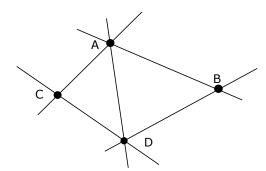
Math 111 Fundamentals of Mathematics Fall 2019 Midterm I 17 October 2019 17:40					
FULL NAME	STUDENT ID	DURATION			
		70 MINUTES			
5 QUESTIONS ON 2 PAGES		TOTAL 40 POINTS			

M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(3+3+3+3 pts) 1. Consider the points A, B, C, D in the plane and the lines connecting these points:



Let L(x, y) be the expression "x and y lie on the same line" where the possible values of x and y are from the set $\{A, B, C, D\}$.

Determine whether the following statements are true or false. In each case, briefly explain your reasoning.

a) $\exists x \forall y \ L(x, y)$ This statement is TRUE. Because if we choose x = A, then we see that L(x, y) is true for any y.

b) $\exists x \exists y (\neg L(x, y))$ This statement is TRUE. Because if we choose x = B and y = C, then we see that L(x, y) is false.

c) $\forall x \ \forall y \ L(x, y)$ This statement if FALSE. Because, for x = B and y = C, we have that L(x, y) is false. Thus, it is not the case that L(x, y) holds for every x and y. (Alternative solution: This statement is equivalent to the negation of the statement in part b) which was true. Therefore it is FALSE.)

d)
$$\exists x \exists y \exists z \left[L(x,y) \land L(y,z) \land \neg L(x,z) \right]$$

This statement is TRUE. Because, if we choose x = C, y = A, z = B, then we have that L(x, y) and L(y, z) are true and L(x, z) is false.

<u>(4+4 pts)</u> 2. Let P be the statement $\exists x \left[(\forall y \ G(x,y)) \land (\exists z \ (E(z) \to G(x,z))) \right]$ where the variables x and y range over the positive integers. a) Find the negation of P.

$$\forall x \left[\left(\exists y \ \neg G(x,y) \right) \lor \left(\forall z \ \left(E(z) \land \neg G(x,z) \right) \right) \right]$$

b) Let G(x, y) be the expression "x = y" and E(z) be the expression "z is even". Determine whether P is true or false.

In this case P is FALSE. In order to see this, we shall show that the negation of P is true. Let x be arbitrary. Choose y = x + 1. Then G(x, y) is false, and hence $(\exists y \neg G(x, y))$ is true. Thus, $\forall x \left[(\exists y \neg G(x, y)) \lor (\forall z (E(z) \land \neg G(x, z))) \right]$ is true.

(4+2 pts) 3. Consider the following argument:

It is not sunny today and it is colder than yesterday. If we go swimming, then it will be sunny today. If we do not go swimming, then we will not take a canoe trip. Therefore, if we take a canoe trip then we will go home by the sunset.

• S: It is sunny today a) Express this argument using the statements on the left and

 $\neg S \wedge C$

- C: It is colder than yesterday logical connectives.
- **G** : We will go swimming
- **K**: We will take a canoe trip $G \to S$
- **K**: We will take a canoe trip • **H**: We will be home by sunset $(\neg G) \rightarrow \neg K$ $K \rightarrow H$

b) Determine whether the set of premises of this argument is consistent or not.

If we let S be FALSE, C be TRUE, G be FALSE and K be FALSE, then all premises become true. Hence, this set of premises is consistent.

(7 pts)	4. Write a de	rivation for the following valid argument.	$\begin{array}{l} P \rightarrow Q \\ Q \rightarrow (S \lor \neg P) \\ (\neg R) \land P \end{array}$
			S
1) P	$\rightarrow Q$		
2) Q	$\to (S \vee \neg P)$		
3) (-	$R) \wedge P$		
$4) \overline{P}$		from 3) and simplification $(A \land B \implies B)$	
5) Q		from 1),4) and Modus Ponens $((A \rightarrow B) \wedge$	$A \implies B)$
6) S	$\vee \neg P$	from 2),5) and Modus Ponens $((A \rightarrow B) \wedge$	$A \implies B)$
7) P	ightarrow S	from 2) and $((A \to B) \iff (B \lor \neg A))$	
8) S		from 4),7) and Modus Ponens $\;((A\rightarrow B)\wedge$	$A \implies B)$

$(7 \ pts)$ 5. Write a derivation for the following valid argument.	
---	--

 $\exists x \ \neg Q(x) \\ \forall x \ ((\neg P(x)) \rightarrow Q(x)) \\ \forall x \ (P(x) \rightarrow \neg R(x)) \\ \neg (\forall x \ R(x))$

1) $\exists x \neg Q(x)$ 2) $\forall x ((\neg P(x)) \rightarrow Q(x))$ 3) $\forall x \ (P(x) \to \neg R(x))$ from 1) and Existential Instantiation 4) $\neg Q(a)$ 5) $(\neg P(a)) \to Q(a)$ from 2) and Universal Instantiation from 4),5) and Modus Tollens $(A \to B) \land \neg B \implies \neg A$ 6) $\neg \neg P(a)$ from 6) and double negation $\neg \neg A \Leftrightarrow A$ 7)P(a)8) $P(a) \rightarrow \neg R(a)$ from 3) and Universal Instantiation $\neg R(a)$ 9) from 7),8) and Modus Ponens $(A \to B) \land A \implies B$ 10) $\exists x(\neg R(x))$ from 9) and Existential Generalization from 10) and de Morgan's law $\exists x(\neg R(x)) \iff \neg(\forall x \ R(x))$ 11) $\neg(\forall x \ R(x))$