M E T U Department of Mathematics

Math 116 Basic Algebraic Structures Spring 2019 Final Exam 1 June 2019 09:30		
F U L L N A M E	S T U D E T I D	DURATION
		120 MINUTES
7 QUESTIONS ON 4 PAGES	SHOW ALL YOUR WORK	TOTAL 80 POINTS

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature \qquad
(12 pts) 1. Let $G=\{x \in \mathbb{R}:-1<x<1\}$. Consider the binary operation $*$ on G given by

$$
x * y=\frac{x+y}{1+x y}
$$

for all $x, y \in G$. You are given that the binary operation $*$ is associative. Show that G is a group and is abelian, with respect to the binary operation $*$.

Since we are already given that $*$ is associative, we check the other properties. Note that $0 \in G$ and moreover, for every $x \in G$, we have that

$$
0 * x=\frac{0+x}{1+0 x}=\frac{x}{1}=x
$$

and

$$
x * 0=\frac{x+0}{1+x 0}=\frac{x}{1}=x
$$

Thus, 0 is the identity element of the binary operation $*$. Now, let $x \in G$. Then, $-1<x<1$ and so $-1<-x<1$, which means that $-x \in G$. Moreover, we have that

$$
x *(-x)=\frac{x+(-x)}{1+x(-x)}=\frac{0}{1-x^{2}}=0=\frac{(-x)+x}{1+(-x) x}=(-x) * x
$$

Therefore, $-x$ is the inverse of x with respect to $*$. Since $*$ is associative, has an identity in G and every element in G has an inverse with respect to $*$, we have that G is a group with respect to $*$. We now check that $(G, *)$ is abelian. Let $x, y \in G$. Then we have that

$$
x * y=\frac{x+y}{1+x y}=\frac{y+x}{1+y x}=y * x
$$

Therefore, $(G, *)$ is abelian.
(6 pts) 2. By writing f as a product of transpositions, determine whether the following permutation in S_{9} is even or odd.

$$
f=\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 1 & 5 & 8 & 3 & 4 & 2 & 9 & 6
\end{array}\right]
$$

We have that $f=(172)(35)(4896)=(12)(17)(35)(46)(49)(48)$ and hence f is even since it is a product of even number of transpositions.
$(4+4+4+4+4 \boldsymbol{p t s}) \mathbf{3}$. Let G be a group and let e denote the identity element of G. Suppose that there exists a positive integer n such that $(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. Consider the following subsets

$$
H=\left\{x^{n}: x \in G\right\} \quad \text { and } \quad K=\left\{x \in G: x^{n}=e\right\}
$$

You are given that H is a subgroup of G.
a) Show that K is a subgroup of G and is normal.

Note that $e^{n}=e$ and so $e \in K$, which means that $K \neq \emptyset$. Now, let $x, y \in K$. Then, by definition, $x^{n}=e$ and $y^{n}=e$, which means that $y^{-n}=\left(y^{-1}\right)^{n}=e$. It then follows from the given assumption that $\left(x y^{-1}\right)^{n}=x^{n}\left(y^{-1}\right)^{n}=e$ and so $x y^{-1} \in K$. Therefore, K is a subgroup of G.

To prove that K is normal, let $g \in G$ and $k \in K$. Then, $e=k^{n}$ and

$$
\left(g k g^{-1}\right)^{n}=\left(g k g^{-1}\right)\left(g k g^{-1}\right) \ldots\left(g k g^{-1}\right)=g k^{n} g^{-1}=g g^{-1}=e
$$

and so $g k g^{-1} \in K$. This shows that K is normal in G.
b) Show that the map $\varphi: G / K \rightarrow H$ given by $\varphi(x K)=x^{n}$ is well-defined.

Let $x, y \in G$ be such that $x K=y K$. Then $x y^{-1} \in K$ and $s o\left(x y^{-1}\right)^{n}=e$. Then, by the given assumption, $e=\left(x y^{-1}\right)^{n}=x^{n}\left(y^{-1}\right)^{n}=x^{n} y^{-n}=x^{n}\left(y^{n}\right)^{-1}$ and so $x^{n}=y^{n}$, that is, $\varphi(x K)=\varphi(y K)$. Thus, φ is well-defined.
c) Show that φ is an epimorphism.

Let $x K, y K \in G / K$. Then we have that

$$
\varphi(x K \cdot y K)=\varphi(x y K)=(x y)^{n}=x^{n} y^{n}=\varphi(x K) \varphi(y K)
$$

Thus, φ is a homomorphism. Now, let $h \in H$. Then, by the definition of H, there exists $g \in G$ such that $h=g^{n}$. Then, $g K \in G / K$ and so $\varphi(g K)=g^{n}=h$. Therefore, φ is onto and so is an epimorphism.
d) Find the kernel of φ

Let $g K \in \operatorname{ker}(\varphi)$, that is, $\varphi(g K)=e$. Then, by definition, $g^{n}=e$ and so $g \in K$. This means that $g K=K$, which is the identity of G / K. Thus, the kernel of φ is $\{K\}$.
e) Is φ an isomorphism? Explain your answer.

The kernel of φ is the trivial subgroup by part d and hence φ is one-to-one. By part c, φ is an epimorphism. Thus, being a one-to-one epimorphism, φ is an isomorphism.
$\underline{(\boldsymbol{6}+\boldsymbol{6} \boldsymbol{p} \boldsymbol{t s}) \text { 4. Consider the polynomials } f(x)=2 x^{3}+x \text { and } g(x)=x^{2}+x+1 \text { in } \mathbb{Z}_{3}[x] ~ . ~}$
a) Find the greatest common divisor $d(x)$ of $f(x)$ and $g(x)$ in $\mathbb{Z}_{3}[x]$. Show your work.

Applying Euclidean algorithm for polynomials, we can get that

$$
\begin{aligned}
& f(x)=g(x)(2 x+1)+(x+2) \\
& g(x)=(x+2)(x+2)+0
\end{aligned}
$$

Since $x+2$ is monic, the greatest common divisor of $f(x)$ and $g(x)$ is $d(x)=x+2$.
b) Find polynomials $p(x), q(x) \in \mathbb{Z}_{3}[x]$ such that $d(x)=f(x) p(x)+g(x) q(x)$. Show your work.

Using the computations in part a, one gets that

$$
\begin{aligned}
d(x)=(x+2) & =f(x)-g(x)(2 x+1) \\
& =f(x) \cdot 1+g(x)(-2 x-1) \\
& =f(x) \cdot 1+g(x)(x+2)
\end{aligned}
$$

($\boldsymbol{6} \boldsymbol{p} \boldsymbol{t s}$) 5. Let $p>1$ be an integer with the property that for all $a, b \in \mathbb{Z}$, if $p \mid a b$, then $p \mid a$ or $p \mid b$. Show that p is prime.

Assume towards a contradiction that p is not prime. Then, by definition, there exists $1<a, b<p$ such that $p=a b$. But then, $p \mid p=a b$, however, $p \nmid a$ and $p \nmid b$ since $1<a, b<p$. This contradicts the given assumption.

a) Show that I is an ideal of $\mathbb{Z}[x]$.

Clearly, that the zero polynomial is in I and hence $I \neq \emptyset$. Now, let $f(x), g(x) \in I$. Then, by definition, $f(0)$ and $g(0)$ are even. It follows that $f(0)-g(0)$ is even and so the polynomial $f(x)-g(x)$ is in I.

Now, let $f(x) \in I$ and $g(x) \in \mathbb{Z}[x]$. Then, $f(0)$ is even and so $f(0) g(0)=g(0) f(0)$ is even. It follows that the polynomials $f(x) g(x)$ and $g(x) f(x)$ are in I. This completes the proof that I is an ideal of $\mathbb{Z}[x]$.
b) Show that for every $f(x) \in I$, there exists $g(x), h(x) \in \mathbb{Z}[x]$ such that $f(x)=x \cdot g(x)+2 \cdot h(x)$.

Let $f(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\cdots+a_{n} x^{n} \in I$. Then, by definition, $f(0)=a_{0}$ is even, that is, $a_{0}=2 k$ for some $k \in \mathbb{Z}$. Set $h(x)=k$ and $g(x)=a_{1}+a_{2} x^{1}+\cdots+a_{n} x^{n-1}$. It then follows that

$$
f(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\cdots+a_{n} x^{n}=a_{0}+x\left(a_{1}+a_{2} x^{1}+\cdots+a_{n} x^{n-1}\right)=2 \cdot h(x)+x \cdot g(x)
$$

$(3+3+3+3$ pts) 7. Let $R=\{x, y, z, t\}$. You are given the fact that R is a commutative ring with respect to the addition + and the multiplication $*$ whose tables are given below.

+	x	y	z	t
x	x	y	z	t
y	y	x	t	z
z	z	t	x	y
t	t	z	y	x

For parts a, b and c of this question, you do not need to justify your answer.
a) What is the zero element of R, that is, the additive identity of R ? x
b) If it exists, what is the unity of R, that is, the multiplicative identity of $R ? \quad \mathbf{y}$
c) If they exist, list the zero divisors of R. There are no zero divisors.
d) Is R a field? Explain your answer.

Solution 1. Since there are no zero divisors, R is an integral domain. However, we know that finite integral domains are fields and hence R is a field

OR

Solution 2. It suffices to show that every non-zero element has a multiplicative inverse. It follows from the multiplication table that $y * y=y$ and $z * t=t * z=y$. That is, y is the multiplicative inverse of itself, and t and z are multiplicative inverses of each other. So every non-zero element has a multiplicative inverse. This means that R is a field.

