MATH 535, Topology, Homework 4

1. (2 pts) Let (X, d) be a sequentially compact metric space and $A, B \subseteq X$ be disjoint closed subsets. Show that $\inf \{d(a, b): a \in A, b \in B\}>0$.
2. ($\mathbf{2}+\mathbf{3}+\mathbf{3} \mathbf{~ p t s})$ Let (X, d) be a metric space.
(a) Let $K \subseteq X$ be a compact subset and $x \in X$. Set $d(x, K)=\inf _{k \in K} d(x, k)$. Show that $d(x, K)=d(x, y)$ for some $y \in K$.

It follows from (a) that we can actually replace inf by min in the definition of $d(x, K)$ and indeed define $d(x, K)=\min _{k \in K} d(x, k)$. Using a similar argument that you used for (a), one can also show that, if $K, L \subseteq X$ are compact, then $\sup _{x \in K} d(x, L)=d(k, L)$ for some $k \in K$. Therefore, we can again replace sup by \max and define $d(K, L)=\max _{x \in K} d(x, L)$.

Let $\mathcal{K}(X)$ denote the set of non-empty compact subsets of X and consider the function $\delta_{H}: \mathcal{K}(X) \times \mathcal{K}(X) \rightarrow[0, \infty)$ given by

$$
\delta_{H}(K, L)=\max \{d(K, L), d(L, K)\}
$$

You can easily check (not as a part of this homework) that δ_{H} is a metric on $\mathcal{K}(X)$. This metric is called the Hausdorff metric on $\mathcal{K}(X)$ and the topology τ generated by this metric is called the Vietoris topology on $\mathcal{K}(X)$.

For the rest of this question, we endow $\mathcal{K}(X)$ with this topology. Before working on the rest of the question, you should get an intuitive feeling of how δ_{H} works. In order to do that, as an example, choose $X=\mathbb{R}^{2}$ and play with this. For example, find some compact sets in the ball $B_{\delta_{H}}\left([0,1]^{2}, 1\right)$ and try to compute $\delta_{H}\left(S^{1},[0,1]^{2}\right)$. After you get a feeling of how δ_{H} works, proceed.
(b) Prove that if (X, d) is totally bounded, then so is $\left(\mathcal{K}(X), \delta_{H}\right)$.

It turns out that if (X, d) is complete, then so is $\left(\mathcal{K}(X), \delta_{H}\right)$. From this fact together with (b), it follows that if (X, d) is compact, then so is $\left(\mathcal{K}(X), \delta_{H}\right)$. If you wish to see the proofs of these, you can find them in textbooks; just search the phrase "space of compact sets".
(c) Prove that $\{K \in \mathcal{K}(X):|K| \leq 535\}$ is a closed subset of $\mathcal{K}(X)$.
3. (2 pts) Let X be a topological space and $D \subseteq X$ be a dense subset. Consider the equivalence relation \sim on X given by

$$
x \sim y \text { if and only if } x=y \text { or } x, y \in D
$$

In other words, \sim is the equivalence relation whose quotient set is

$$
X / \sim=\{[x]: x \in X\}=\left\{\{x\}: x \in D^{c}\right\} \cup\{D\}
$$

Endow X / \sim with the quotient topology. Show that no distinct two points in X / \sim can be separated by disjoint open sets.

