PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS			
F U L L N A M E	S T U D E N T I D	DURATION	
		TOTAL 100 POINTS	

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature
(5+5+5 pts) 1. Let $(\mathbf{X}, \mathcal{M}, \mu)$ be a measure space. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions in $L(\mathbf{X}, \mathcal{M}, \mu)$ and let $f \in L(\mathbf{X}, \mathcal{M}, \mu)$. State the following definitions.
a) $(\mathbf{X}, \mathcal{M}, \mu)$ is a complete measure space iff ...
b) f is a simple function iff ...
c) $f_{n} \rightarrow f$ in measure iff ...
(10 pts) 2. Consider the completion $(\mathbb{R} \times \mathbb{R}, \overline{\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})}, \overline{\mathbf{m} \times \mathbf{m}})$ of the product space $(\mathbb{R} \times \mathbb{R}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), \mathbf{m} \times \mathbf{m})$. Show that there exists a set $K \in \overline{\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})}$ such that $K_{x} \in \mathcal{B}(\mathbb{R})$ for every $x \in \mathbb{R}$ and $K_{y} \notin \mathcal{B}(\mathbb{R})$ for some $y \in \mathbb{R}$.
$(4+6+5+12+12 p t s) 3$. Consider the measure spaces $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ and $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ where μ is the counting measure and $\nu: \mathcal{P}(\mathbb{N}) \rightarrow[0, \infty]$ is the measure given by

$$
\nu(S)=\sum_{n \in S} \frac{1}{3^{n}}
$$

a) Show that $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ is a σ-finite space.
b) Show that $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N})=\mathcal{P}(\mathbb{N} \times \mathbb{N})$.
c) Show that every function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ is measurable, where $\mathbb{N} \times \mathbb{N}$ is endowed with the product σ-algebra $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N})$ and \mathbb{R} is endowed with the σ-algebra $\mathcal{B}(\mathbb{R})$.
d) Compute the integral

$$
\int_{\{1,2\} \times \mathbb{N}} f(i, j) d(\mu \times \nu)
$$

where $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ is given by $f(i, j)=i \cdot 2^{j}$ by applying Tonelli's theorem. Make sure to check the conditions of Tonelli's theorem explicitly.
e) Compute the integral

$$
\int_{\{1,2\} \times \mathbb{N}} g(i, j) d(\mu \times \nu)
$$

where $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ is given by $g(i, j)=(-1)^{i} \cdot i \cdot(-2)^{j}$ by applying Fubini's theorem. Make sure to check the conditions of Fubini's theorem explicitly.
(12 pts) 4. Let $\mathcal{E}=\left\{(a, b)-\left\{\frac{a+b}{2}\right\}: a, b \in \mathbb{R}, a<b\right\}$ and let $\mathcal{M}(\mathcal{E})$ denote the σ-algebra on \mathbb{R} generated by \mathcal{E}. Show that $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{E}$.
(12 pts) 5. Compute $\lim _{n \rightarrow \infty} \int_{(\pi, 4 \pi)} \sin (x) \cdot \arctan \left(\frac{x^{n}}{n^{x}}\right) d \mathbf{m}$. Briefly justify each step.
(12 pts) 6. Let $\mu: \mathcal{P}(\mathbb{N}) \rightarrow[0, \infty]$ and $\nu: \mathcal{P}(\mathbb{N}) \rightarrow[0, \infty]$ be the measures on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ given by

$$
\mu(A)=\sum_{n \in A} n^{3} \quad \text { and } \quad \nu(A)=\sum_{n \in A} n
$$

You are given that $\mu \ll \nu$. Find the Radon-Nikodym derivative $\frac{d \mu}{d \nu}$.

