M E T U Department of Mathematics

1. ($\mathbf{1 5} \mathrm{pts}$) Find the limit

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{\sin \left(\frac{x+1}{n}\right)}{\frac{x+1}{n}}\left(1-\frac{x}{n}\right)^{n} d m
$$

where m denotes the Lebesgue measure on \mathbb{R}. Carefully explain each step of your calculation and state which theorems you use.
2. ($\mathbf{1 2} \mathbf{~ p t s}$) For every positive integer n, define f_{n} to be the Borel measurable function

$$
f_{n}(x)=n^{2} \cdot e^{-n} \cdot \chi_{\left[n, n^{2}\right]}(x)
$$

Prove that $f_{n} \rightarrow 0$ in L^{1} as $n \rightarrow \infty$.
3. $(7+8=15 \mathrm{pts})$ (a) State the definition of a σ-finite measure space. A measure space (X, Ω, μ) is said to be σ-finite if

For Part (b) of this question, consider the measure space $(\mathbb{R}, \Omega, \mu)$ where Ω and μ are given as follows:

$$
\Omega=\{S \subseteq \mathbb{R}: S \text { is countable or co-countable }\} \text { and } \mu(S)= \begin{cases}+\infty & \text { if } S \text { is uncountable } \\ 0 & \text { if } S \text { is countable }\end{cases}
$$

(b) Prove or disprove: The measure space $(\mathbb{R}, \Omega, \mu)$ is σ-finite.
4. $(5+8 \mathrm{pts})$ Throughout this question, we shall work in the product space

$$
(\mathbb{R} \times \mathbb{R}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), m \times m)
$$

where m denotes the usual Lebesgue measure on \mathbb{R}. Consider the plane region

$$
T=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}+4 y^{2}<4 \text { and } y>0\right\}
$$

(a) Explain why the set T is an element of the product σ-algebra $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
(b) Using the definition of the product measure $m \times m$, prove that

$$
(m \times m)(T) \leq 2+\sqrt{3}
$$

5. (8+12 pts) (a) Find a sequence of $(\mathcal{P}(\mathbb{N}), \mathcal{B}(\mathbb{R}))$-measurable functions $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ such that each f_{n} is simple, $f_{n} \leq f_{n+1}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f_{n}(y)=\pi 2^{y}$ for all $y \in \mathbb{N}$.

For the rest of this question, we shall work in the product space

$$
(\mathbb{R} \times \mathbb{N}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{N}), m \times \mu)
$$

where m is the usual Lebesgue measure on \mathbb{R} and μ is the measure defined on $\mathcal{P}(\mathbb{N})$ given by

$$
\mu(S)=\sum_{n \in S} \frac{1}{3^{n}}
$$

(b) You are given that the function $f(x, y)=\frac{2^{y}}{1+x^{2}}$ from the product space $\mathbb{R} \times \mathbb{N}$ to \mathbb{R} is measurable.

Evaluate the integral

$$
\int_{\mathbb{R} \times \mathbb{N}} \frac{2^{y}}{1+x^{2}} d(m \times \mu)
$$

Justify each step of your calculation.
6. $(3+6+6(+6)$ pts) Consider the Borel measurable function

$$
f(x)= \begin{cases}\frac{(-1)^{\lfloor x\rfloor}}{\lfloor x\rfloor+1} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\lfloor x\rfloor$ is the floor function (the greatest integer function), that is, $\lfloor x\rfloor=\max \{n \in \mathbb{Z}: n \leq x\}$.
(a) Roughly sketch the graph of $f(x)$.
(b) Find a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of simple functions such that $f_{n} \leq f_{n+1}$ for all $n \in \mathbb{N}$ and $f_{n} \rightarrow|f|$ pointwise as $n \rightarrow \infty$.
(c) Determine whether or not f is a (Lebesgue) integrable function.
(Hint. Consider the following question first: Is $|f|$ integrable?)

(d) (Bonus.) Determine whether or not the improper Riemann integral $\int_{0}^{\infty} f(x) d x$ exists.

