M E T U Department of Mathematics

| Math 116 Basic Algebraic Structures Spring 2019 Midterm I 13 March 2019 17:40 |  |  |
| :---: | :---: | :---: |
| F U L L N A M E | S T U D E T I D | DURATION |
|  |  | 70 MINUTES |
| 5 QUESTIONS ON 2 PAGES |  | TOTAL 40(+3) POINTS |

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature $\qquad$
(4+4+4pts) 1. a) Using the Euclidean algorithm, find the greatest common divisor $d$ of 178 and 87 .
Applying Euclidean algorithm, we have

$$
\begin{aligned}
178 & =87 \cdot 2+4 \\
87 & =4 \cdot 21+3 \\
4 & =3 \cdot 1+1 \\
3 & =1 \cdot 3+0
\end{aligned}
$$

and hence the greatest common divisor of 178 and 87 is 1 , which is the last non-zero remainder in the process.
b) Find integers $x, y \in \mathbb{Z}$ such that $d=178 x+87 y$.

Using the equalities we obtained during the Euclidean algorithm, we have that

$$
\begin{aligned}
& 1=4+3 \cdot(-1) \\
& 1=4+(87+4 \cdot(-21)) \cdot(-1)=4 \cdot 22+87 \cdot(-1) \\
& 1=4 \cdot 22+87 \cdot(-1)=(178+87 \cdot(-2)) \cdot 22+87 \cdot(-1) \\
& 1=178 \cdot 22+87 \cdot(-45)
\end{aligned}
$$

c) Does [87] have an inverse in $\mathbb{Z}_{178}$ with respect to multiplication? If so, find its inverse. If not, explain why there is no inverse.
By part b, we have that $1=178 \cdot 22+87 \cdot(-45)$ and hence $178 \mid 87 \cdot(-45)-1$, which means that $87 \cdot(-45) \equiv 1(\bmod 178)$. Therefore, $[87][-45]=[87][133]=[133][87]=[1]$ in $\mathbb{Z}_{178}$ and hence, [133] is the inverse of [87] with respect to multiplication in $\mathbb{Z}_{178}$.
(4+4pts)2. Let $a, b, d, m$ be positive integers such that $d$ is the greatest common divisor of $a$ and $b$. Let $k, \ell$ be positive integers such that $a=d k$ and $b=d \ell$.
a) Show that $k$ and $\ell$ are relatively prime, that is, the greatest common divisor of $k$ and $\ell$ is 1 .

Since $d$ is the greatest common divisor of $a$ and $b$, there exist integers $x$ and $y$ such that $d=a x+b y$. It follows from $d=d k x+d \ell y$ that $1=k x+\ell y$. This implies that $\operatorname{gcd}(x, y) \mid 1$ and so $\operatorname{gcd}(x, y)=1$, that is, $x$ and $y$ are relatively prime.

## OR

Set $e=\operatorname{gcd}(k, \ell)$. Since $e \mid k$ and $e \mid \ell$, by definition, we have that $k=e k^{\prime}$ and $\ell=e \ell^{\prime}$ for some integers $k^{\prime}$ and $\ell^{\prime}$. Then, $a=d e k^{\prime}$ and $b=d e \ell^{\prime}$ and hence, we have $d e \mid a$ and $d e \mid b$. It follows from the definition of the greatest common divisor that $d e \mid d$ and so $e \mid 1$. Thus $e=1$.
b) Show that if $a \mid b m$, then $k \mid m$.

Assume that $a \mid b m$. Then, as $a=d k$ and $b=d \ell$, we have $d k \mid d \ell m$ and so $k \mid \ell m$. Since $k \mid \ell m$ and $k$ and $\ell$ are relatively prime by part a, we have that $k \mid m$.
$(4+4 p t s)$ 3. Consider the binary operation $*$ on $\mathbb{Z}$ given by

$$
a * b= \begin{cases}a+b & \text { if } a \text { is even } \\ a b & \text { if } a \text { is odd }\end{cases}
$$

a) Is the binary operation $*$ commutative?

By the definition of $*$, we have that $1 * 0=1 \cdot 0=0$ and $0 * 1=0+1=1$. Since $1 * 0 \neq 0 * 1$, the binary operation $*$ is not commutative.
b) Does the binary operation $*$ have an identity element?

We claim there exists no identity element of $*$. Assume towards a contradiction that $*$ has an identity element, say, $i \in \mathbb{Z}$ is an identity element of $*$. Then, by the definition of identity, we should have that $1 * i=1$ and $0 * i=0$. However, the first equality implies that $i=1 \cdot i=1 * i=1$ and the second equality implies that $i=0+i=0 * i=0$, which is a contradiction. Therefore, $*$ does not have an identity element.

a) Is the set $\mathcal{M}$ closed with respect to matrix multiplication? Does $\mathcal{M}$ have an identity with respect to matrix multiplication?
Let $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$ be elements of $\mathcal{M}$. Then we have that

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 \cdot 1+a \cdot 0 & 1 \cdot b+a \cdot 1 \\
0 \cdot 1+1 \cdot 0 & 0 \cdot b+1 \cdot 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]
$$



