PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS			
F U L L N A M E	S T U D E N T I D	DURATION	
		70 MINUTES	
5 QUESTIONS ON 2 PAGES	TOTAL 40 POINTS		

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature \qquad
(3 pts) 1. Prove or disprove: If a, b, c are integers such that $a \mid c$ and $b \mid c$, then $a b \mid c$.

We shall disprove this statement by providing a counterexample. Let $a=b=c=2$. Then $2 \mid 2$ and $2 \mid 2$ but $2 \cdot 2=4 \nmid 2$. Therefore, this statement is false.
(9 pts) 2. Using a proof by contrapositive, prove that if $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Assume that $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$. Then, by definition, there exists a set $C \in \mathcal{P}(A)$ such that $C \notin \mathcal{P}(B)$. Since $C \notin \mathcal{P}(B)$, we have $C \nsubseteq B$ and hence there exists $c \in C$ such that $c \notin B$. On the other hand, since $C \in \mathcal{P}(A)$, we have $C \subseteq A$ and consequently $c \in A$. Since $c \in A$ and $c \notin B$, we have that $A \nsubseteq B$.

(8 pts) 3.

Prove that there exists a unique set W such that for every set A we have $W \cup A=A$.

We first show the existence of such a set. Choose $W=\emptyset$. Then, by properties of the empty set, for any set A, we have that $\emptyset \cup A=A$.

We will now show that such a set is unique and any such set necessarily equals the empty set. Let \bar{W} be a set with the property that for every set A, we have $\bar{W} \cup A=A$. Since this statement is true for any A, it is true for $A=\emptyset$ and hence $\bar{W} \cup \emptyset=\emptyset$. On the other hand, it follows from the properties of the empty set that $\bar{W} \cup \emptyset=\bar{W}$. Therefore, $\bar{W}=\emptyset$.
(8pts) 4. Let A and B be sets such that $A \varsubsetneqq B$ (that is, A is a proper subset of B) and let C be a set such that $A \times C=B \times C$. Prove that $C=\emptyset$.

We shall show this via a proof by contradiction. Assume towards a contradiction that $C \neq \emptyset$. Then, C being non-empty, there exists $c \in C$. Since $A \varsubsetneqq B$, there exists $b \in B$ such that $b \notin A$. Then, we have that $(b, c) \in B \times C$ and $(b, c) \notin A \times C$. Therefore $A \times C \neq B \times C$, which contradicts the given assumption.
(12 pts) 5. Let A and B be two subsets of a set C. Show that the following statements are equivalent by proving the implications $a \Rightarrow b \Rightarrow c \Rightarrow a$.
(a) $A \cup B=C$
(b) $(C-A) \cap(C-B)=\emptyset$
(c) $(C-A) \subseteq B$
$(a \Rightarrow b)$:
We shall prove this via a proof by contradiction. Assume that $A \cup B=C$ and $(C-A) \cap(C-B) \neq \emptyset$. Since $(C-A) \cap(C-B) \neq \emptyset$, there exists $c \in(C-A) \cap(C-B)$. This means that $c \in C-A$ and $c \in C-B$, which imply that $c \in C$ and $c \notin A$ and $c \notin B$. But then, $c \in C$ and $c \notin A \cup B$, which contradicts the assumption that $A \cup B=C$.
$(b \Rightarrow c):$
Assume that $(C-A) \cap(C-B)=\emptyset$. Let $x \in C-A$. Since $x \notin \emptyset=(C-A) \cap(C-B)$, we have that $x \notin C-A$ or $x \notin C-B$. On the other hand, we know that $x \in C-A$. Therefore, we have that $x \in C-B$. This shows that $C-A \subseteq C-B$.
$(c \Rightarrow a):$
Assume that $(C-A) \subseteq B$. We wish to show that $A \cup B=C$. We shall do this by showing the inclusions $A \cup B \subseteq C$ and $C \subseteq A \cup B$.

Since $A \subseteq C$ and $B \subseteq C$, we have that $A \cup B \subseteq C$ by a theorem proven in class. We now show the other inclusion. Let $c \in C$. We split into two cases.

Case $1(c \in A)$. Assume that $c \in A$. Then, as $A \subseteq A \cup B$, we have $c \in A \cup B$.
Case $2(c \notin A)$. Assume that $c \notin A$. Then, we have $c \in C-A$. It now follows from our initial assumption that $c \in B$. But then, as $B \subseteq A \cup B$, we have $c \in A \cup B$.

In all cases, we reached $c \in A \cup B$. Therefore, $c \in A \cup B$. This completes the proof that $C \subseteq A \cup B$.

