Math 116 Basic Algebraic Structures Spring 2019 Midterm I 13 March 2019 17:40		
FULL NAME	S T U D E N T I D DURATI	ON
	70 MINUT	ΓES
5 QUESTIONS ON 2 PAGES	TOTAL 40(+3) PC	DINTS

M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(4+4+4 pts) 1. a) Using the Euclidean algorithm, find the greatest common divisor d of 178 and 87.

Applying Euclidean algorithm, we have

$$178 = 87 \cdot 2 + 4$$

$$87 = 4 \cdot 21 + 3$$

$$4 = 3 \cdot 1 + 1$$

$$3 = 1 \cdot 3 + 0$$

and hence the greatest common divisor of 178 and 87 is 1, which is the last non-zero remainder in the process.

b) Find integers $x, y \in \mathbb{Z}$ such that d = 178x + 87y.

Using the equalities we obtained during the Euclidean algorithm, we have that

$$1 = 4 + 3 \cdot (-1)$$

$$1 = 4 + (87 + 4 \cdot (-21)) \cdot (-1) = 4 \cdot 22 + 87 \cdot (-1)$$

$$1 = 4 \cdot 22 + 87 \cdot (-1) = (178 + 87 \cdot (-2)) \cdot 22 + 87 \cdot (-1)$$

$$1 = 178 \cdot 22 + 87 \cdot (-45)$$

c) Does [87] have an inverse in \mathbb{Z}_{178} with respect to multiplication? If so, find its inverse. If not, explain why there is no inverse.

By part b, we have that $1 = 178 \cdot 22 + 87 \cdot (-45)$ and hence $178 | 87 \cdot (-45) - 1$, which means that $87 \cdot (-45) \equiv 1 \pmod{178}$. Therefore, [87][-45] = [87][133] = [133][87] = [1] in \mathbb{Z}_{178} and hence, [133] is the inverse of [87] with respect to multiplication in \mathbb{Z}_{178} .

<u>(4+4 pts)</u> 2. Let a, b, d, m be positive integers such that d is the greatest common divisor of a and b. Let k, ℓ be positive integers such that a = dk and $b = d\ell$.

a) Show that k and ℓ are relatively prime, that is, the greatest common divisor of k and ℓ is 1.

Since d is the greatest common divisor of a and b, there exist integers x and y such that d = ax + by. It follows from $d = dkx + d\ell y$ that $1 = kx + \ell y$. This implies that gcd(x, y)|1 and so gcd(x, y) = 1, that is, x and y are relatively prime.

OR

Set $e = \gcd(k, \ell)$. Since e|k and $e|\ell$, by definition, we have that k = ek' and $\ell = e\ell'$ for some integers k' and ℓ' . Then, a = dek' and $b = de\ell'$ and hence, we have de|a and de|b. It follows from the definition of the greatest common divisor that de|d and so e|1. Thus e = 1.

b) Show that if a|bm, then k|m.

Assume that a|bm. Then, as a = dk and $b = d\ell$, we have $dk|d\ell m$ and so $k|\ell m$. Since $k|\ell m$ and k and ℓ are relatively prime by part a, we have that k|m.

(4+4 pts) 3. Consider the binary operation * on \mathbb{Z} given by

$$a * b = \begin{cases} a + b & \text{if } a \text{ is even} \\ ab & \text{if } a \text{ is odd} \end{cases}$$

a) Is the binary operation * commutative?

By the definition of *, we have that $1 * 0 = 1 \cdot 0 = 0$ and 0 * 1 = 0 + 1 = 1. Since $1 * 0 \neq 0 * 1$, the binary operation * is not commutative.

b) Does the binary operation * have an identity element?

We claim there exists no identity element of *. Assume towards a contradiction that * has an identity element, say, $i \in \mathbb{Z}$ is an identity element of *. Then, by the definition of identity, we should have that 1 * i = 1 and 0 * i = 0. However, the first equality implies that $i = 1 \cdot i = 1 * i = 1$ and the second equality implies that i = 0 + i = 0 * i = 0, which is a contradiction. Therefore, * does not have an identity element.

(4+4 pts) 4. Consider the subset
$$\mathcal{M} = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in \mathbb{R} \right\}$$
 of $M_{2x2}(\mathbb{R})$.

a) Is the set \mathcal{M} closed with respect to matrix multiplication? Does \mathcal{M} have an identity with respect to matrix multiplication?

Let
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$ be elements of \mathcal{M} . Then we have that
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + a \cdot 0 & 1 \cdot b + a \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot b + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

is in \mathcal{M} as $a+b \in \mathbb{R}$. Therefore, \mathcal{M} is closed with respect to matrix multiplication. Clearly $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \in \mathcal{M}$

and moreover, we have that $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ for every $a \in \mathbb{R}$. Thus, \mathcal{M} contains an identity with respect to matrix multiplication.

b) Show that every element of \mathcal{M} has an inverse in \mathcal{M} with respect to matrix multiplication.

Let
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \in \mathcal{M}$$
. Then $\begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \notin \mathcal{M}$ and moreover,
 $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a + (-a) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Thus, every element of \mathcal{M} has an inverse in \mathcal{M} with respect to matrix multiplication.

<u>(7 pts)</u> 5. Let * be an associative binary operation on a non-empty set X. Let $\mathcal{H} = \mathcal{P}(X) - \{\emptyset\}$. Consider the binary operation \Box on the set \mathcal{H} given by

$$A \square B = \{a * b \mid a \in A, b \in B\}$$

for all $A, B \in \mathcal{H}$. Show that \Box is associative.

We wish to show that $(A \Box B) \Box C = A \Box (B \Box C)$ for all $A, B, C \in \mathcal{H}$. Let $x \in (A \Box B) \Box C$. Then x = y * c for some $y \in A \Box B$ and $c \in C$. Since $y \in A \Box B$, there exist $a \in A$ and $b \in B$ such that y = a * b. Thus x = (a * b) * c. By associativity of *, we have that x = a * (b * c). But then, since $a \in A$ and $b * c \in B \Box C$, we have that $x \in A \Box (B \Box C)$. Therefore, $(A \Box B) \Box C \subseteq A \Box (B \Box C)$. Now, let $x \in A \Box (B \Box C)$. Then x = a * z for some $a \in A$ and $z \in B \Box C$. Since $z \in B \Box C$, there exist $b \in B$ and $c \in C$ such that z = b * c and so, x = a * (b * c). By associativity of *, we have that x = (a * b) * c. But then, since $a * b \in A \Box B$ and $c \in C$, we have that $x \in (A \Box B) \Box C$. Therefore, $A \Box (B \Box C) \subseteq (A \Box B) \Box C$, which completes the proof that $(A \Box B) \Box C = A \Box (B \Box C)$.