PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS		
FULL NAME	STUDENT ID	DURATION
		150 MINUTES
6 QUESTIONS ON 4 PAGES		TOTAL 100 POINTS

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

 $(5+5+5 \ pts)$ 1. Let $(\mathbf{X}, \mathcal{M}, \mu)$ be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions in $L(\mathbf{X}, \mathcal{M}, \mu)$ and let $f \in L(\mathbf{X}, \mathcal{M}, \mu)$. State the following definitions.

a) $(\mathbf{X}, \mathcal{M}, \mu)$ is a complete measure space iff ...

b) f is a simple function iff ...

c) $f_n \to f$ in measure iff ...

(10 pts) 2. Consider the completion $(\mathbb{R} \times \mathbb{R}, \overline{\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})}, \overline{\mathbf{m} \times \mathbf{m}})$ of the product space $(\mathbb{R} \times \mathbb{R}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), \mathbf{m} \times \mathbf{m})$. Show that there exists a set $K \in \overline{\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})}$ such that $K_x \in \mathcal{B}(\mathbb{R})$ for every $x \in \mathbb{R}$ and $K_y \notin \mathcal{B}(\mathbb{R})$ for some $y \in \mathbb{R}$.

<u>(4+6+5+12+12 pts)</u> 3. Consider the measure spaces $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ and $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ where μ is the counting measure and $\nu : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ is the measure given by

$$\nu(S) = \sum_{n \in S} \frac{1}{3^n}$$

a) Show that $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ is a σ -finite space.

b) Show that $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N} \times \mathbb{N}).$

c) Show that every function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is measurable, where $\mathbb{N} \times \mathbb{N}$ is endowed with the product σ -algebra $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N})$ and \mathbb{R} is endowed with the σ -algebra $\mathcal{B}(\mathbb{R})$.

d) Compute the integral

$$\int_{\{1,2\}\times\mathbb{N}} f(i,j) \ d(\mu\times\nu)$$

where $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is given by $f(i, j) = i \cdot 2^j$ by applying Tonelli's theorem. Make sure to check the conditions of Tonelli's theorem explicitly.

e) Compute the integral

$$\int_{\{1,2\}\times\mathbb{N}} g(i,j) \ d(\mu\times\nu)$$

where $g: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is given by $g(i, j) = (-1)^i \cdot i \cdot (-2)^j$ by applying Fubini's theorem. Make sure to check the conditions of Fubini's theorem explicitly.

 $\underbrace{(12 \ pts) \ 4.}_{\text{on } \mathbb{R} \text{ generated by } \mathcal{E}. \text{ Let } \mathcal{E} = \{(a, b) - \{\frac{a+b}{2}\}: a, b \in \mathbb{R}, a < b\} \text{ and let } \mathcal{M}(\mathcal{E}) \text{ denote the } \sigma\text{-algebra}$

(12 pts) 5. Compute
$$\lim_{n\to\infty} \int_{(\pi,4\pi)} \sin(x) \cdot \arctan\left(\frac{x^n}{n^x}\right) d\mathbf{m}$$
. Briefly justify each step.

(12 pts) 6. Let $\mu : \mathcal{P}(\mathbb{N}) \to [0,\infty]$ and $\nu : \mathcal{P}(\mathbb{N}) \to [0,\infty]$ be the measures on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ given by

$$\mu(A) = \sum_{n \in A} n^3$$
 and $\nu(A) = \sum_{n \in A} n$

You are given that $\mu \ll \nu$. Find the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$.