$* * * * * * * * * * * * * ~ P L E A S E ~ W R I T E ~ Y O U R ~ N A M E ~ C L E A R L Y ~ U S I N G ~ C A P I T A L ~ L E T T E R S ~$		
F U L L N A M E	S T U D E N T I D	DURATION: 70 MINUTES
		5 QUESTIONS ON 2 PAGES
		TOTAL: 40 POINTS

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(8+2+2=12 pts) 1. Consider the relation \sim on \mathbb{R}^{2} given by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $x_{1} \cdot y_{1}=x_{2} \cdot y_{2}$
for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.
(a) Show that \sim is an equivalence relation.

Let $(x, y) \in \mathbb{R}^{2}$. Then $x \cdot y=x \cdot y$ and hence, $(x, y) \sim(x, y)$. Therefore \sim is reflexive.
Let $(x, y),(\hat{x}, \hat{y}) \in \mathbb{R}^{2}$. Assume that $(x, y) \sim(\hat{x}, \hat{y})$. Then, by definition, $x \cdot y=\hat{x} \cdot y$ and hence, $\hat{x} \cdot \hat{y}=x \cdot y$ which shows that $(\hat{x}, \hat{y}) \sim(x, y)$. Therefore \sim is symmetric.

Let $(x, y),(\hat{x}, \hat{y}),(\bar{x}, \bar{y}) \in \mathbb{R}^{2}$. Assume that $(x, y) \sim(\hat{x}, \hat{y})$ and $(\hat{x}, \hat{y}) \sim(\bar{x}, \bar{y})$. Then, by definition, $x \cdot y=\hat{x} \cdot \hat{y}$ and $\hat{x} \cdot \hat{y}=\bar{x} \cdot \bar{y}$. It follows that $x \cdot t=\bar{x} \cdot \bar{y}$ and hence, $(x, y) \sim(\bar{x}, \bar{y})$. Therefore \sim is transitive, which completes the proof that \sim is an equivalence relation.
(b) Describe the set $[(0,0)]$ in the plane \mathbb{R}^{2} geometrically.
$[(0,0)]=\left\{(x, y) \in \mathbb{R}^{2}:(0,0) \sim(x, y)\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x \cdot y=0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right.$ or $\left.y=0\right\}$. Therefore $[(0,0)]$ is the union of the coordinate axes in \mathbb{R}^{2}.
(c) Find $(a, b) \in \mathbb{R}^{2}$ such that $[(a, b)]=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{2}{x}\right.\right\}$.

Choose $(a, b)=(2,1)$. Then we have that

$$
[(2,1)]=\left\{(x, y) \in \mathbb{R}^{2}:(2,1) \sim(x, y)\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x \cdot y=2\right\}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{2}{x}\right.\right\}
$$

(6 pts) 2. Let A be a set and $f: A \rightarrow A$ be a function. Show that if f has a left inverse, then $f \circ f$ also has a left inverse.

Solution I: Assume that f has a left inverse, say, $g: A \rightarrow A$ is a left inverse for f, that is, $g \circ f=1_{A}$. Consider the map $g \circ g: A \rightarrow A$. Then, for any $x \in A$, we have that

$$
\begin{aligned}
((g \circ g) \circ(f \circ f))(x) & =(g \circ g)((f \circ f)(x)) \\
& =(g \circ g)(f(f(x))) \\
& =g(g(f(f(x))))=g((g \circ f)(f(x)))=g\left(1_{A}(f(x))\right)=g(f(x))=(g \circ f)(x)=1_{A}(x)
\end{aligned}
$$

Therefore $g \circ g$ is a left inverse for $f \circ f$.
Solution II: Assume that f has a left inverse. Then f is one-to-one. Consequently, $f \circ f$ is one-to-one and hence, has a left inverse.
 (a) Is f injective? Explain.
$f(1,1)=f(2,2)=0$ but $(1,1) \neq(2,2)$. Therefore f is not one-to-one.
(b) Is f surjective? Explain.

Let $k \in \mathbb{Z}$. Choose $(m, n)=(k+1,1) \in \mathbb{N} \times \mathbb{N}$ if $k \geq 0$; and choose $(m, n)=(1,1-k) \in \mathbb{N} \times \mathbb{N}$ if $k<0$. Then, if $k \geq 0$, then $f(m, n)=f(k+1,1)=k$; and if $k<0$, then $f(m, n)=f(1,1-k)=1-(1-k)=k$. Hence $f(m, n)=k$. It follows that f is surjective.
(c) Does f have a right inverse? If so, find a right inverse for f. If not, explain why f does not have a right inverse.

Since f is surjective, then f has a right inverse. We shall now find this right inverse. Consider the map $g: \mathbb{Z} \rightarrow \mathbb{N} \times \mathbb{N}$ given by

$$
g(k)= \begin{cases}(k+1,1) & \text { if } k \geq 0 \\ (1,1-k) & \text { if } k<0\end{cases}
$$

Let $k \in \mathbb{Z}$. If $k \geq 0$, then we have $(f \circ g)(k)=f(g(k))=f(k+1,1)=k+1-1=k$. If $k<0$, then we have $(f \circ g)(k)=f(g(k))=f(1,1-k)=1-(1-k)=k$. Therefore, $(f \circ g)(k)=k=1_{\mathbb{Z}}(k)$, which shows that g is a right inverse for f.
(6 pts) 4. Let A be a set and let R be a relation on A with the following properties:

- R is reflexive
- For any $x, y, z \in A$, if $x R y$ and $y R z$, then $z R x$.

Prove that R is an equivalence relation.
We need to show that R is reflexive, symmetric and transitive. That R is reflexive is given as the first assumption. Let $x, y \in A$. Assume that $x R y$. As R is reflexive, $x R x$. Then, since $x R x$ and $x R y$, by the second assumption, we have that $y R x$. Thus R is symmetric.

Now let $x, y, z \in A$. Assume that $x R y$ and $y R z$. Then, by the second assumption, we have $z R x$. As R is symmetric, this gives $x R z$. Thus R is transitive, which completes the proof that R is an equivalence relation.
(5 pts) 5. Let $A=\{1,2,3,4,5\}$ and let $f: A \rightarrow A$ be a function with the following properties:

1. $f^{-1}(\{1,2,3\})=\{4,5\}$
2. $f^{-1}(\{3\})=\emptyset$
3. $f(4) \neq 1$
4. $f^{-1}(\{1\}) \neq \varnothing$
5. $f(\{1,2\})=\{4\}$
6. $f^{-1}(\{5\})=\emptyset$

Find the values:

$$
\begin{array}{lllll}
f(1)=4 & f(2)=4 & f(3)=4 & f(4)=2 & f(5)=1
\end{array}
$$

(For this part only, you DO NOT need to justify your answer.)

F U L N A M E	S T U D E N T I D	DURATION: 70 MINUTES 5 QUESTIONS ON 2 PAGES TOTAL: 40 POINTS

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.
(8+2+2=12 pts) 1. Consider the relation \sim on \mathbb{R}^{2} given by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $x_{1} \cdot y_{1}=x_{2} \cdot y_{2}$
for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.
(a) Show that \sim is an equivalence relation.

Let $(x, y) \in \mathbb{R}^{2}$. Then $x \cdot y=x \cdot y$ and hence, $(x, y) \sim(x, y)$. Therefore \sim is reflexive.
Let $(x, y),(\hat{x}, \hat{y}) \in \mathbb{R}^{2}$. Assume that $(x, y) \sim(\hat{x}, \hat{y})$. Then, by definition, $x \cdot y=\hat{x} \cdot y$ and hence, $\hat{x} \cdot \hat{y}=x \cdot y$ which shows that $(\hat{x}, \hat{y}) \sim(x, y)$. Therefore \sim is symmetric.

Let $(x, y),(\hat{x}, \hat{y}),(\bar{x}, \bar{y}) \in \mathbb{R}^{2}$. Assume that $(x, y) \sim(\hat{x}, \hat{y})$ and $(\hat{x}, \hat{y}) \sim(\bar{x}, \bar{y})$. Then, by definition, $x \cdot y=\hat{x} \cdot \hat{y}$ and $\hat{x} \cdot \hat{y}=\bar{x} \cdot \bar{y}$. It follows that $x \cdot t=\bar{x} \cdot \bar{y}$ and hence, $(x, y) \sim(\bar{x}, \bar{y})$. Therefore \sim is transitive, which completes the proof that \sim is an equivalence relation.
(b) Describe the set $[(0,0)]$ in the plane \mathbb{R}^{2} geometrically.
$[(0,0)]=\left\{(x, y) \in \mathbb{R}^{2}:(0,0) \sim(x, y)\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x \cdot y=0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right.$ or $\left.y=0\right\}$. Therefore $[(0,0)]$ is the union of the coordinate axes in \mathbb{R}^{2}.
(c) Find $(a, b) \in \mathbb{R}^{2}$ such that $[(a, b)]=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{2}{x}\right.\right\}$.

Choose $(a, b)=(2,1)$. Then we have that

$$
[(2,1)]=\left\{(x, y) \in \mathbb{R}^{2}:(2,1) \sim(x, y)\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x \cdot y=2\right\}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{2}{x}\right.\right\}
$$

(6 pts) 2. Let A be a set and $f: A \rightarrow A$ be a function. Show that if f has a left inverse, then $f \circ f$ also has a left inverse.

Solution I: Assume that f has a left inverse, say, $g: A \rightarrow A$ is a left inverse for f, that is, $g \circ f=1_{A}$. Consider the map $g \circ g: A \rightarrow A$. Then, for any $x \in A$, we have that

$$
\begin{aligned}
((g \circ g) \circ(f \circ f))(x) & =(g \circ g)((f \circ f)(x)) \\
& =(g \circ g)(f(f(x))) \\
& =g(g(f(f(x))))=g((g \circ f)(f(x)))=g\left(1_{A}(f(x))\right)=g(f(x))=(g \circ f)(x)=1_{A}(x)
\end{aligned}
$$

Therefore $g \circ g$ is a left inverse for $f \circ f$.
Solution II: Assume that f has a left inverse. Then f is one-to-one. Consequently, $f \circ f$ is one-to-one and hence, has a left inverse.
 (a) Is f injective? Explain.
$f(1,1)=f(2,2)=0$ but $(1,1) \neq(2,2)$. Therefore f is not one-to-one.
(b) Is f surjective? Explain.

Let $k \in \mathbb{Z}$. Choose $(m, n)=(k+1,1) \in \mathbb{N} \times \mathbb{N}$ if $k \geq 0$; and choose $(m, n)=(1,1-k) \in \mathbb{N} \times \mathbb{N}$ if $k<0$. Then, if $k \geq 0$, then $f(m, n)=f(k+1,1)=k$; and if $k<0$, then $f(m, n)=f(1,1-k)=1-(1-k)=k$. Hence $f(m, n)=k$. It follows that f is surjective.
(c) Does f have a right inverse? If so, find a right inverse for f. If not, explain why f does not have a right inverse.

Since f is surjective, then f has a right inverse. We shall now find this right inverse. Consider the map $g: \mathbb{Z} \rightarrow \mathbb{N} \times \mathbb{N}$ given by

$$
g(k)= \begin{cases}(k+1,1) & \text { if } k \geq 0 \\ (1,1-k) & \text { if } k<0\end{cases}
$$

Let $k \in \mathbb{Z}$. If $k \geq 0$, then we have $(f \circ g)(k)=f(g(k))=f(k+1,1)=k+1-1=k$. If $k<0$, then we have $(f \circ g)(k)=f(g(k))=f(1,1-k)=1-(1-k)=k$. Therefore, $(f \circ g)(k)=k=1_{\mathbb{Z}}(k)$, which shows that g is a right inverse for f.
(6 pts) 4. Let A be a set and let R be a relation on A with the following properties:

- R is reflexive
- For any $x, y, z \in A$, if $x R y$ and $y R z$, then $z R x$.

Prove that R is an equivalence relation.
We need to show that R is reflexive, symmetric and transitive. That R is reflexive is given as the first assumption. Let $x, y \in A$. Assume that $x R y$. As R is reflexive, $x R x$. Then, since $x R x$ and $x R y$, by the second assumption, we have that $y R x$. Thus R is symmetric.

Now let $x, y, z \in A$. Assume that $x R y$ and $y R z$. Then, by the second assumption, we have $z R x$. As R is symmetric, this gives $x R z$. Thus R is transitive, which completes the proof that R is an equivalence relation.
(5 pts) 5. Let $A=\{1,2,3,4,5\}$ and let $g: A \rightarrow A$ be a function with the following properties:

1. $g^{-1}(\{3,4,5\})=\{1,2\}$
2. $g^{-1}(\{3\})=\emptyset$
3. $g(2) \neq 5$
4. $g^{-1}(\{5\}) \neq \varnothing$
5. $g(\{4,5\})=\{2\}$
6. $g^{-1}(\{1\})=\emptyset$

Find the values:

$$
g(1)=5 \quad g(2)=4 \quad g(3)=2 \quad g(4)=2 \quad g(5)=2
$$

(For this part only, you DO NOT need to justify your answer.)

