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Hilbert’s program

In 1920’s, David Hilbert proposed a research program in the
foundations of mathematics to provide secure foundations to
mathematics and to eliminate the paradoxes and inconsistencies
discovered by then.

Hilbert wanted to formalize all mathematics in an axiomatic system
which is

consistent, i.e. no contradiction can be obtained from the axioms.
complete, i.e. every true statement can be proved from the axioms.
decidable, i.e. given a mathematical statement, there should be a
procedure for deciding its truth or falsity.

In 1931, Kurt Gödel proved his famous incompleteness theorems and
showed that Hilbert’s program cannot be achieved.

In 1936, Alan Turing proved that Hilbert’s Entscheindungsproblem
cannot be solved, i.e. there is no general algorithm which will decide
whether a given mathematical statement is provable (from a given set
of axioms.)
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First-order Peano Arithmetic

We shall work in first-order logic.

Our language consists of the symbol
set {+, ·, 0,S}, where + and · are binary function symbols, 0 is a
constant symbol, and S is a unary function symbol.

Peano Arithmetic (PA) consists of the following six axioms and the
axiom scheme,

∀x S(x) 6= 0
∀x∀y S(x) = S(y)→ x = y
∀x x + 0 = x
∀x∀y x + S(y) = S(x + y)
∀x x · 0 = 0
∀x∀y x · S(y) = x · y + x
For each formula ϕ(x , y1, . . . , yk) in the language of arithmetic,

∀y1 . . . ∀yk ((ϕ(0, y1, . . . , yk) ∧

∀x ϕ(x , y1, . . . , yk)→ ϕ(S(x), y1, . . . , yk))→ ∀x ϕ(x , y1, . . . , yk))
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Representing recursive sets and functions in PA

In order to prove Gödel’s theorem for PA, we shall need the following
facts proof of which we will skip.

Fact

If A ⊆ N is a recursive set, then there exists a formula ϕ(x) in the
language of PA such that n ∈ A⇔ N |= ϕ(n).

Fact

If f : N→ N is a computable function, then there exists a formula ϕ(x , y)
in the language of PA such that for each n ∈ N PA proves that

ϕ(n, y)↔ f (n) = y
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Arithmetization of syntax and Gödel numbers

It turns out that one can injectively assign a natural number to each
well-formed formula in the language of PA.

For example, we can
associate the following natural numbers to our symbols.

∀ 1 ∨ 7 ↔ 13 ) 19 + 25 y 31
∃ 3 ∧ 9 = 15 S 21 · 27 z 33
¬ 5 → 11 ( 17 0 23 x 29 . . .

Then each finite sequence s1s2s3 . . . sk consisting of these symbols

can be assigned to the natural number 2ds1e · 3ds2e . . . pdskek where dse
denotes the natural number assigned to s.

Given a formula ϕ in the language of arithmetic, the corresponding
natural number under this assignment will be called the Gödel
number of ϕ and is denoted by dϕe.
Using a similar trick, we can also assign natural numbers to finite
sequences of formulas.
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Constructing a provability predicate

Under this Gödel numbering, the set of (Gödel numbers) of axioms of
PA will be a recursive set.

Moreover, it follows from representability of
recursive functions that we can construct a binary predicate Pr(x , y)
such that N |= Pr(m, n) if and only if the natural number m codes a
valid PA-proof of the sentence whose Gödel number is n. Using this
predicate, we can construct a provability predicate ProvPA(x) by
setting

ProvPA(x) := ∃y Pr(y , x)

Notice that ProvPA(dϕe) is a sentence written in the language of PA
and is a number-theoretic statement. However, its metamathematical
meaning is that ”ϕ is provable from the axioms of PA”.

We can also construct the number theoretic statement

Con(PA) := ¬ProvPA(d0 = S(0)e)

which asserts that 0 = S(0) is not provable from PA, i.e. PA is
consistent.
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The heart of the matter

Lemma (The Diagonal Lemma)

Let ψ(x) be a formula in the language of PA with one-free variable. Then
there exists a sentence ϕ such that

PA ` ϕ↔ ψ(dϕe)

Proof.

Observe that the function f : N→ N which maps dθ(x)e with one-free
variable to dθ(dθ(x)e)e and which maps other natural numbers to 0 is
computable.

Hence, it is representable in PA, i.e. there is a formula
α(x , y) such that for each n ∈ N we have

PA ` α(n, y)↔ f (n) = y

Let χ(x) be the formula ∃y(α(x , y) ∧ ψ(y)) and let ϕ be χ(dχ(x)e).
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Constructing the Gödel sentence

Let ϕ be a sentence such that

PA ` ϕ↔ ¬ProvPA(dϕe)

which exists by the Diagonal Lemma.

Assume that PA ` ϕ. Then PA ` ProvPA(dϕe) and hence PA ` ¬ϕ by
the construction of ϕ. It follows that PA is inconsistent. Thus, if PA
is consistent, then PA cannot prove ϕ.

Assume that PA ` ¬ϕ. Then PA ` ProvPA(dϕe) by the construction
of ϕ. If PA is ω-consistent, then PA ` Pr(n, dϕe) for some natural
number n and hence PA ` ϕ, in which case PA cannot be consistent.
Thus, if PA is ω-consistent, then PA cannot prove ¬ϕ.

Theorem (Gödel)

If PA is ω-consistent, then PA cannot prove ϕ or ¬ϕ.

Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 8 / 21



Constructing the Gödel sentence
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Gödel’s incompleteness theorems

Barkley Rosser found a trick to improve this result by weakening the
ω-consistency assumption. Using this trick, one can prove the
following form of Gödel’s theorem.

Theorem (Gödel-Rosser, The First Incompleteness Theorem)

If PA is consistent, then there exists a sentence ϕ such that PA does not
prove ϕ or ¬ϕ.

After Gödel announced his original first incompleteness at a
conference, von Neumann started working on it and obtained the
following result, which he sent to Gödel in a letter and which had
already been discovered by Gödel independently.

Theorem (Gödel, The Second Incompleteness Theorem)

If PA is consistent, then PA does not prove Con(PA).
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Some important remarks on Gödel’s theorems

It is possible to carry out Gödel’s proof for theories of arithmetic that
are weaker than PA. More specifically, one can prove the following.

Theorem

Let T ⊇ Q be a recursively enumerable theory containing the Robinson
Arithmetic Q. If T is consistent, then there exists a sentence ϕ such that
T does not prove ϕ or ¬ϕ; and T does not prove Con(T ).

In general, whenever we have a “nice” theory which is able to define
its own provability predicate and is sufficiently strong to prove (a
specific instance of) the Diagonal Lemma, we can carry out Gödel’s
proof and show that this theory cannot be both consistent and
complete. Examples of such theories include ZFC (Zermelo-Fraenkel
set theory with the Axiom of Choice).
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Truth vs. Provability

Let ϕ be a Gödel sentence for PA. We have shown that ϕ is not
provable in PA. Is ϕ true?

This question as stated is meaningless since talking about truth of a
sentence requires a structure in which the sentence is to be
interpreted. So, we rephrase the above question: Is ϕ true in the
structure (N,+, ·,S , 0) where the non-logical symbols {+, ·,S , 0} are
interpreted in the obvious way?

It is easily seen that ϕ is indeed true in this structure. (Here we are
working in a set theory which can formalize the notion of truth in a
structure and which can prove that (N,+, ·,S , 0) models PA.)

However, it is not true that ϕ is true in every model of PA. Indeed, it
follows from Gödel’s completeness theorem that there exists models
of PA in which ϕ is false. Such models of PA contain non-standard
natural numbers for which the provability predicate Pr(x , y) does not
capture its intended meaning.
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Tarski’s undefinability theorem

Another striking application of the Diagonal Lemma is Tarski’s
theorem of undefinability of truth, from which we can deduce Gödel’s
first theorem as a corollary.

Theorem

Let T = {dϕe : N |= ϕ}. Then there is no formula ψ(x) in the language of
arithmetic such that n ∈ T ⇔ N |= ψ(n). In other words, arithmetical
truth cannot be defined arithmetically.

Proof.

Assume to the contrary that there exists such a formula ψ(x). It follows
from the Diagonal Lemma that there exists a sentence ϕ such that PA
proves ϕ↔ ¬ψ(dϕe). Then N |= ϕ iff N |= ¬ψ(dϕe) iff N |= ¬ϕ, which is
a contradiction.
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Gödel’s theorem revisited

Since recursive sets are arithmetically definable, it follows from
Tarski’s theorem that

Corollary

The set Th(N,+, ·,S , 0) of true sentences in the structure (N,+, ·,S , 0) is
not recursive.

Corollary

PA cannot be both sound and complete.

Sketch proof.

Assume that PA is both sound and complete. It follows that given any
sentence ϕ, since either ϕ or ¬ϕ will be eventually provable, we can decide
with a Turing machine whether ϕ is true or not in the structure
(N,+, ·, S , 0) by enumerating all valid PA-proofs.
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Gödel’s theorem revisited

Since recursive sets are arithmetically definable, it follows from
Tarski’s theorem that

Corollary

The set Th(N,+, ·,S , 0) of true sentences in the structure (N,+, ·,S , 0) is
not recursive.

Corollary

PA cannot be both sound and complete.

Sketch proof.

Assume that PA is both sound and complete. It follows that given any
sentence ϕ, since either ϕ or ¬ϕ will be eventually provable, we can decide
with a Turing machine whether ϕ is true or not in the structure
(N,+, ·, S , 0) by enumerating all valid PA-proofs.

Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 13 / 21
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Incompleteness phenomenon in mathematics

We have seen that Gödel’s incompleteness theorems apply to ZFC.
Since Gödel’s original result and the invention of forcing, a technique
for which Paul Cohen received the Fields medal, many natural
statements have been proven to be independent of ZFC, i.e. if ZFC is
consistent, then these statements neither provable nor disprovable
from ZFC.

There are hundreds of independence results. Here we only present
some famous statements that are independent of ZFC.

Statement (The Continuum Hypothesis)

There does not exist a set A such that |N| < |A| < |R|.

Statement (Borel’s conjecture)

Every strong measure zero set is countable, where a set A ⊆ R is said to
be strong measure zero if for every sequence (εn) of positive reals there
exist a sequence (In) of intervals such that |In| < εn and A ⊆

⋃∞
n=0 In.

Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 14 / 21



Incompleteness phenomenon in mathematics
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We have seen that Gödel’s incompleteness theorems apply to ZFC.
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Incompleteness phenomenon in mathematics

Statement (Kaplansky’s conjecture)

Every algebra homomorphism from the Banach algebra C (X ) to any other
Banach algebra is continuous, where X is a compact Hausdorff space and
C (X ) is the space of continuous complex valued functions on X .

Statement (Whitehead’s problem)

Let A be an abelian group such that every short exact sequence
0→ Z→ B → A→ 0 splits. Then A is free abelian.

Statement

Let A = C[x , y , z ] and M = C(x , y , z) be its field of fractions. The
projective dimension of M as an A-module is 2.
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Some common misconceptions about Gödel’s theorems

Misconception: “Gödel’s theorem shows that mathematics cannot
be formalized in a formal system.”

Reality: This is complete non-sense.

Gödel’s theorem does not say
anything about mathematics being formalizable or not. Indeed,
virtually all known mathematics can be formalized in ZFC, which
some consider as the foundation of mathematics. That some
statements are independent of ZFC is a whole nother issue.
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Some common misconceptions about Gödel’s theorems

Misconception: “Gödel’s theorem shows that no formal system can
be both complete and consistent”.

Reality: No!

No! No! In order to apply Gödel’s theorem, one should
have a formal system with recursively enumerable axioms which can
interpret the Robinson arithmetic. In particular, the formal system
should be able to define its own provability predicate and prove (a
specific instance of) the Diagonal Lemma.

If one does not insist that the axiom set be recursively enumerable,
then one can easily find extensions of PA which are both complete
and consistent. Indeed, Lindenbaum’s lemma states that any
consistent first-order theory has a complete extension.

If one does not insist that the formal system interpret Robinson
arithmetic, then one can easily find r.e. theories which are both
consistent and complete. For example, Tarski proved that the theory
of real closed fields is complete (and indeed, decidable).
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Some common misconceptions about Gödel’s theorems

Misconception: “Gödel’s theorem shows that we can never know
that mathematics is consistent”.

Reality: This is only partially true. While it is true that ZFC cannot
prove the statement Con(ZFC), the theory ZFC+“there exists an
inaccessible cardinal” or MK set theory can prove Con(ZFC).
However, we have no reason to think that these stronger systems are
consistent if we are to doubt that weaker systems were already
inconsistent.

Gödel’s theorem prevents any “sufficiently strong and nice” theory
from proving its own consistency statement. Nevertheless, it does not
preclude the existence of some consistency proof which cannot be
formalized within the theory.

One should also note that given finitely many axioms of ZFC (or of
PA), one can prove in ZFC (or in PA) that these axioms are
consistent. (However, ZFC does not prove that “every finite subset of
ZFC is consistent.”)
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Some common misconceptions about Gödel’s theorems

Misconception: “Gödel’s theorem shows that strong artificial
intelligence cannot be achieved”.

Reality: This may be true or false up to interpretation. Gödel’s
theorem does not directly imply that strong AI is impossible.

Lucas and Penrose tried to argue using Gödel’s theorem that the
human mind cannot be simulated by a Turing machine. However,
there have been many counter arguments by logicians and
philosophers against the Lucas-Penrose argument. For example, you
can read Solomon Feferman’s criticism on Penrose’s argument.
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Some common misconceptions about Gödel’s theorems

Misconception: “Gödel’s theorem created much controversy, has not
been fully accepted by mathematical community and may be actually
flawed”.

Reality: Since Gödel’s original theorem, the incompleteness
phenomenon has been studied extensively and is very well-understood.
Mathematical community has accepted and appreciated Gödel’s
theorems.

Indeed, proofs of variants of Gödel’s theorems have been formalized
and checked by proof-assistants such as Isabelle. This precludes the
possibility that there is a flaw or missing step in the proof.
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Thank you!
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