
FULL NAME	STUDENT ID	DURATION: 70 MINUTES
		5 QUESTIONS ON 2 PAGES
		TOTAL: 40 POINTS

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(8+2+2=12 pts) 1. Consider the relation ~ on \mathbb{R}^2 given by $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 \cdot y_1 = x_2 \cdot y_2$

for all $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$.

(a) Show that \sim is an equivalence relation.

Let $(x, y) \in \mathbb{R}^2$. Then $x \cdot y = x \cdot y$ and hence, $(x, y) \sim (x, y)$. Therefore \sim is reflexive.

Let $(x, y), (\hat{x}, \hat{y}) \in \mathbb{R}^2$. Assume that $(x, y) \sim (\hat{x}, \hat{y})$. Then, by definition, $x \cdot y = \hat{x} \cdot y$ and hence, $\hat{x} \cdot \hat{y} = x \cdot y$ which shows that $(\hat{x}, \hat{y}) \sim (x, y)$. Therefore \sim is symmetric.

Let $(x, y), (\hat{x}, \hat{y}), (\overline{x}, \overline{y}) \in \mathbb{R}^2$. Assume that $(x, y) \sim (\hat{x}, \hat{y})$ and $(\hat{x}, \hat{y}) \sim (\overline{x}, \overline{y})$. Then, by definition, $x \cdot y = \hat{x} \cdot \hat{y}$ and $\hat{x} \cdot \hat{y} = \overline{x} \cdot \overline{y}$. It follows that $x \cdot t = \overline{x} \cdot \overline{y}$ and hence, $(x, y) \sim (\overline{x}, \overline{y})$. Therefore \sim is transitive, which completes the proof that \sim is an equivalence relation.

(b) Describe the set [(0,0)] in the plane \mathbb{R}^2 geometrically.

 $[(0,0)] = \{(x,y) \in \mathbb{R}^2 : (0,0) \sim (x,y)\} = \{(x,y) \in \mathbb{R}^2 : x \mid y = 0\} = \{(x,y) \in \mathbb{R}^2 : x = 0 \text{ or } y = 0\}.$ Therefore [(0,0)] is the union of the coordinate axes in \mathbb{R}^2 .

(c) Find
$$(a,b) \in \mathbb{R}^2$$
 such that $[(a,b)] = \left\{ (x,y) \in \mathbb{R}^2 \mid y = \frac{2}{x} \right\}.$

Choose (a, b) = (2, 1). Then we have that

$$[(2,1)] = \{(x,y) \in \mathbb{R}^2 : (2,1) \sim (x,y)\} = \{(x,y) \in \mathbb{R}^2 : x \cdot y = 2\} = \left\{(x,y) \in \mathbb{R}^2 \mid y = \frac{2}{x}\right\}$$

(6 pts) 2. Let A be a set and $f: A \to A$ be a function. Show that if f has a left inverse, then $f \circ f$ also has a left inverse.

Solution I. Assume that f has a left inverse, say, $g: A \to A$ is a left inverse for f, that is, $g \circ f = 1_A$. Consider the map $g \circ g: A \to A$. Then, for any $x \in A$, we have that

$$\begin{aligned} ((g \circ g) \circ (f \circ f))(x) &= (g \circ g)((f \circ f)(x)) \\ &= (g \circ g)(f(f(x))) \\ &= g(g(f(f(x)))) = g((g \circ f)(f(x))) = g(1_A(f(x))) = g(f(x)) = (g \circ f)(x) = 1_A(x) \end{aligned}$$

Therefore $g \circ g$ is a left inverse for $f \circ f$.

Solution II: Assume that f has a left inverse. Then f is one-to-one. Consequently, $f \circ f$ is one-to-one and hence, has a left inverse.

 $(3+3+5=11 \text{ pts}) 3. \text{ Let } f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \text{ be the function defined by } f(m,n) = m-n \text{ for all } m, n \in \mathbb{N}.$ (a) Is f injective? Explain.

f(1,1) = f(2,2) = 0 but $(1,1) \neq (2,2)$. Therefore f is not one-to-one.

(b) Is f surjective? Explain.

Let $k \in \mathbb{Z}$. Choose $(m, n) = (k+1, 1) \in \mathbb{N} \times \mathbb{N}$ if $k \ge 0$; and choose $(m, n) = (1, 1-k) \in \mathbb{N} \times \mathbb{N}$ if k < 0. Then, if $k \ge 0$, then f(m, n) = f(k+1, 1) = k; and if k < 0, then f(m, n) = f(1, 1-k) = 1 - (1-k) = k. Hence f(m, n) = k. It follows that f is surjective.

(c) Does f have a right inverse? If so, find a right inverse for f. If not, explain why f does not have a right inverse.

Since f is surjective, then f has a right inverse. We shall now find this right inverse. Consider the map $g: \mathbb{Z} \to \mathbb{N} \times \mathbb{N}$ given by

$$g(k) = \begin{cases} (k+1,1) & \text{if } k \ge 0\\ (1,1-k) & \text{if } k < 0 \end{cases}$$

Let $k \in \mathbb{Z}$. If $k \ge 0$, then we have $(f \circ g)(k) = f(g(k)) = f(k+1,1) = k+1 - 1 - k$. If k < 0, then we have $(f \circ g)(k) = f(g(k)) = f(1,1-k) = 1 - (1-k) = k$. Therefore, $(f \circ g)(k) = k = 1_{\mathbb{Z}}(k)$, which shows that g is a right inverse for f.

(6 pts) 4. Let A be a set and let R be a relation on A with the following properties:

- *R* is reflexive
- For any $x, y, z \in A$, if xRy and yRz, then zRx.

Prove that R is an equivalence relation.

We need to show that R is reflexive, symmetric and transitive. That R is reflexive is given as the first assumption. Let $x, y \in A$. Assume that xRy. As R is reflexive, xRx. Then, since xRx and xRy, by the second assumption, we have that yRx. Thus R is symmetric.

Now let $x, y, z \in A$. Assume that xRy and yRz. Then, by the second assumption, we have zRx. As R is symmetric, this gives xRz. Thus R is transitive, which completes the proof that R is an equivalence relation.

(5 pts) 5. Let $A = \{1, 2, 3, 4, 5\}$ and let $f : A \to A$ be a function with the following properties:

1. $f^{-1}(\{1,2,3\}) = \{4,5\}$ 2. $f^{-1}(\{3\}) = \emptyset$ 3. $f(4) \neq 1$ 4. $f^{-1}(\{1\}) \neq \emptyset$ 5. $f(\{1,2\}) = \{4\}$ 6. $f^{-1}(\{5\}) = \emptyset$

Find the values:

f(1) = 4 f(2) = 4 f(3) = 4 f(4) = 2 f(5) = 1

(For this part only, you DO NOT need to justify your answer.)

FULL NAME	STUDENT ID	DURATION: 70 MINUTES 5 QUESTIONS ON 2 PAGES TOTAL: 40 POINTS	

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(8+2+2=12 pts) 1. Consider the relation ~ on \mathbb{R}^2 given by $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 \cdot y_1 = x_2 \cdot y_2$

for all $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$.

(a) Show that \sim is an equivalence relation.

Let $(x, y) \in \mathbb{R}^2$. Then $x \cdot y = x \cdot y$ and hence, $(x, y) \sim (x, y)$. Therefore \sim is reflexive.

Let $(x, y), (\hat{x}, \hat{y}) \in \mathbb{R}^2$. Assume that $(x, y) \sim (\hat{x}, \hat{y})$. Then, by definition, $x \cdot y = \hat{x} \cdot y$ and hence, $\hat{x} \cdot \hat{y} = x \cdot y$ which shows that $(\hat{x}, \hat{y}) \sim (x, y)$. Therefore \sim is symmetric.

Let $(x, y), (\hat{x}, \hat{y}), (\overline{x}, \overline{y}) \in \mathbb{R}^2$. Assume that $(x, y) \sim (\hat{x}, \hat{y})$ and $(\hat{x}, \hat{y}) \sim (\overline{x}, \overline{y})$. Then, by definition, $x \cdot y = \hat{x} \cdot \hat{y}$ and $\hat{x} \cdot \hat{y} = \overline{x} \cdot \overline{y}$. It follows that $x \cdot t = \overline{x} \cdot \overline{y}$ and hence, $(x, y) \sim (\overline{x}, \overline{y})$. Therefore \sim is transitive, which completes the proof that \sim is an equivalence relation.

(b) Describe the set [(0,0)] in the plane \mathbb{R}^2 geometrically.

 $[(0,0)] = \{(x,y) \in \mathbb{R}^2 : (0,0) \sim (x,y)\} = \{(x,y) \in \mathbb{R}^2 : x \mid y = 0\} = \{(x,y) \in \mathbb{R}^2 : x = 0 \text{ or } y = 0\}.$ Therefore [(0,0)] is the union of the coordinate axes in \mathbb{R}^2 .

(c) Find
$$(a,b) \in \mathbb{R}^2$$
 such that $[(a,b)] = \left\{ (x,y) \in \mathbb{R}^2 \mid y = \frac{2}{x} \right\}.$

Choose (a, b) = (2, 1). Then we have that

$$[(2,1)] = \{(x,y) \in \mathbb{R}^2 : (2,1) \sim (x,y)\} = \{(x,y) \in \mathbb{R}^2 : x \cdot y = 2\} = \left\{(x,y) \in \mathbb{R}^2 \mid y = \frac{2}{x}\right\}$$

(6 pts) 2. Let A be a set and $f: A \to A$ be a function. Show that if f has a left inverse, then $f \circ f$ also has a left inverse.

Solution I. Assume that f has a left inverse, say, $g: A \to A$ is a left inverse for f, that is, $g \circ f = 1_A$. Consider the map $g \circ g: A \to A$. Then, for any $x \in A$, we have that

$$\begin{aligned} ((g \circ g) \circ (f \circ f))(x) &= (g \circ g)((f \circ f)(x)) \\ &= (g \circ g)(f(f(x))) \\ &= g(g(f(f(x)))) = g((g \circ f)(f(x))) = g(1_A(f(x))) = g(f(x)) = (g \circ f)(x) = 1_A(x) \end{aligned}$$

Therefore $g \circ g$ is a left inverse for $f \circ f$.

Solution II: Assume that f has a left inverse. Then f is one-to-one. Consequently, $f \circ f$ is one-to-one and hence, has a left inverse.

 $(3+3+5=11 \text{ pts}) 3. \text{ Let } f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \text{ be the function defined by } f(m,n) = m-n \text{ for all } m, n \in \mathbb{N}.$ (a) Is f injective? Explain.

f(1,1) = f(2,2) = 0 but $(1,1) \neq (2,2)$. Therefore f is not one-to-one.

(b) Is f surjective? Explain.

Let $k \in \mathbb{Z}$. Choose $(m, n) = (k+1, 1) \in \mathbb{N} \times \mathbb{N}$ if $k \ge 0$; and choose $(m, n) = (1, 1-k) \in \mathbb{N} \times \mathbb{N}$ if k < 0. Then, if $k \ge 0$, then f(m, n) = f(k+1, 1) = k; and if k < 0, then f(m, n) = f(1, 1-k) = 1 - (1-k) = k. Hence f(m, n) = k. It follows that f is surjective.

(c) Does f have a right inverse? If so, find a right inverse for f. If not, explain why f does not have a right inverse.

Since f is surjective, then f has a right inverse. We shall now find this right inverse. Consider the map $g: \mathbb{Z} \to \mathbb{N} \times \mathbb{N}$ given by

$$g(k) = \begin{cases} (k+1,1) & \text{if } k \ge 0\\ (1,1-k) & \text{if } k < 0 \end{cases}$$

Let $k \in \mathbb{Z}$. If $k \ge 0$, then we have $(f \circ g)(k) = f(g(k)) = f(k+1,1) = k+1 - 1 - k$. If k < 0, then we have $(f \circ g)(k) = f(g(k)) = f(1,1-k) = 1 - (1-k) = k$. Therefore, $(f \circ g)(k) = k = 1_{\mathbb{Z}}(k)$, which shows that g is a right inverse for f.

(6 pts) 4. Let A be a set and let R be a relation on A with the following properties:

- *R* is reflexive
- For any $x, y, z \in A$, if xRy and yRz, then zRx.

Prove that R is an equivalence relation.

We need to show that R is reflexive, symmetric and transitive. That R is reflexive is given as the first assumption. Let $x, y \in A$. Assume that xRy. As R is reflexive, xRx. Then, since xRx and xRy, by the second assumption, we have that yRx. Thus R is symmetric.

Now let $x, y, z \in A$. Assume that xRy and yRz. Then, by the second assumption, we have zRx. As R is symmetric, this gives xRz. Thus R is transitive, which completes the proof that R is an equivalence relation.

(5 pts) 5. Let $A = \{1, 2, 3, 4, 5\}$ and let $g : A \to A$ be a function with the following properties:

1.
$$g^{-1}(\{3,4,5\}) = \{1,2\}$$

2. $g^{-1}(\{3\}) = \emptyset$
3. $g(2) \neq 5$
4. $g^{-1}(\{5\}) \neq \emptyset$
5. $g(\{4,5\}) = \{2\}$
6. $g^{-1}(\{1\}) = \emptyset$

Find the values:

g(1) = 5 g(2) = 4 g(3) = 2 g(4) = 2 g(5) = 2

(For this part only, you DO NOT need to justify your answer.)