 日 6 4 日 6

- All elements $r \in \mathbb{R}$, all subsets $A \subseteq \mathbb{R}$, all functions $f : \mathbb{R}^n \to \mathbb{R}$ and all relations $R \subseteq \mathbb{R}^n$ have "counterparts" $*r \in *\mathbb{R}$, $*A \subseteq *\mathbb{R}$, $*f : *\mathbb{R}^n \to *\mathbb{R}$ and $*R \subseteq *\mathbb{R}^n$.
- (Transfer principle) An "elementary" statement φ is true of the field of real numbers if and only if the corresponding statement $*\varphi$, which is obtained by replacing all objects by their counterparts, is true of the field of hyperreal numbers.

Example

 $\forall x \in \mathbb{R} \ (0 \le x \to \exists y \in \mathbb{R} \ x = y \cdot y) \text{ iff } \\ \forall x \in *\mathbb{R} \ (0^* \le x \to \exists y \in *\mathbb{R} \ x = y \cdot y)$

- (* \mathbb{R} ,*+,*·,*0,*1,* \leq) is an ordered field.
- (* \mathbb{R} ,*+,*·,*0,*1,* \leq) has non-zero infinitesimals.

For every limited hyperreal $r \in {}^*\mathbb{R}$ there exists a unique real number $s \in \mathbb{R}$ such that $r \approx s$.

3

A 1

For every limited hyperreal $r \in {}^*\mathbb{R}$ there exists a unique real number $s \in \mathbb{R}$ such that $r \approx s$.

Proof.

Let $A = \{x \in \mathbb{R} : x < r\}$. Since *r* is limited, *A* is bounded above and hence has a least upper bound $s \in \mathbb{R}$. Let $\delta > 0$ be any real number. Then we have $s + \delta \ge r$ since $s + \delta \notin A$. Similarly, we have $s - \delta < r$ since *s* is the least upper bound. Thus, for any real number $\delta > 0$, $-\delta < r - s < \delta$ and hence $r \approx s$.

For every limited hyperreal $r \in {}^*\mathbb{R}$ there exists a unique real number $s \in \mathbb{R}$ such that $r \approx s$.

Proof.

Let $A = \{x \in \mathbb{R} : x < r\}$. Since *r* is limited, *A* is bounded above and hence has a least upper bound $s \in \mathbb{R}$. Let $\delta > 0$ be any real number. Then we have $s + \delta \ge r$ since $s + \delta \notin A$. Similarly, we have $s - \delta < r$ since *s* is the least upper bound. Thus, for any real number $\delta > 0$, $-\delta < r - s < \delta$ and hence $r \approx s$.

Given a limited hyperreal $r \in *\mathbb{R}$, the unique real number to which it is infinitely close is called its standart part and denoted by st(r).

< 口 > < 同 > < 三 > < 三

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $c \in \mathbb{R}$. Then $\lim_{x \to c} f(x) = L$ if and only if $f(c + \epsilon) \approx L$ for every non-zero infinitesimal ϵ .

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $c \in \mathbb{R}$. Then $\lim_{x \to c} f(x) = L$ if and only if $f(c + \epsilon) \approx L$ for every non-zero infinitesimal ϵ .

Let us find the limit of $f(x) = x^2$ at c = 4 using this characterization. Let ϵ be a non-zero infinitesimal.

$$\lim_{x \to 4} x^2 = st((4 + \epsilon)^2) = st(4^2 + 8\epsilon + \epsilon^2) = 16$$

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $c \in \mathbb{R}$. Then $\lim_{x \to c} f(x) = L$ if and only if $f(c + \epsilon) \approx L$ for every non-zero infinitesimal ϵ .

Let us find the limit of $f(x) = x^2$ at c = 4 using this characterization. Let ϵ be a non-zero infinitesimal.

$$\lim_{x \to 4} x^2 = st((4 + \epsilon)^2) = st(4^2 + 8\epsilon + \epsilon^2) = 16$$

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Then $\lim_{x \to +\infty} f(x) = L$ if and only if $f(w) \approx L$ for every positive unlimited hyperreal w.

Let $x \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be a function. Then f'(x) = L if and only if for every non-zero infinitesimal ϵ we have

$$L = st\left(rac{f(x+\epsilon) - f(x)}{\epsilon}
ight)$$

Let $x \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be a function. Then f'(x) = L if and only if for every non-zero infinitesimal ϵ we have

$$L = st\left(\frac{f(x+\epsilon) - f(x)}{\epsilon}\right)$$

Let us compute the derivative of $f(x) = x^2$ using this characterization. Let $x \in \mathbb{R}$ be ϵ be any infinitesimal. Then

$$f'(x) = st\left(\frac{(x+\epsilon)^2 - x^2}{\epsilon}\right) = st\left(\frac{x^2 + 2x\epsilon + \epsilon^2 - x^2}{\epsilon}\right) = st(2x+\epsilon) = 2x$$

Let f be a bounded function defined on [a, b].

Let f be a bounded function defined on [a, b]. For every real $\delta > 0$, consider the partition $\{a, a + \delta, a + 2\delta, \dots, a + n\delta, b\}$ of [a, b] where n is the greatest integer such that $a + n\delta < b$. Consider the Riemann sum

$$\sum_{k=0}^{n} f(x_k) \delta$$

where x_k is the left-end point of the *k*-th interval.

Let f be a bounded function defined on [a, b]. For every real $\delta > 0$, consider the partition $\{a, a + \delta, a + 2\delta, \dots, a + n\delta, b\}$ of [a, b] where n is the greatest integer such that $a + n\delta < b$. Consider the Riemann sum

$$\sum_{k=0}^{n} f(x_k) \delta$$

where x_k is the left-end point of the k-th interval. This defines a function $S_f(\delta)$ given by

$$\delta \to \sum_{k=0}^n f(x_k)\delta$$

from positive real numbers to real numbers.

Let f be a bounded function defined on [a, b]. For every real $\delta > 0$, consider the partition $\{a, a + \delta, a + 2\delta, \dots, a + n\delta, b\}$ of [a, b] where n is the greatest integer such that $a + n\delta < b$. Consider the Riemann sum

$$\sum_{k=0}^{n} f(x_k) \delta$$

where x_k is the left-end point of the k-th interval. This defines a function $S_f(\delta)$ given by

$$\delta \to \sum_{k=0}^n f(x_k)\delta$$

from positive real numbers to real numbers. The function S_f has an extension *S_f defined on positive hyperreals.

Let f be a bounded function defined on [a, b]. For every real $\delta > 0$, consider the partition $\{a, a + \delta, a + 2\delta, \dots, a + n\delta, b\}$ of [a, b] where n is the greatest integer such that $a + n\delta < b$. Consider the Riemann sum

$$\sum_{k=0}^n f(x_k)\delta$$

where x_k is the left-end point of the *k*-th interval. This defines a function $S_f(\delta)$ given by

$$\delta \to \sum_{k=0}^n f(x_k)\delta$$

from positive real numbers to real numbers. The function S_f has an extension *S_f defined on positive hyperreals.

Theorem

If f is Riemann integrable on [a, b], then $\int_a^b f(x)dx = st(S_f(\epsilon))$ for any positive infinitesimal ϵ .

Burak Kaya (METU)

A function $f : A \to \mathbb{R}$ is uniformly continuous if and only if for all hyperreals $x, y \in {}^*A$ we have that if $x \approx y$, then $f(x) \approx f(y)$.

A function $f : A \to \mathbb{R}$ is uniformly continuous if and only if for all hyperreals $x, y \in {}^*A$ we have that if $x \approx y$, then $f(x) \approx f(y)$.

Corollary

Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.

A function $f : A \to \mathbb{R}$ is uniformly continuous if and only if for all hyperreals $x, y \in {}^*A$ we have that if $x \approx y$, then $f(x) \approx f(y)$.

Corollary

Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.

Proof.

Let $x, y \in *[a, b]$ such that $x \approx y$. Then $st(x) = c \in [a, b]$. It follows from the continuity of f that $f(x) \approx f(c)$ and $f(y) \approx f(c)$. Therefore, $f(x) \approx f(y)$ and hence f is uniformly continuous.

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f : [a, b] \to \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that f(a) < d < f(b), then there exists $c \in (a, b)$ such that f(c) = d.

We shall now give a proof of this statement using non-standard calculus.

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f : [a, b] \to \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that f(a) < d < f(b), then there exists $c \in (a, b)$ such that f(c) = d.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every
$$n \in \mathbb{N}$$
 and $0 \le k \le n$, set $p_k = a + \frac{k(b-a)}{n}$.

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f : [a, b] \to \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that f(a) < d < f(b), then there exists $c \in (a, b)$ such that f(c) = d.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every $n \in \mathbb{N}$ and $0 \le k \le n$, set $p_k = a + \frac{k(b-a)}{n}$. Consider the function $S : \mathbb{N} \to \mathbb{R}$ given by

$$n \mapsto \max\{p_k : f(p_k) < d\}$$

Image: A matrix and a matrix

The full form of Intermediate Value Theorem can easily be derived from the following statement.

Theorem

If $f : [a, b] \to \mathbb{R}$ is a continuous function and $d \in \mathbb{R}$ such that f(a) < d < f(b), then there exists $c \in (a, b)$ such that f(c) = d.

We shall now give a proof of this statement using non-standard calculus.

Proof.

For every $n \in \mathbb{N}$ and $0 \le k \le n$, set $p_k = a + \frac{k(b-a)}{n}$. Consider the function $S : \mathbb{N} \to \mathbb{R}$ given by

$$n \mapsto \max\{p_k : f(p_k) < d\}$$

The function S has a non-standard extension $*S : \mathbb{N} \to \mathbb{R}$.

Moreover, for each $n \in \mathbb{N}$, we have that

$$a \leq S(n) < b$$
 and $f(S(n)) < d \leq f(S(n) + rac{b-a}{n})$

< □ > < ---->

э

Moreover, for each $n \in \mathbb{N}$, we have that

$$a \leq S(n) < b$$
 and $f(S(n)) < d \leq f(S(n) + \frac{b-a}{n})$

Therefore, by the Transfer Principle, this statement holds for every $n \in {}^*\mathbb{N}$. Let $N \in {}^*\mathbb{N}$ be an unlimited natural number.

Moreover, for each $n \in \mathbb{N}$, we have that

$$a \leq S(n) < b$$
 and $f(S(n)) < d \leq f(S(n) + \frac{b-a}{n})$

Therefore, by the Transfer Principle, this statement holds for every $n \in {}^*\mathbb{N}$. Let $N \in {}^*\mathbb{N}$ be an unlimited natural number. Since ${}^*S(N)$ is limited, it has a standard part, say, $c = st({}^*S(N))$. But $\frac{b-a}{N}$ is infinitesimal and hence ${}^*S(N) + \frac{b-a}{N} \approx {}^*S(N) \approx c$.

Moreover, for each $n \in \mathbb{N}$, we have that

$$a \leq S(n) < b$$
 and $f(S(n)) < d \leq f(S(n) + \frac{b-a}{n})$

Therefore, by the Transfer Principle, this statement holds for every $n \in {}^*\mathbb{N}$. Let $N \in {}^*\mathbb{N}$ be an unlimited natural number. Since ${}^*S(N)$ is limited, it has a standard part, say, $c = st({}^*S(N))$. But $\frac{b-a}{N}$ is infinitesimal and hence ${}^*S(N) + \frac{b-a}{N} \approx {}^*S(N) \approx c$. Since f is continuous and we have

$$f(^*S(N)) < d \le f(^*S(N) + \frac{b-a}{N})$$

we have that $f(c) \approx d$.

Moreover, for each $n \in \mathbb{N}$, we have that

$$a \leq S(n) < b$$
 and $f(S(n)) < d \leq f(S(n) + \frac{b-a}{n})$

Therefore, by the Transfer Principle, this statement holds for every $n \in {}^*\mathbb{N}$. Let $N \in {}^*\mathbb{N}$ be an unlimited natural number. Since ${}^*S(N)$ is limited, it has a standard part, say, $c = st({}^*S(N))$. But $\frac{b-a}{N}$ is infinitesimal and hence ${}^*S(N) + \frac{b-a}{N} \approx {}^*S(N) \approx c$. Since f is continuous and we have

$$f(^*S(N)) < d \le f(^*S(N) + \frac{b-a}{N})$$

we have that $f(c) \approx d$. However, both f(c) and d are in \mathbb{R} and hence f(c) = d.

A set $A \subseteq \mathbb{R}$ is closed if and only if for every $r \in \mathbb{R}$, we have that $r \in A$ whenever $r \approx s$ for some $s \in {}^*A$.

A set $A \subseteq \mathbb{R}$ is closed if and only if for every $r \in \mathbb{R}$, we have that $r \in A$ whenever $r \approx s$ for some $s \in {}^*A$.

Theorem (Robinson's criteria of compactness)

A subset $A \subseteq \mathbb{R}$ is compact if and only if for every $x \in *A$ there exists $y \in A$ such that $x \approx y$.

- Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} .
- Let ${}^*\mathbb{R}$ be the set of equivalence classes of the relation \sim defined on $\mathbb{R}^{\mathbb{N}}$ given by

$$(p_n) \sim (q_n) \longleftrightarrow \{n \in \mathbb{N} : p_n = q_n\} \in \mathcal{U}$$

- \mathbb{R} embeds into $^*\mathbb{R}$ diagonally.
- Each function and relation on $\mathbb R$ can be canonically extended to ${}^*\mathbb R.$ For example,

$$[(p_n)]^* \leq [(q_n)] \longleftrightarrow \{n \in \mathbb{N} : p_n \leq q_n\} \in \mathcal{U}$$

Let $*+,*\cdot,*0,*1,*\leq$ be the canonical extensions of $+,\cdot,0,1,\leq$.

• The structure $(*\mathbb{R}, *+, *\cdot, *0, *1, *\leq)$ is a hyperreal field.

Thank you!

Burak Kaya (METU)

METU Math Club Workshop

February 18, 2018 17 / 1

< 🗗 🕨

æ