

1. $(5+10=15 \mathrm{pts})$

Let \mathcal{D} be a non-empty set whose elements are Dedekind cuts of \mathbb{Q}. Let $X=\bigcap \mathcal{D}=\bigcap_{S \in \mathcal{D}} S$.
a) Prove or disprove the following statement: For every $q \in X$ and $p \in \mathbb{Q}$, if $p<q$, then $p \in X$.
b) Recall that the recursive definitions of addition and multiplication operations + and \cdot on the set of natural numbers \mathbb{N} are given as follows:

$$
\begin{array}{ll}
m+0 & =m \\
m+S(n) & =S(m+n)
\end{array}
$$

for all $m, n \in \mathbb{N}$, where $S(n)$ denotes the successor of the natural number n. You are given that the identities $0 \cdot m=0,1 \cdot m=m$ and $(m+n) \cdot p=m \cdot p+n \cdot p$ hold for all $m, n, p \in \mathbb{N}$. Prove that \cdot is commutative, that is, for all $m, n \in \mathbb{N}$, we have

[WARNING: If you use an identity involving arithmetical operations on \mathbb{N} other than the identities given in the question, you are supposed to prove it.]

2. $(8+8+6+8=\mathbf{3 0} \mathbf{p t s})$ Consider the relation \preccurlyeq on the set $\mathbb{N} \times \mathbb{R}$ given by

$$
(n, q) \preccurlyeq(m, r) \longleftrightarrow(n<m \quad \vee \quad(n=m \quad \wedge \quad q \leq r))
$$

for all $(n, q),(m, r) \in \mathbb{N} \times \mathbb{R}$. In other words, the relation $(n, q) \preccurlyeq(m, r)$ holds if and only if we have that $n<m$, or, that $n=m$ and $q \leq r$.
(a) Prove that the relation \preccurlyeq is reflexive and transitive.

You are given that \preccurlyeq is a linear order relation.
(b) Prove that \preccurlyeq is not a well-order relation.
(c) Let \prec denote the associated strict linear order relation. Let $(n, q),\left(n^{\prime}, q^{\prime}\right)$ be elements of $\mathbb{N} \times \mathbb{R}$ such that $(n, q) \prec\left(n^{\prime}, q^{\prime}\right)$. Prove that there exists $(m, r) \in \mathbb{N} \times \mathbb{R}$ such that

(d) Prove that there exists an order preserving function from $(\mathbb{N} \times \mathbb{R}, \preccurlyeq)$ to (\mathbb{R}, \leq), that is, there exists a function $f: \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $(n, q) \preccurlyeq(m, r) \leftrightarrow f(n, q) \leq f(m, r)$ for all $(n, q),(m, r) \in \mathbb{N} \times \mathbb{R}$.
3. $(\mathbf{1 0}+\mathbf{1 0}+\mathbf{1 0}=\mathbf{3 0} \mathbf{p t s})$ Consider the relation \sim on \mathbb{R} given by

$$
x \sim y \longleftrightarrow x-y \in \mathbb{Q}
$$

for all $x, y \in \mathbb{R}$. In other words, two real numbers related under the relation \sim if and only if their difference is a rational number.
(a) Prove that \sim is an equivalence relation.

(b) Show that the equivalence class $[x]$ is countable for every $x \in \mathbb{R}$.
(c) Show that \mathbb{R} / \sim is uncountable.
(Hint. Recall the fact that the quotient set \mathbb{R} / \sim is a partition of \mathbb{R}.)
4. $(5+10+10=25 \mathrm{pts})$
(a) State the Axiom of Power Set.
(b) State and prove Cantor's theorem.

(c) Construct a nonempty set U such that for every $x \in U$ there exists an infinite set $y \in U$ such that $|x|<|y|$.

