	Math	320 S	Set The	eory	Midterm	1	04 April	2018	17:40	
Last Name:				Sig	gnature :					
Name : Student No:				Du	ration : 1	20 1	minutes			
6 QUESTIONS ON 4 PAGES					TOTAL 100 POINTS					
1 2 3	8 4	5	6		SHOW Y	OU	R WORK	X		

M E T U Department of Mathematics

1. (5+10=15 pts)

a) Prove or disprove the following statement: For any non-empty set C, if every element of C is an inductive set, then $\bigcap C$ is inductive.

b) Recall that the recursive definitions of addition and multiplication operations + and \cdot on the set of natural numbers \mathbb{N} are given as follows:

$$\begin{array}{ll} m+0 & =m & m\cdot 0 & =0 \\ m+S(n) & =S(m+n) & m\cdot S(n) & =(m\cdot n)+m \end{array}$$

for all $m, n \in \mathbb{N}$, where S(n) denotes the successor of the natural number n. You are given that + is commutative and associative, that is, the identities m + n = n + m and (m + n) + p = m + (n + p) hold for all $m, n, p \in \mathbb{N}$. Prove that \cdot distributes over + from right, that is, for all $m, n, p \in \mathbb{N}$, we have

$$(m+n)\cdot p=m\cdot p+n\cdot p$$

[WARNING: If you use an identity involving arithmetical operations on \mathbb{N} other than the identities given in the question, you are supposed to prove it.]

2. (8+7+7+8=30 pts) Recall that $\mathbb{N}\mathbb{N}$ is the set of functions from \mathbb{N} to \mathbb{N} . Consider the relation \preccurlyeq on the set $\mathbb{N}\mathbb{N}$ given by

$$f \preccurlyeq g \longleftrightarrow \exists m \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \ge m \to f(n) \le g(n))$$

for all $f, g \in \mathbb{N}\mathbb{N}$. In other words, the relation $f \preccurlyeq g$ holds if and only if $f(n) \le g(n)$ for all sufficiently large natural numbers n.

(a) Show that the relation \preccurlyeq is reflexive and transitive.

(b) Show that the relation \preccurlyeq is not antisymmetric.

(c) Determine whether every two elements of $\mathbb{N}\mathbb{N}$ are comparable with respect to the relation \preccurlyeq . (Recall that two functions f and g are said to be comparable with respect to \preccurlyeq if $f \preccurlyeq g$ or $g \preccurlyeq f$.)

(d) Prove that for every sequence $(f_i)_{i \in \mathbb{N}}$ over $\mathbb{N}\mathbb{N}$, there exists $g \in \mathbb{N}\mathbb{N}$ such that $f_i \preccurlyeq g$ for all $i \in \mathbb{N}$.

3. (10 pts) Show that the set $\mathcal{F} = \{A \subseteq \mathbb{N} : A \text{ is finite}\}$ consisting of finite subsets of \mathbb{N} is countable. (Hint. You can freely use the fact that \mathcal{F} equals $\{A \subseteq \mathbb{N} : \exists n \in \mathbb{N} \ A \subseteq n\}$.)

4. (8+4+8=20 pts) Consider the relation \sim on $\mathcal{P}(\mathbb{N})$ given by

$$A \sim B \longleftrightarrow \exists n \in \mathbb{N} \ |A\Delta B| = n$$

for all $A, B \in \mathcal{P}(\mathbb{N})$. In other words, two subsets of \mathbb{N} are related under the relation \sim if and only if their symmetric difference is finite. You are given the fact that symmetric difference is associative, that is, $(x\Delta y)\Delta z = x\Delta(y\Delta z)$ for all sets x, y, z.

(a) Prove that \sim is an equivalence relation.

(b) Write the definition of the quotient set $\mathcal{P}(\mathbb{N})/\sim$.

(c) You are given that there exists an injection from $\mathcal{P}(\mathbb{N})$ to $\mathcal{P}(\mathbb{N})/\sim$. Show that $|\mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})/\sim|$. (**Hint.** Try first to argue that there is an injection from $\mathcal{P}(\mathbb{N})/\sim$ to $\mathcal{P}(\mathbb{N})$.)

5. (5+5=10 pts)

(a) State either the Axiom of Infinity or the Axiom of Choice.

For the next question, recall that the Axiom of Foundation states that for every non-empty set X, there exists $x \in X$ such that $x \cap X = \emptyset$.

(b) Let A be a set. Prove that there does not exist a function $f : \mathbb{N} \to A$ such that $f(i+1) \in f(i)$ for all $i \in \mathbb{N}$.

6. (15 pts) Let X be a set. Prove that there does not exist a surjection $f: X \to \mathcal{P}(X)$.