METU Department of Mathematics

Math 116 Basic Algebraic Structures			Spring 2019 Midterm II	
10 April 2019	$\mathbf{1 7}: 40$			
F U L L N A M E	S T U D E N T I D	DURATION		
		70 MINUTES		
5 QUESTIONS ON 2 PAGES	TOTAL 40 POINTS			

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature \qquad
$(8+2+2$ pts $)$ 1. Consider the well-defined binary operation $*$ on the set $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ given by

$$
([a],[b]) *([c],[d])=([a+c],[b+d]) \text { for all } a, b, c, d \in \mathbb{Z}
$$

a) Show that $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is an abelian group with respect to $*$.

Let $a, b, c, d, e, f \in \mathbb{Z}$ be integers. Then we have that

$$
\begin{aligned}
(([a],[b]) *([c],[d])) *([e],[f]) & =([a+c],[b+d]) *([e],[f])=([(a+c)+e],[(b+d)+f])=([a+(c+e)],[b+(d+f)]) \\
& =([a],[b]) *([c+e],[d+f])=([a],[b]) *(([c],[d]) *([e],[f]))
\end{aligned}
$$

and hence $*$ is associative. Now, let $a, b \in \mathbb{Z}$. Then we have that

$$
([a],[b]) *([0],[0])=([a+0],[b+0])=([a],[b])=([0+a],[0+b])=([0],[0]) *([a],[b])
$$

and hence $*$ has an identity element, which is $([0],[0])$. For any $a, b \in \mathbb{Z}$, we have that

$$
([a],[b])+([-a],[-b])=([a-a],[b-b])=([0],[0])=([-a+a],[-b+b])=([-a],[-b]) *([a],[b])
$$

and hence every element $([a],[b])$ has an inverse element with respect to $*$, namely, the element $([-a],[-b])$. Finally, for any $a, b, c, d \in \mathbb{Z}$, we have that

$$
([a],[b]) *([c],[d])=([a+c],[b+d])=([c+a\},[d+b])=([c],[d]) *([a],[b])
$$

and hence $*$ is commutative. Therefore, $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is an abelian group with respect to $*$.
b) Find the order of the element ([1], [1]) in the group $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$.

We have that $([1],[1])^{1}=([1],[1]),([1],[1])^{2}=([2],[0]),([1],[1])^{3}=([0],[1]),([1],[1])^{4}=([1],[0])$, $([1],[1])^{5}=([2],[1])$ and $([1],[1])^{6}=([0],[0])$. Thus the order of $([1],[1])$ is 6 .
c) Is the group $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ (with respect to $*$) a cyclic group?

By part b, we have that $\langle([1],[1])\rangle=\{([1],[1]),([2],[0]),([0],[1]),([1],[0]),([2],[1]),([0],[0])\}=\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ and hence $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is cyclic.
(6 pts) 2. Let G, H be groups and $f: G \rightarrow H$ be a group isomorphism and $a \in G$ be an element. Prove that if $G=\langle a\rangle$, then $H=\langle f(a)\rangle$.

Assume that $G=\langle a\rangle$. We wish to show that $H=\langle f(a)\rangle$. It is clear that $\langle f(a)\rangle=\left\{f(a)^{k}: k \in \mathbb{Z}\right\} \subseteq H$ as a group is closed with respect to its group operation. To prove the converse inclusion, let $h \in H$. Since f is an isomorphism, f is surjective and consequently, there exists $g \in G$ such that $f(g)=h$. On the other hand, it follows from $G=\langle a\rangle$ that $g=a^{\ell}$ for some $\ell \in \mathbb{Z}$. Since f is a homomorphism, we have that $h=f(g)=f\left(a^{\ell}\right)=f(a)^{\ell} \in\langle f(a)\rangle$. Thus $H \subseteq\langle f(a)\rangle$ and hence $H=\langle f(a)\rangle$.
 respect to matrix multiplication. Consider the following subset of G.

$$
H=\left\{\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]: a, b \in \mathbb{R} \text { and } a>0, b>0 \text { and } a b=1\right\}
$$

a) Show that H is a subgroup of G.

It is clear that $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in H$ and hence $H \neq \emptyset$. Let $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right],\left[\begin{array}{cc}c & 0 \\ 0 & d\end{array}\right] \in H$. Then, $a b=1$ and $c d=1$. It follows that

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \cdot\left[\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{c} & 0 \\
0 & \frac{1}{d}
\end{array}\right]=\left[\begin{array}{cc}
\frac{a}{c} & 0 \\
0 & \frac{b}{d}
\end{array}\right] \in H
$$

since $\frac{a}{c} \frac{b}{d}=\frac{a b}{c d}=\frac{1}{1}=1$. Therefore, H is a subgroup of G.
b) Show that the map $\varphi: G \rightarrow \mathbb{R}-\{0\}$ given by $\varphi\left(\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\right)=a b$ is a homomorphism where $\mathbb{R}-\{\theta\}$ is considered as a group with respect to multiplication.
Let $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right],\left[\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right] \in G$. Then we have that

$$
\varphi\left(\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \cdot\left[\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right]\right)=(a c)(b d)=(a b)(c d)=\varphi\left(\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]\right) \varphi\left(\left[\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right]\right)
$$

Thus, φ is a homomorphism.
(4+4 pts) 4. Let G be a cyclic group of order 18 and $a \in G$ be an element such that $G=\langle a\rangle$.
a) Find all generators of G.

By a theorem that we proved in class, if $G=\langle a\rangle$, then $G=\left\langle a^{1}\right\rangle=\left\langle a^{m}\right\rangle$ if and only if $(m,|G|)=1$. Thus, the generators of G are exactly those elements of the form a^{m} where $1 \leq m<18$ and $(m, 18)=1$. It follows that the generators of G are $a^{1}, a^{5}, a^{7}, a^{11}, a^{13}$ and a^{17}.
b) List all distinct subgroups of G.

We proved in class that the subgroups of G are exactly those subgroups of the form $\left\langle a^{d}\right\rangle$ where d is a positive divisor of 18 . Thus, G has six subgroups which are $\left\langle a^{1}\right\rangle,\left\langle a^{2}\right\rangle,\left\langle a^{3}\right\rangle,\left\langle a^{6}\right\rangle,\left\langle a^{9}\right\rangle$ and $\left\langle a^{18}\right\rangle$.
 to multiplication.
a) Determine whether or not \mathbb{Z}_{14}^{*} is cyclic.

We have that $[3]^{1}=[3],[3]^{2}=[9],[3]^{3}=[27]=[13],[3]^{4}=[81]=[11],[3]^{5}=[243]=[5]$ and $[3]^{6}=[1]$.
Thus, the order of $[3]$ is 6 and $\langle[3]\rangle=\left\{[3]^{k}: k \in \mathbb{Z}\right\}=\mathbb{Z}_{14}^{*}$. Thus \mathbb{Z}_{14}^{*} is cyclic.
b) Determine whether or not \mathbb{Z}_{14}^{*} isomorphic to S_{3}.
S_{3} is not abelian and \mathbb{Z}_{14}^{*} is abelian. Therefore, these cannot be isomorphic.

OR

S_{3} is not cyclic and \mathbb{Z}_{14}^{*} is cyclic (by part a.) Therefore, these cannot be isomorphic.

