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************* PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS *************

1. (7 pts) Prove or disprove the following: For any set x, if x is transitive, then
⋃
x is transitive.

Let x be a set. Suppose that x is transitive. We shall show that
⋃
x is transitive, that is, for every y ∈

⋃
x, we have

y ⊆
⋃
x Let y ∈

⋃
x. Then, by definition, y ∈ z for some z ∈ x. Since x is transitive, z ⊆ x and hence y ∈ x. But then,

for any w ∈ y, since w ∈ y and y ∈ x, we have w ∈
⋃
x. Hence y ⊆

⋃
x. Thus

⋃
x is transitive.

2. (10 pts) Recall that the recursive definitions of addition and multiplication operations + and · on the set of natural
numbers N are given as follows:

m+ 0 = m
m+ S(n) = S(m+ n)

and
m · 0 = 0
m · S(n) = (m · n) +m

for all m,n ∈ N, where S(n) denotes the successor of the natural number n. You are given that the identity

m · (n+ p) = m · n+m · p
hold for all m,n, p ∈ N. Prove that · is associative, that is, for all m,n, p ∈ N, we have

(m · n) · p = m · (n · p)
[WARNING: If you use an identity involving arithmetical operations on N other than the identities given in the
question, you are supposed to prove it.]

Let m,n ∈ N. We shall prove that (m · n) · p = m · (n · p) for all p ∈ N by induction on p.

• Base case. By the definition of ·, we have (m ·n) ·0 = 0 = m ·0 = m · (n ·0) and hence the claim holds for p = 0.
• Successor step. Let p ∈ N. Suppose that (m · n) · p = m · (n · p). Then, by the definition of ·, the inductive

assumption and the given identity, we have

(m · n) · S(p) = ((m · n) · p) + (m · n)

= (m · (n · p)) + (m · n)

= m · ((n · p)) + n)

= m · (n · S(p))

It follows that the claim holds for S(p). Hence, by the principle of mathematical induction, the claim holds for
all p ∈ N.



3. (5× 7 = 35 pts) Consider the relation 4 defined on N× Z as follows.

(m,n) 4 (k, `) ←→ m+ n < k + ` ∨ (m+ n = k + ` ∧ m ≤ k)

for all (m,n), (k, `) ∈ N× Z.
(a) Show that the relation 4 is transitive.

Let (m,n), (k, `), (p, r) ∈ N × Z. Suppose that (m,n) 4 (k, `) and (k, `) 4 (p, r). By the definition of 4, we must have
m+n < k+ ` ∨ (m+n = k+ ` ∧ m ≤ k) and k+ ` < p+ r ∨ (k+ ` = p+ r ∧ k ≤ p). We now split into four cases.

• Case I: (m+ n < k + ` and k + ` < p+ r) Then m+ n < p+ r and hence (m,n) 4 (p, r).
• Case II: (m+ n < k + ` and k + ` = p+ r ∧ k ≤ p) Then m+ n < k + ` = p+ r and hence (m,n) 4 (p, r).
• Case III: (m+ n = k + ` ∧ m ≤ k and k + ` < p+ r) Then m+ n = k + ` < p+ r and hence (m,n) 4 (p, r).
• Case IV: (m + n = k + ` ∧ m ≤ k and k + ` = p + r ∧ k ≤ p) Then m + n = k + ` = p + r and m ≤ p, and

hence (m,n) 4 (p, r).

It follows that 4 is a transitive relation.

You are now given that 4 is a partial order relation on N× Z.
(b) Show that 4 is a linear order relation on N× Z.

Let (m,n), (k, ` ∈ N× Z. Since ≤ is a linear order relation on Z, we may split into three cases:

• Case I: (m+ n < k + `) Then, by the definition of 4, we have (m,n) 4 (k, `).
• Case II: (m+ n > k + `) Then, by the definition of 4, we have (k, `) 4 (m,n).
• Case III: (m+ n = k + `) By the exact same reasoning as above, we may split into two further cases

– Case III.a: (m ≤ k) Then, by the definition of 4, we have (m,n) 4 (k, `).
– Case III.b: (k < m) Then, by the definition of 4, we have (k, `) 4 (m,n).

In all cases, we obtained (m,n) 4 (k, `) or (k, `) 4 (m,n), and hence 4 is a linear order relation.

(c) Show that 4 is not a well order relation on N× Z.

Observe that the sequence ((0,−n))n∈N form an infinite strictly decreasing sequence, namely,

(0, 0) � (0,−1) � (0,−2) � . . .
in the linearly ordered set (N× Z,4). Therefore 4 is not a well-order relation.

(d) Let ≺ denote the induced strict partial order relation given by (m,n) ≺ (k, `) ↔ (m,n) 4 (k, `) ∧ (m,n) 6= (k, `)
for all (m,n), (k, `) ∈ N× Z. Find an element (a, b) ∈ N× Z such that

For all (k, l) ∈ N× Z, if (a, b) ≺ (k, `), then there exists (m,n) ∈ N× Z such that (a, b) ≺ (m,n) ≺ (k, l)

In other words, (a, b) does not have a successor element with respect to this partial order relation.

THIS PART OF THE QUESTION IS CANCELED DUE TO A TYPO. IN THIS PART OF THE QUESTION, ALL
4 SHOULD HAVE BEEN < AND ALL ≺ SHOULD HAVE BEEN �. SO IT SHOULD HAVE ASKED FOR AN
ELEMENT THAT DOES NOT HAVE A PREDECESSOR. CONSEQUENTLY, ALL STUDENTS WILL RECEIVE
FULL POINTS FROM THIS QUESTION.



(e) Prove that there exists an order preserving function from (N × Z,4) to (R,≤), that is, there exists a function
f : N× Z→ R such that (m,n) 4 (k, `) iff f(m,n) ≤ f(k, `), for all (m,n), (k, `) ∈ N× Z.

Consider the function f : N× Z→ R given by

f(m,n) = m+ n− 1

m+ 1

for all m ∈ N and n ∈ Z. We shall show that f is order-preserving. Recall that, since 4 is a linear order relation, it
suffices to show that (m,n) 4 (k, `) implies f(m,n) ≤ f(k, `) for all (m,n), (k, `) ∈ N× Z.

Let (m,n), (k, `) ∈ N× Z. Suppose (m,n) 4 (k, `). Then, by definition, m+ n < k + ` or m+ n = k + ` ∧ m ≤ k. We
split into cases.

• Case I: (m+ n < k + `). Then we have

f(m,n) = m+ n− 1

m+ 1
≤ m+ n ≤ k + `− 1 ≤ k + `− 1

k + 1
= f(k, `)

• Case II: (m+ n = k + ` ∧ m ≤ k) Then we have

f(m,n) = m+ n− 1

m+ 1
= k + `− 1

m+ 1
≤ k + `− 1

k + 1
= f(k, `)

In both cases, we obtain f(m,n) ≤ f(k, `). Therefore f is order-preserving.

4. (4× 7 = 28 pts) Recall that Z2 is the set of functions from Z to 2. In other words, Z2 is the set of 0-1 sequences
indexed by Z. Consider the relation E on Z2 given by

f E g ←→ ∃k ∈ Z ∀n ∈ Z f(n+ k) = g(n)

for all f, g ∈ Z2.
(a) Show that the relation E is an equivalence relation on Z2.

Let f ∈ Z2. Then, choosing k = 0, we have f(n+ k) = f(n) for all n ∈ Z, and hence f E f . Thus E is reflexive.

Let f, g ∈ Z2. Assume that f E g. Then there exists k ∈ Z such that f(n + k) = g(n) for all n ∈ Z. But this implies
that g(n+K) = f(n) for all n ∈ Z where K = −k ∈ Z. Hence g E f . Thus E is symmetric.

Let f, g, h ∈ Z2. Assume that f E g and g E h. Then, by definition, there exist k, ` ∈ Z such that f(n+ k) = g(n) and
g(n+ `) = h(n) for all n ∈ Z. It follows that f(n+K) = h(n) for all n ∈ Z where K = k + ` ∈ Z. Hence f E h. Thus
E is transitive.

(b) Show that the equivalence class [f ]E is countable for all f ∈ Z2.

Observe that, for all g ∈ [f ]E , since f E g, we can choose some kg ∈ Z such that f(n + kg) = g(n) for all n ∈ Z.
Consider the function ϕ : [f ]E → Z given by ϕ(g) = kg for all g ∈ [f ]E .

Observe that ran(ϕ) ⊆ Z is countable since it is a subset of a countable set. We claim that ϕ is injective. Let g, h ∈ [f ]E .
Suppose that ϕ(g) = ϕ(h). Then, for all n ∈ Z, we must have

g(n) = f(n+ kg) = f(n+ kh) = h(n)

and hence g = h. This shows that ϕ is injective from which it follows that |[f ]E | = |ran(ϕ)|. But since the latter set is
countable, we have that [f ]E is countable as well.

(c) Show that there exists an injection from Z2/E to Z2.

Since each equivalence class is non-empty, by the axiom of choice, for each S ∈ Z2/E, we can choose some fS ∈ S.
Consider the function ψ : Z2/E → Z2 given by ψ(S) = fS for all S ∈ Z2/E. Then ψ is an injection because if
fS = ψ(S) = ψ(S′) = fS′ , then fS ∈ S∩S′ and hence S = S′ since two equivalence classes are either identical or disjoint.



(d) Show that there exists an injection from Z2 to Z2/E.

Consider the map γ : Z2→ Z2 given by γ(f)(n) =


0 if n < 0

1 if n = 0

f
(
−n

2

)
if n > 0 is even

f
(
n−1
2

)
if n > 0 is odd

. In other words, considered as a sequence,

γ is the sequence
γ(f) = (. . . , 0, 0, 0, 1, f(0), f(−1), f(1), f(−2), f(2), . . . )

indexed by Z, where the leftmost entry 1 is at index 0.

We claim that, for all f, g ∈ Z2, if γ(f) E γ(g), then f = g. Let f, g ∈ Z2. Suppose γ(f) E γ(g). Then there exists
k ∈ Z such that γ(f)(n + k) = γ(g)(n) for all n ∈ Z. Observe that the leftmost entry 1 appears at index −1 in both
sequences γ(f) and γ(g). Consequently, we must have k = 0. Otherwise, if k > 0, then γ(g)(−k) = γ(f)(0) = 1
and so γ(g) would have entry 1 at index −k; and if k < 0, then γ(f)(k) = γ(g)(0) = 1 and γ(f) would have entry 1
at index k. But then, since k = 0, we have γ(f) = γ(g) from which it follows that f(n) = g(n) for all n ∈ Z. Hence f = g.

Now, consider η : Z2 → Z2/E given by η(f) = [γ(f)]E . By the claim above, we have that f 6= g implies ¬ γ(f) E γ(g)
which subsequently implies η(f) 6= η(g) and hence, η is an injection.

5. (5+5=10 pts) a) State the Axiom of Pairing or the Axiom of Union.

Read the lecture notes for statements of both axioms.

b) Let x be a set. By referring to the relevant axioms ZFC, explain why its successor S(x) = x ∪ {x} exists, i.e. explain
how you construct S(x) using the relevant axioms of ZFC.

Given a set x, by the Axiom of Pairing, we can pair x with itself and obtain the singleton {x}. Now, applying the Axiom
of Pairing with sets x and {x}, we obtain the set {x, {x}}. Finally, applying the Axiom of Union to the set {x, {x}}, we
obtain a set that consists of precisely the elements of elements of {x, {x}}, that is, S(x) = x ∪ {x}.

6. (10 pts) State and prove Cantor’s theorem.

Read the lecture notes for a statement and proof of Cantor’s theorem.


