MATH 319 2017-1: Take-Home Assignment

- In this question, we shall prove that

$$
\int_{[0,1]} e^{x^{2}} d m=\sum_{k=0}^{\infty} \frac{1}{k!(2 k+1)}
$$

Consider the following argument:

$$
\begin{align*}
\int_{[0,1]} e^{x^{2}} d m & =\int_{[0,1]} \sum_{k=0}^{\infty} \frac{x^{2 k}}{k!} d m \tag{1}\\
& =\int_{[0,1]} \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{2 k}}{k!} d m \tag{2}\\
& =\lim _{n \rightarrow \infty} \int_{[0,1]} \sum_{k=0}^{n} \frac{x^{2 k}}{k!} d m \tag{3}\\
& =\lim _{n \rightarrow \infty} \int_{0}^{1} \sum_{k=0}^{n} \frac{x^{2 k}}{k!} d x \tag{4}\\
& =\left.\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \frac{x^{2 k+1}}{k!(2 k+1)}\right)\right|_{0} ^{1} \tag{5}\\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k!(2 k+1)} \tag{6}\\
& =\sum_{k=0}^{\infty} \frac{1}{k!(2 k+1)} \tag{7}
\end{align*}
$$

Explain briefly why (1) holds and explain in detail why we are able to pass from (2) to (3) and from (3) to (4) by referring to related theorems and checking that their conditions hold.

- Consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ where ν is the counting measure defined on $\mathcal{P}(\mathbb{N})$ given by

$$
\nu(S)= \begin{cases}+\infty & \text { if } S \text { is infinite } \\ |S| & \text { if } S \text { is finite }\end{cases}
$$

Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be any positive function.
a. Explain why the function f is $(\mathcal{P}(\mathbb{N}), \mathcal{B}(\mathbb{R}))$-measurable.
b. Find a sequence of simple functions $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ such that $f_{n} \leq f_{n+1}$ for all $n \in \mathbb{N}$ and $f_{n} \rightarrow f$ pointwise as $n \rightarrow \infty$.
(Hint. Consider the functions $f(x) \chi_{\{0,1,2, \ldots, n\}}(x)$. Try to show that these functions are simple and find their standard representations.)
c. Using Part (b) and the Monotone Convergence Theorem, conclude that

$$
\int_{\mathbb{N}} f(x) d \nu=\sum_{k=0}^{\infty} f(k)
$$

For the rest of this question, we shall work in the product space

$$
(\mathbb{R} \times \mathbb{N}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{N}), m \times \nu)
$$

where m is the usual Lebesgue measure on \mathbb{R} and ν is the counting measure.
d. Assuming that the function $f(x, y)=|x| \cdot y^{2}$ from $\mathbb{R} \times \mathbb{N}$ to \mathbb{R} is measurable, explain why we have

$$
\begin{aligned}
\int_{\mathbb{R} \times \mathbb{N}} f(x, y) d(m \times \nu) & =\int_{\mathbb{N}}\left(\int_{\mathbb{R}} f(x, y) d m\right) d \nu \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{N}} f(x, y) d \nu\right) d m
\end{aligned}
$$

by referring to the relevant theorem and checking that its conditions hold.
e. Prove that

$$
\int_{[0,1] \times\{1,2,3\}} f(x, y) d(m \times \nu)=7
$$

by iterating this integral with respect to $d m$ first and then $d \nu$.
f. Prove that

$$
\int_{[0,1] \times\{1,2,3\}} f(x, y) d(m \times \nu)=7
$$

by iterating this integral with respect to $d \nu$ first and then $d m$.

- Throughout this question, we shall work in the product space

$$
(\mathbb{R} \times \mathbb{R}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), m \times m)
$$

where m denotes the usual Lebesgue measure on \mathbb{R}. Let T be the triangle

$$
\{(x, y) \in \mathbb{R} \times \mathbb{R}: x>0 \text { and } y>0 \text { and } x+y<1\}
$$

a. Find rectangles $R_{1}, R_{2}, \ldots, R_{n} \subseteq \mathbb{R} \times \mathbb{R}$ such that

$$
\bigcup_{k=1}^{n} R_{k} \supseteq T \text { and }(m \times m)\left(\bigcup_{k=1}^{n} R_{k}\right)=\frac{n+1}{2 n}
$$

(Hint. Think of the (actual) rectangles you would have drawn if one asked you to form a Riemann sum consisting n rectangles with equal widths over the interval $[0,1]$ using left end points for the function $f(x)=1-x$.)
b. Using Part (a), prove that $(m \times m)(T) \leq \frac{1}{2}$

