Math 116 Basic Algebraic Structures Spring 2019 Midterm II 10 April 2019 17:40		
FULL NAME	STUDENT ID	DURATION 70 MINUTES
5 QUESTIONS ON 2 PAGES	r	TOTAL 40 POINTS

M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

$$(8+2+2 pts)$$
 1. Consider the well-defined binary operation $*$ on the set $\mathbb{Z}_3 \times \mathbb{Z}_2$ given by

$$([a], [b]) * ([c], [d]) = ([a+c], [b+d])$$
 for all $a, b, c, d \in \mathbb{Z}$

a) Show that $\mathbb{Z}_3 \times \mathbb{Z}_2$ is an abelian group with respect to *.

Let $a, b, c, d, e, f \in \mathbb{Z}$ be integers. Then we have that

$$\left(([a], [b]) * ([c], [d]) \right) * ([e], [f]) = ([a + c], [b + d]) * ([e], [f]) = ([(a + c) + e], [(b + d) + f]) = ([a + (c + e)], [b + (d + f)])$$
$$= ([a], [b]) * ([c + e], [d + f]) = ([a], [b]) * \left(([c], [d]) * ([e], [f]) \right)$$

and hence * is **associative**. Now, let $a, b \in \mathbb{Z}$. Then we have that

$$([a], [b]) * ([0], [0]) = ([a + 0], [b + 0]) = ([a], [b]) = ([0 + a], [0 + b]) = ([0], [0]) * ([a], [b]) = ([a + 0], [b + 0]) = ([a + 0]) = ([a + 0]) = ([$$

and hence * has an **identity element**, which is ([0], [0]). For any $a, b \in \mathbb{Z}$, we have that

$$([a], [b]) + ([-a], [-b]) = ([a - a], [b - b]) = ([0], [0]) = ([-a + a], [-b + b]) = ([-a], [-b]) * ([a], [b])$$

and hence every element ([a], [b]) has an **inverse element** with respect to *, namely, the element ([-a], [-b]). Finally, for any $a, b, c, d \in \mathbb{Z}$, we have that

$$([a], [b]) * ([c], [d]) = ([a + c], [b + d]) = ([c + a], [d + b]) = ([c], [d]) * ([a], [b])$$

and hence * is **commutative**. Therefore, $\mathbb{Z}_3 \times \mathbb{Z}_2$ is an abelian group with respect to *.

b) Find the order of the element ([1], [1]) in the group $\mathbb{Z}_3 \times \mathbb{Z}_2$.

We have that $([1], [1])^1 = ([1], [1])$, $([1], [1])^2 = ([2], [0])$, $([1], [1])^3 = ([0], [1])$, $([1], [1])^4 = ([1], [0])$, $([1], [1])^5 = ([2], [1])$ and $([1], [1])^6 = ([0], [0])$. Thus the order of ([1], [1]) is 6.

c) Is the group $\mathbb{Z}_3 \times \mathbb{Z}_2$ (with respect to *) a cyclic group?

By part b, we have that $\langle ([1], [1]) \rangle = \{ ([1], [1]), ([2], [0]), ([0], [1]), ([1], [0]), ([2], [1]), ([0], [0]) \} = \mathbb{Z}_3 \times \mathbb{Z}_2$ and hence $\mathbb{Z}_3 \times \mathbb{Z}_2$ is cyclic.

(6 pts) 2. Let G, H be groups and $f: G \to H$ be a group isomorphism and $a \in G$ be an element. Prove that if $G = \langle a \rangle$, then $H = \langle f(a) \rangle$.

Assume that $G = \langle a \rangle$. We wish to show that $H = \langle f(a) \rangle$. It is clear that $\langle f(a) \rangle = \{f(a)^k : k \in \mathbb{Z}\} \subseteq H$ as a group is closed with respect to its group operation. To prove the converse inclusion, let $h \in H$. Since f is an isomorphism, f is surjective and consequently, there exists $g \in G$ such that f(g) = h. On the other hand, it follows from $G = \langle a \rangle$ that $g = a^{\ell}$ for some $\ell \in \mathbb{Z}$. Since f is a homomorphism, we have that $h = f(g) = f(a^{\ell}) = f(a)^{\ell} \in \langle f(a) \rangle$. Thus $H \subseteq \langle f(a) \rangle$ and hence $H = \langle f(a) \rangle$. <u>(4+4 pts)</u> 3. You are given that the set $G = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R} \text{ and } a > 0, b > 0 \right\}$ is a group with respect to matrix multiplication. Consider the following subset of G.

$$H = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right] : a, b \in \mathbb{R} \text{ and } a > 0, b > 0 \text{ and } ab = 1 \right\}$$

a) Show that H is a subgroup of G.

It is clear that
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H$$
 and hence $H \neq \emptyset$. Let $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in H$. Then, $ab = 1$ and $cd = 1$.
It follows that $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \cdot \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}^{-1} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{c} & 0 \\ 0 & \frac{1}{d} \end{bmatrix} = \begin{bmatrix} \frac{a}{c} & 0 \\ 0 & \frac{b}{d} \end{bmatrix} \in H$

since $\frac{a}{c}\frac{b}{d} = \frac{ab}{cd} = \frac{1}{1} = 1$. Therefore, H is a subgroup of G. b) Show that the map $\varphi: G \to \mathbb{R} - \{0\}$ given by $\varphi\left(\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix}\right) = ab$ is a homomorphism where \mathbb{R} - is considered as a group with respect to multiplication.

Let $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in G$. Then we have that $\varphi\left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \cdot \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}\right) = \varphi\left(\begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix}\right) = (ac)(bd) = (ab)(cd) = \varphi\left(\begin{bmatrix} c & 0 \\ 0 & bd \end{bmatrix}\right)$

Thus, φ is a homomorphism.

(4+4 pts) 4. Let G be a cyclic group of order 18 and $a \in G$ be an element such that $G = \langle a \rangle$.

a) Find all generators of G.

By a theorem that we proved in class, if $G = \langle a \rangle$, then $G = \langle a^1 \rangle = \langle a^m \rangle$ if and only if (m, |G|) = 1. Thus, the generators of G are exactly those elements of the form a^m where $1 \le m < 18$ and (m, 18) = 1. It follows that the generators of G are $a^1, a^5, a^7, a^{11}, a^{13}$ and a^{17} .

b) List all distinct subgroups of G.

We proved in class that the subgroups of G are exactly those subgroups of the form $\langle a^d \rangle$ where d is a positive divisor of 18. Thus, G has six subgroups which are $\langle a^1 \rangle, \langle a^2 \rangle, \langle a^3 \rangle, \langle a^6 \rangle, \langle a^9 \rangle$ and $\langle a^{18} \rangle$.

(2+4 pts) 5. Consider the group $\mathbb{Z}_{14}^* = \{[a] \in \mathbb{Z}_{14} : (a, 14) = 1\} = \{[1], [3], [5], [9], [11], [13]\}$ with respect to multiplication.

a) Determine whether or not \mathbb{Z}_{14}^* is cyclic.

We have that $[3]^1 = [3], [3]^2 = [9], [3]^3 = [27] = [13], [3]^4 = [81] = [11], [3]^5 = [243] = [5] \text{ and } [3]^6 = [1].$ Thus, the order of [3] is 6 and $\langle [3] \rangle = \{[3]^k : k \in \mathbb{Z}\} = \mathbb{Z}_{14}^*$. Thus \mathbb{Z}_{14}^* is cyclic.

b) Determine whether or not \mathbb{Z}_{14}^* isomorphic to S_3 .

 S_3 is not abelian and \mathbb{Z}_{14}^* is abelian. Therefore, these cannot be isomorphic.

OR

 S_3 is not cyclic and \mathbb{Z}_{14}^* is cyclic (by part a.) Therefore, these cannot be isomorphic.