

## 1. $(5+10=15 \mathrm{pts})$

a) Prove or disprove the following statement: For any inductive set $I$ we have that $I \subseteq \bigcup I$.
b) Recall that the recursive definition of multiplication operation • on the set of natural numbers $\mathbb{N}$ is given as follows:

$$
\begin{aligned}
m \cdot 0 & =0 \\
m \cdot S(n) & =(m \cdot n)+m
\end{aligned}
$$

for all $m, n \in \mathbb{N}$, where $S(n)$ denotes the successor of the natural number $n$. You are given that the identity $m \cdot(n+p)=(m \cdot n)+(m \cdot p)$ holds for all $m, n, p \in \mathbb{N}$. Prove that $\cdot$ is associative, that is, for all $m, n, p \in \mathbb{N}$, we have

$$
m \cdot(n \cdot p)=(m \cdot n) \cdot p
$$

[WARNING: If you use an identity involving arithmetical operations on $\mathbb{N}$ other than the identity given in the question, you are supposed to prove it.]

2. $(\mathbf{9}+\mathbf{6}+\mathbf{6}+\mathbf{6}=\mathbf{2 7} \mathbf{p t s})$ Recall that ${ }^{\mathbb{N}} \mathbb{N}$ is the set of functions from $\mathbb{N}$ to $\mathbb{N}$. Let $\mathcal{I}$ be the set of functions in ${ }^{\mathbb{N}} \mathbb{N}$ which are strictly increasing, that is,

$$
\mathcal{I}=\left\{f \in \mathbb{N}_{\mathbb{N}}: \forall i, j \in \mathbb{N} \quad i<j \leftrightarrow f(i)<f(j)\right\}
$$

Consider the relation $\preccurlyeq$ on the set $\mathcal{I}$ given by

$$
f \preccurlyeq g \longleftrightarrow \exists h \in \mathcal{I} \quad g=f \circ h
$$

for all $f, g \in \mathcal{I}$. In other words, if you consider functions in $\mathcal{I}$ as strictly increasing sequences over $\mathbb{N}$ indexed by $\mathbb{N}$, the relation $f \preccurlyeq g$ holds if and only if $(g(n))_{n \in \mathbb{N}}$ is a subsequence of $(f(n))_{n \in \mathbb{N}}$.
(a) Show that $\preccurlyeq$ is a partial order relation on $\mathcal{I}$.
(b) Show that $\preccurlyeq$ is not a linear order relation on $\mathcal{I}$.
(c) Determine whether there exists a least element of $\mathcal{I}$ with respect to the partial order relation $\preccurlyeq$.
(d) Let $\prec$ denote the induced strict partial order relation given by $f \prec g \leftrightarrow f \preccurlyeq g \wedge f \neq g$ for all $f, g \in \mathcal{I}$. Find a sequence $\left(f_{i}\right)_{i \in \mathbb{N}}$ over $\mathcal{I}$ such that for all $i \in \mathbb{N}$, we have that $f_{i} \prec f_{i+1}$ and there does not exist $g \in \mathcal{I}$ such that $f_{i} \prec g \prec f_{i+1}$.

3. $(8+7+6+7=\mathbf{2 8} \mathbf{p t s})$ Recall that ${ }^{\mathbb{N}} 2$ is the set of functions from $\mathbb{N}$ to the set $2=\{0,1\}$. Consider the relation $E$ on ${ }^{\mathbb{N}} 2$ given by

$$
f E g \longleftrightarrow \exists m \in \mathbb{N} \forall n \in \mathbb{N}(n \geq m \rightarrow f(n)=g(n))
$$

for all $f, g \in{ }^{\mathbb{N}} 2$. In other words, if you consider functions in $\mathbb{N}_{2}$ as sequences over 2 indexed by $\mathbb{N}$, the relation $f E g$ holds if and only if the sequences $(f(n))_{n \in \mathbb{N}}$ and $(g(n))_{n \in \mathbb{N}}$ have the same values at sufficiently large indices.
(a) Prove that $E$ is an equivalence relation.
(b) Prove that the set $[f]_{E}$ is countable for any $f \in{ }^{\mathbb{N}} 2$.

(d) Explicitly construct an injective function from the set ${ }^{\mathbb{N}} 2$ to the quotient set ${ }^{\mathbb{N}} 2 / E$.
4. $(5+5=10 \mathrm{pts})$
(a) State the Axiom of Foundation.

(b) Prove that there do not exist sets $x, y, z$ such that $x \in y, y \in z$ and $z \in x$.

## 5. (20 pts)

State and prove Cantor's theorem.

