MATH 535, Topology, Homework 5

1. (3 (if) +2 (and only if) pts)

Let \overline{X} be a topological space. Show that X is a T_6 if and only if X is T_4 and every closed subset of X is a G_{δ} -set.

Warning. Recall that the definition of a T_6 -space may differ from source to source. Our definition is that X is T_6 if X is T_1 and for every disjoint closed subsets $A, B \subseteq X$ there exists a continuous function $f: X \to [0,1]$ with $A = f^{-1}(0)$ and $B = f^{-1}(1)$. Some books use the other part of this iff statement as the definition. The point of this question is to prove the equivalence of these definitions.

- 2. (2 pts) Show that every metrizable Lindelöf space is second-countable.
- 3. (3 pts) A topological space X is said to be a locally metrizable space if every point has an open neighborhood whose subspace topology is metrizable. Show that if X is a locally metrizable compact Hausdorff space, then X is metrizable.