************ PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS ************************************		
FULL NAME	STUDENT ID	6 questions on 4 pages, 120 minutes
		100 points in total
		Justify your answer

1. (7 pts) Prove or disprove the following: For any set x, if x is transitive, then $\bigcup x$ is transitive.

Let x be a set. Suppose that x is transitive. We shall show that $\bigcup x$ is transitive, that is, for every $y \in \bigcup x$, we have $y \subseteq \bigcup x$. Let $y \in \bigcup x$. Then, by definition, $y \in z$ for some $z \in x$. Since x is transitive, $z \subseteq x$ and hence $y \in x$. But then, for any $w \in y$, since $w \in y$ and $y \in x$, we have $w \in \bigcup x$. Hence $y \subseteq \bigcup x$. Thus $\bigcup x$ is transitive.

2. (10 pts) Recall that the recursive definitions of addition and multiplication operations + and \cdot on the set of natural numbers \mathbb{N} are given as follows:

$$m+0 = m$$

 $m+S(n) = S(m+n)$ and $m \cdot 0 = 0$
 $m \cdot S(n) = (m \cdot n) + m$

for all $m, n \in \mathbb{N}$, where S(n) denotes the successor of the natural number n. You are given that the identity

$$m \cdot (n+p) = m \cdot n + m \cdot p$$

hold for all $m, n, p \in \mathbb{N}$. Prove that \cdot is associative, that is, for all $m, n, p \in \mathbb{N}$, we have

$$(m \cdot n) \cdot p = m \cdot (n \cdot p)$$

[WARNING: If you use an identity involving arithmetical operations on \mathbb{N} other than the identities given in the question, you are supposed to prove it.]

Let $m, n \in \mathbb{N}$. We shall prove that $(m \cdot n) \cdot p = m \cdot (n \cdot p)$ for all $p \in \mathbb{N}$ by induction on p.

- Base case. By the definition of \cdot , we have $(m \cdot n) \cdot 0 = 0 = m \cdot 0 = m \cdot (n \cdot 0)$ and hence the claim holds for p = 0.
- Successor step. Let $p \in \mathbb{N}$. Suppose that $(m \cdot n) \cdot p = m \cdot (n \cdot p)$. Then, by the definition of \cdot , the inductive assumption and the given identity, we have

$$m \cdot n) \cdot S(p) = ((m \cdot n) \cdot p) + (m \cdot n)$$
$$= (m \cdot (n \cdot p)) + (m \cdot n)$$
$$= m \cdot ((n \cdot p)) + n)$$
$$= m \cdot (n \cdot S(p))$$

It follows that the claim holds for S(p). Hence, by the principle of mathematical induction, the claim holds for all $p \in \mathbb{N}$.

3. $(5 \times 7 = 35 \text{ pts})$ Consider the relation \preccurlyeq defined on $\mathbb{N} \times \mathbb{Z}$ as follows.

$$(m,n) \preccurlyeq (k,\ell) \iff m+n < k+\ell \quad \lor \quad (m+n=k+\ell \land m \le k)$$

for all $(m, n), (k, \ell) \in \mathbb{N} \times \mathbb{Z}$.

(a) Show that the relation \preccurlyeq is transitive.

Let $(m,n), (k,\ell), (p,r) \in \mathbb{N} \times \mathbb{Z}$. Suppose that $(m,n) \preccurlyeq (k,\ell)$ and $(k,\ell) \preccurlyeq (p,r)$. By the definition of \preccurlyeq , we must have $m+n < k+\ell \lor (m+n=k+\ell \land m \leq k)$ and $k+\ell < p+r \lor (k+\ell=p+r \land k \leq p)$. We now split into four cases.

- Case I: $(m + n < k + \ell \text{ and } k + \ell < p + r)$ Then $m + n and hence <math>(m, n) \preccurlyeq (p, r)$.
- Case II: $(m + n < k + \ell \text{ and } k + \ell = p + r \land k \le p)$ Then $m + n < k + \ell = p + r$ and hence $(m, n) \preccurlyeq (p, r)$.
- Case III: $(m + n = k + \ell \land m \le k \text{ and } k + \ell Then <math>m + n = k + \ell and hence <math>(m, n) \preccurlyeq (p, r)$.
- Case IV: $(m + n = k + \ell \land m \le k \text{ and } k + \ell = p + r \land k \le p)$ Then $m + n = k + \ell = p + r$ and $m \le p$, and hence $(m, n) \preccurlyeq (p, r)$.

It follows that \preccurlyeq is a transitive relation.

You are now given that \preccurlyeq is a partial order relation on $\mathbb{N} \times \mathbb{Z}$. (b) Show that \preccurlyeq is a linear order relation on $\mathbb{N} \times \mathbb{Z}$.

Let $(m, n), (k, \ell \in \mathbb{N} \times \mathbb{Z})$. Since \leq is a linear order relation on \mathbb{Z} , we may split into three cases:

- Case I: $(m + n < k + \ell)$ Then, by the definition of \preccurlyeq , we have $(m, n) \preccurlyeq (k, \ell)$.
- Case II: $(m + n > k + \ell)$ Then, by the definition of \preccurlyeq , we have $(k, \ell) \preccurlyeq (m, n)$.
- Case III: $(m + n = k + \ell)$ By the exact same reasoning as above, we may split into two further cases
 - Case III.a: $(m \leq k)$ Then, by the definition of \preccurlyeq , we have $(m, n) \preccurlyeq (k, \ell)$.
 - Case III.b: (k < m) Then, by the definition of \preccurlyeq , we have $(k, \ell) \preccurlyeq (m, n)$.

In all cases, we obtained $(m,n) \preccurlyeq (k,\ell)$ or $(k,\ell) \preccurlyeq (m,n)$, and hence \preccurlyeq is a linear order relation.

(c) Show that \preccurlyeq is not a well order relation on $\mathbb{N} \times \mathbb{Z}$.

Observe that the sequence $((0, -n))_{n \in \mathbb{N}}$ form an infinite strictly decreasing sequence, namely,

 $(0,0) \succ (0,-1) \succ (0,-2) \succ \dots$

in the linearly ordered set $(\mathbb{N} \times \mathbb{Z}, \preccurlyeq)$. Therefore \preccurlyeq is not a well-order relation.

(d) Let \prec denote the induced strict partial order relation given by $(m, n) \prec (k, \ell) \leftrightarrow (m, n) \preccurlyeq (k, \ell) \land (m, n) \neq (k, \ell)$ for all $(m, n), (k, \ell) \in \mathbb{N} \times \mathbb{Z}$. Find an element $(a, b) \in \mathbb{N} \times \mathbb{Z}$ such that

For all $(k,l) \in \mathbb{N} \times \mathbb{Z}$, if $(a,b) \prec (k,\ell)$, then there exists $(m,n) \in \mathbb{N} \times \mathbb{Z}$ such that $(a,b) \prec (m,n) \prec (k,l)$

In other words, (a, b) does not have a successor element with respect to this partial order relation.

THIS PART OF THE QUESTION IS CANCELED DUE TO A TYPO. IN THIS PART OF THE QUESTION, ALL \preccurlyeq SHOULD HAVE BEEN \succ AND ALL \prec SHOULD HAVE BEEN \succ . SO IT SHOULD HAVE ASKED FOR AN ELEMENT THAT DOES NOT HAVE A PREDECESSOR. CONSEQUENTLY, ALL STUDENTS WILL RECEIVE FULL POINTS FROM THIS QUESTION.

(e) Prove that there exists an order preserving function from $(\mathbb{N} \times \mathbb{Z}, \preccurlyeq)$ to (\mathbb{R}, \leq) , that is, there exists a function $f: \mathbb{N} \times \mathbb{Z} \to \mathbb{R}$ such that $(m, n) \preccurlyeq (k, \ell)$ iff $f(m, n) \leq f(k, \ell)$, for all $(m, n), (k, \ell) \in \mathbb{N} \times \mathbb{Z}$.

Consider the function $f : \mathbb{N} \times \mathbb{Z} \to \mathbb{R}$ given by

$$f(m,n) = m + n - \frac{1}{m+1}$$

for all $m \in \mathbb{N}$ and $n \in \mathbb{Z}$. We shall show that f is order-preserving. Recall that, since \preccurlyeq is a linear order relation, it suffices to show that $(m, n) \preccurlyeq (k, \ell)$ implies $f(m, n) \le f(k, \ell)$ for all $(m, n), (k, \ell) \in \mathbb{N} \times \mathbb{Z}$.

Let $(m, n), (k, \ell) \in \mathbb{N} \times \mathbb{Z}$. Suppose $(m, n) \preccurlyeq (k, \ell)$. Then, by definition, $m + n < k + \ell$ or $m + n = k + \ell \land m \leq k$. We split into cases.

• Case I: $(m + n < k + \ell)$. Then we have

$$f(m,n) = m + n - \frac{1}{m+1} \le m + n \le k + \ell - 1 \le k + \ell - \frac{1}{k+1} = f(k,\ell)$$

• Case II: $(m + n = k + \ell \land m \leq k)$ Then we have

$$f(m,n) = m + n - \frac{1}{m+1} = k + \ell - \frac{1}{m+1} \le k + \ell - \frac{1}{k+1} = f(k,\ell)$$

In both cases, we obtain $f(m,n) \leq f(k,\ell)$. Therefore f is order-preserving.

4. $(4 \times 7 = 28 \text{ pts})$ Recall that \mathbb{Z}_2 is the set of functions from \mathbb{Z} to 2. In other words, \mathbb{Z}_2 is the set of 0-1 sequences indexed by \mathbb{Z} . Consider the relation E on \mathbb{Z}_2 given by

$$f \ E \ g \longleftrightarrow \exists k \in \mathbb{Z} \ \forall n \in \mathbb{Z} \ f(n+k) = g(n)$$

for all $f, g \in \mathbb{Z}2$.

(a) Show that the relation E is an equivalence relation on $\mathbb{Z}2$.

Let $f \in \mathbb{Z}^2$. Then, choosing k = 0, we have f(n+k) = f(n) for all $n \in \mathbb{Z}$, and hence $f \in f$. Thus E is reflexive.

Let $f, g \in \mathbb{Z}^2$. Assume that $f \in g$. Then there exists $k \in \mathbb{Z}$ such that f(n+k) = g(n) for all $n \in \mathbb{Z}$. But this implies that g(n+K) = f(n) for all $n \in \mathbb{Z}$ where $K = -k \in \mathbb{Z}$. Hence $g \in f$. Thus E is symmetric.

Let $f, g, h \in \mathbb{Z}^2$. Assume that $f \in g$ and $g \in h$. Then, by definition, there exist $k, \ell \in \mathbb{Z}$ such that f(n+k) = g(n) and $g(n+\ell) = h(n)$ for all $n \in \mathbb{Z}$. It follows that f(n+K) = h(n) for all $n \in \mathbb{Z}$ where $K = k + \ell \in \mathbb{Z}$. Hence $f \in h$. Thus E is transitive.

(b) Show that the equivalence class $[f]_E$ is countable for all $f \in \mathbb{Z}2$.

Observe that, for all $g \in [f]_E$, since $f \in g$, we can choose some $k_g \in \mathbb{Z}$ such that $f(n+k_g) = g(n)$ for all $n \in \mathbb{Z}$. Consider the function $\varphi : [f]_E \to \mathbb{Z}$ given by $\varphi(g) = k_g$ for all $g \in [f]_E$.

Observe that $ran(\varphi) \subseteq \mathbb{Z}$ is countable since it is a subset of a countable set. We claim that φ is injective. Let $g, h \in [f]_E$. Suppose that $\varphi(g) = \varphi(h)$. Then, for all $n \in \mathbb{Z}$, we must have

$$g(n) = f(n + k_g) = f(n + k_h) = h(n)$$

and hence g = h. This shows that φ is injective from which it follows that $|[f]_E| = |ran(\varphi)|$. But since the latter set is countable, we have that $[f]_E$ is countable as well.

(c) Show that there exists an injection from \mathbb{Z}_2/E to \mathbb{Z}_2 .

Since each equivalence class is non-empty, by the axiom of choice, for each $S \in \mathbb{Z}_2/E$, we can choose some $f_S \in S$. Consider the function $\psi : \mathbb{Z}_2/E \to \mathbb{Z}_2$ given by $\psi(S) = f_S$ for all $S \in \mathbb{Z}_2/E$. Then ψ is an injection because if $f_S = \psi(S) = \psi(S') = f_{S'}$, then $f_S \in S \cap S'$ and hence S = S' since two equivalence classes are either identical or disjoint. (d) Show that there exists an injection from $\mathbb{Z}2$ to $\mathbb{Z}2/E$.

Consider the map $\gamma : \mathbb{Z}_2 \to \mathbb{Z}_2$ given by $\gamma(f)(n) = \begin{cases} 0 & \text{if } n < 0\\ 1 & \text{if } n = 0\\ f\left(-\frac{n}{2}\right) & \text{if } n > 0 \text{ is even} \end{cases}$. In other words, considered as a sequence, $f\left(\frac{n-1}{2}\right) & \text{if } n > 0 \text{ is odd} \end{cases}$.

 γ is the sequence

$$(f) = (\dots, 0, 0, 0, 1, f(0), f(-1), f(1), f(-2), f(2), \dots)$$

indexed by \mathbb{Z} , where the leftmost entry 1 is at index 0.

We claim that, for all $f, g \in \mathbb{Z}^2$, if $\gamma(f) \to \gamma(g)$, then f = g. Let $f, g \in \mathbb{Z}^2$. Suppose $\gamma(f) \to \gamma(g)$. Then there exists $k \in \mathbb{Z}$ such that $\gamma(f)(n+k) = \gamma(g)(n)$ for all $n \in \mathbb{Z}$. Observe that the leftmost entry 1 appears at index -1 in both sequences $\gamma(f)$ and $\gamma(g)$. Consequently, we must have k = 0. Otherwise, if k > 0, then $\gamma(g)(-k) = \gamma(f)(0) = 1$ and so $\gamma(g)$ would have entry 1 at index -k; and if k < 0, then $\gamma(f)(k) = \gamma(g)(0) = 1$ and $\gamma(f)$ would have entry 1 at index -k; and if k < 0, then $\gamma(f)(k) = \gamma(g)(0) = 1$ and $\gamma(f)$ would have entry 1 at index $\gamma(f) = \gamma(g)$ from which it follows that f(n) = g(n) for all $n \in \mathbb{Z}$. Hence f = g.

Now, consider $\eta : \mathbb{Z}_2 \to \mathbb{Z}_2/E$ given by $\eta(f) = [\gamma(f)]_E$. By the claim above, we have that $f \neq g$ implies $\neg \gamma(f) E \gamma(g)$ which subsequently implies $\eta(f) \neq \eta(g)$ and hence, η is an injection.

5. (5+5=10 pts) a) State the Axiom of Pairing or the Axiom of Union.

Read the lecture notes for statements of both axioms.

b) Let x be a set. By referring to the relevant axioms ZFC, explain why its successor $S(x) = x \cup \{x\}$ exists, i.e. explain how you construct S(x) using the relevant axioms of ZFC.

Given a set x, by the Axiom of Pairing, we can pair x with itself and obtain the singleton $\{x\}$. Now, applying the Axiom of Pairing with sets x and $\{x\}$, we obtain the set $\{x, \{x\}\}$. Finally, applying the Axiom of Union to the set $\{x, \{x\}\}$, we obtain a set that consists of precisely the elements of elements of $\{x, \{x\}\}$, that is, $S(x) = x \cup \{x\}$.

6. (10 pts) State and prove Cantor's theorem.

Read the lecture notes for a statement and proof of Cantor's theorem.