	Math 3	20 S	et The	eory	Midte	erm 1	13	3 Apri	l 2019	11	:40	
Last Name : Name :				Sig	nature	:						
Student No:				Du	ration	: 120	min	nutes				
4 QUESTIONS ON 4 PAGES					TOTAL 100 POINTS							
1 2 3	4				SHOV	V YOU	R	WORI	K			

M E T U Department of Mathematics

1. (5+10=15 pts)

Let \mathcal{D} be a non-empty set whose elements are Dedekind cuts of \mathbb{Q} . Let $X = \bigcap \mathcal{D} = \bigcap_{S \in \mathcal{D}} S$.

a) Prove or disprove the following statement: For every $q \in X$ and $p \in \mathbb{Q}$, if p < q, then $p \in X$.

b) Recall that the recursive definitions of addition and multiplication operations + and \cdot on the set of natural numbers \mathbb{N} are given as follows:

$$\begin{array}{ll} m+0 & =m \\ m+S(n) & =S(m+n) \end{array} \quad \text{and} \quad \begin{array}{l} m\cdot 0 & =0 \\ m\cdot S(n) & =(m\cdot n)+m \end{array}$$

for all $m, n \in \mathbb{N}$, where S(n) denotes the successor of the natural number n. You are given that the identities $0 \cdot m = 0$, $1 \cdot m = m$ and $(m + n) \cdot p = m \cdot p + n \cdot p$ hold for all $m, n, p \in \mathbb{N}$. Prove that \cdot is commutative, that is, for all $m, n \in \mathbb{N}$, we have

$$m \cdot n = n \cdot m$$

[WARNING: If you use an identity involving arithmetical operations on \mathbb{N} other than the identities given in the question, you are supposed to prove it.]

2. (8+8+6+8=30 pts) Consider the relation \preccurlyeq on the set $\mathbb{N} \times \mathbb{R}$ given by

$$(n,q) \preccurlyeq (m,r) \longleftrightarrow (n < m \quad \lor \quad (n = m \quad \land \quad q \leq r))$$

for all $(n,q), (m,r) \in \mathbb{N} \times \mathbb{R}$. In other words, the relation $(n,q) \preccurlyeq (m,r)$ holds if and only if we have that n < m, or, that n = m and $q \leq r$.

(a) Prove that the relation \preccurlyeq is reflexive and transitive.

You are given that \preccurlyeq is a linear order relation.

(b) Prove that \preccurlyeq is not a well-order relation.

(c) Let \prec denote the associated strict linear order relation. Let (n,q), (n',q') be elements of $\mathbb{N} \times \mathbb{R}$ such that $(n,q) \prec (n',q')$. Prove that there exists $(m,r) \in \mathbb{N} \times \mathbb{R}$ such that

$$(n,q) \prec (m,r) \prec (n',q')$$

(d) Prove that there exists an order preserving function from $(\mathbb{N} \times \mathbb{R}, \preccurlyeq)$ to (\mathbb{R}, \leq) , that is, there exists a function $f: \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ such that $(n, q) \preccurlyeq (m, r) \leftrightarrow f(n, q) \leq f(m, r)$ for all $(n, q), (m, r) \in \mathbb{N} \times \mathbb{R}$.

3. (10+10+10=30 pts) Consider the relation ~ on \mathbb{R} given by

 $x \ \sim \ y \ \longleftrightarrow \ x - y \in \mathbb{Q}$

for all $x, y \in \mathbb{R}$. In other words, two real numbers related under the relation \sim if and only if their difference is a rational number.

(a) Prove that \sim is an equivalence relation.

(b) Show that the equivalence class [x] is countable for every $x \in \mathbb{R}$.

(c) Show that \mathbb{R}/\sim is uncountable.

(Hint. Recall the fact that the quotient set \mathbb{R}/\sim is a partition of \mathbb{R} .)

