	Math 32	0 5	ot The	orv	Midte	rm 1	04 Ar	ril 2017	17.40	
	Math 52	0 0		JOIY	whate	, I III I	04 AL	111 2011	11.40	
Last Name :				Sig	nature	:				
Name :										
Student No:					Duration : 120 minutes					
5 QUESTIONS ON 4 PAGES					TOTAL 100 POINTS					
1 2 3	4	5			SHOW	/ YOU	R WOI	RK		

M E T U Department of Mathematics

1. (5+10=15 pts)

a) Prove or disprove the following statement: For any inductive set I we have that $I \subseteq \bigcup I$.

b) Recall that the recursive definition of multiplication operation \cdot on the set of natural numbers \mathbb{N} is given as follows:

$$m \cdot 0 = 0$$
$$m \cdot S(n) = (m \cdot n) + m$$

for all $m, n \in \mathbb{N}$, where S(n) denotes the successor of the natural number n. You are given that the identity $m \cdot (n+p) = (m \cdot n) + (m \cdot p)$ holds for all $m, n, p \in \mathbb{N}$. Prove that \cdot is associative, that is, for all $m, n, p \in \mathbb{N}$, we have

$$m \cdot (n \cdot p) = (m \cdot n) \cdot p$$

[WARNING: If you use an identity involving arithmetical operations on \mathbb{N} other than the identity given in the question, you are supposed to prove it.]

2. (9+6+6+6=27 pts) Recall that $^{\mathbb{N}}\mathbb{N}$ is the set of functions from \mathbb{N} to \mathbb{N} . Let \mathcal{I} be the set of functions in $^{\mathbb{N}}\mathbb{N}$ which are strictly increasing, that is,

$$\mathcal{I} = \{ f \in \mathbb{N} \mathbb{N} : \forall i, j \in \mathbb{N} \ i < j \leftrightarrow f(i) < f(j) \}$$

Consider the relation \preccurlyeq on the set \mathcal{I} given by

$$f \preccurlyeq g \longleftrightarrow \exists h \in \mathcal{I} \ g = f \circ h$$

for all $f, g \in \mathcal{I}$. In other words, if you consider functions in \mathcal{I} as strictly increasing sequences over \mathbb{N} indexed by \mathbb{N} , the relation $f \preccurlyeq g$ holds if and only if $(g(n))_{n \in \mathbb{N}}$ is a subsequence of $(f(n))_{n \in \mathbb{N}}$.

(a) Show that \preccurlyeq is a partial order relation on \mathcal{I} .

(b) Show that \preccurlyeq is not a linear order relation on \mathcal{I} .

(c) Determine whether there exists a least element of \mathcal{I} with respect to the partial order relation \preccurlyeq .

(d) Let \prec denote the induced strict partial order relation given by $f \prec g \leftrightarrow f \preccurlyeq g \land f \neq g$ for all $f, g \in \mathcal{I}$. Find a sequence $(f_i)_{i \in \mathbb{N}}$ over \mathcal{I} such that for all $i \in \mathbb{N}$, we have that $f_i \prec f_{i+1}$ and there does not exist $g \in \mathcal{I}$ such that $f_i \prec g \prec f_{i+1}$.

3. (8+7+6+7=28 pts) Recall that \mathbb{N}^2 is the set of functions from \mathbb{N} to the set $2 = \{0, 1\}$. Consider the relation E on \mathbb{N}^2 given by

$$f \ E \ g \longleftrightarrow \exists m \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \ge m \to f(n) = g(n))$$

for all $f, g \in \mathbb{N}2$. In other words, if you consider functions in $\mathbb{N}2$ as sequences over 2 indexed by \mathbb{N} , the relation $f \in g$ holds if and only if the sequences $(f(n))_{n \in \mathbb{N}}$ and $(g(n))_{n \in \mathbb{N}}$ have the same values at sufficiently large indices.

(a) Prove that E is an equivalence relation.

(b) Prove that the set $[f]_E$ is countable for any $f \in \mathbb{N}2$.

(c) Prove that there exists an injective function from the quotient set \mathbb{N}_2/E to the set \mathbb{N}_2 .

(d) Explicitly construct an injective function from the set $^{\mathbb{N}}2$ to the quotient set $^{\mathbb{N}}2/E$.

4. (5+5=10 pts)

- (a) State the Axiom of Foundation.
- (b) Prove that there do not exist sets x, y, z such that $x \in y, y \in z$ and $z \in x$.

5. (20 pts)

State and prove Cantor's theorem.