| Math 111 Fundamentals of Mathematics |   |   |  |          | Fall 2018 Midterm IV 27.12.2018 17:40 |                 |  |
|--------------------------------------|---|---|--|----------|---------------------------------------|-----------------|--|
| Last Name :                          |   |   |  |          |                                       |                 |  |
| Name :                               |   |   |  | Section  | :                                     |                 |  |
| Student No :                         |   |   |  | Duration | : 65 minutes                          |                 |  |
| 4 QUESTIONS ON 2 PAGES               |   |   |  |          |                                       | TOTAL 30 POINTS |  |
| 1 2 3                                | 3 | 4 |  |          |                                       |                 |  |
|                                      |   |   |  |          |                                       |                 |  |

M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature .....

111

153

if x = 5

if x is even and  $x \neq 5$ 

## (4+2+2+4 pts) 1. Let $X = \{0, 1, 2, 3, 4, 5, 6, 7\}.$

a) Let  $f: X \to \mathbb{Z}$  be a function. Define the relation  $\sim$  on X by

 $x \sim y$  if and only if f(x) = f(y)

for all  $x, y \in X$ . Prove that  $\sim$  is an equivalence relation on X.

We will prove that  $\sim$  is reflexive, symmetric and transitive.

Let  $x \in X$ . Then, we have f(x) = f(x) which implies that  $x \sim x$ . Hence,  $\sim$  is reflexive.

Let  $x, y \in X$ . Assume that  $x \sim y$ . Then, by definition, f(x) = f(y) and so f(y) = f(x). It follows that  $y \sim x$ , and hence  $\sim$  is symmetric.

Let  $x, y, z \in X$ . Assume that  $x \sim y$  and  $y \sim z$ . Then, by definition, f(x) = f(y) and f(y) = f(z). It follows that f(x) = f(z) and hence,  $x \sim z$ . Therefore,  $\sim$  is transitive.

b) For this part of the question only, assume that  $f(x) = \sqrt{115}$  if x is odd and  $x \neq 5$ 

Find the equivalence class [1].

$$[1] = \{x \in X : 1 \sim x\} = \{x \in X : f(1) = f(x)\} = \{x \in X : 115 = f(x)\} = \{1, 3, 7\}$$

c) For this part of the question only, assume that

$$f(0) = 1$$
  $f(1) = 2$   $f(2) = 1$   $f(3) = 3$   $f(4) = 1$   $f(5) = 2$   $f(6) = 1$   $f(7) = 3$ 

Find the quotient set  $X/\sim$ 

 $X/ \sim = \{ [x] : x \in X \} = \{ [0], [1], [3] \} = \{ \{0, 2, 4, 6\}, \{1, 5\}, \{3, 7\} \}$ 

d) Let  $g: X \to \mathbb{Z}$  be an injective function. Define the relation  $\preccurlyeq$  on X defined by

 $x \preccurlyeq y$  if and only if  $g(x) \le g(y)$ 

for all  $x, y \in X$ , where  $\leq$  denote the **usual** ordering on  $\mathbb{Z}$ . Prove that  $\preccurlyeq$  is a partial ordering on X. We shall prove that  $\preccurlyeq$  is reflexive, anti-symmetric and transitive.

Let  $x \in X$ . Then, we have  $g(x) \leq g(x)$  and so  $x \preccurlyeq x$ . Thus,  $\preccurlyeq$  is reflexive.

Let  $x, y \in X$ . Assume that  $x \preccurlyeq y$  and  $y \preccurlyeq x$ . Then, by definition,  $g(x) \le g(y)$  and  $g(y) \le g(x)$ . It follows that g(x) = g(y). Since g is injective, this implies that x = y. Thus  $\preccurlyeq$  is anti-symmetric.

Let  $x, y, z \in X$ . Assume that  $x \preccurlyeq y$  and  $y \preccurlyeq z$ . Then, by definition,  $f(x) \le f(y)$  and  $f(y) \le f(z)$ . These imply that  $f(x) \le f(z)$  and so  $x \preccurlyeq z$ . Therefore,  $\preccurlyeq$  is transitive. (6 pts) 2. Using induction, prove that  $\left(1+\frac{1}{n}\right)^n < n$  for all  $n \ge 3$ .

**Base case:** We have that  $\left(1+\frac{1}{3}\right)^3 = \frac{4^3}{3^3} = \frac{64}{27} < \frac{81}{27} = 3$  and hence the claim holds for n = 3. **Inductive step:** Let  $n \ge 3$  be a natural number. Assume that  $\left(1+\frac{1}{n}\right)^n < n$ . This assumption and the fact that  $\frac{1}{n+1} < \frac{1}{n}$  together imply that

$$\left(1 + \frac{1}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^n \cdot \left(1 + \frac{1}{n+1}\right) < \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) < n \cdot \frac{n+1}{n} = n+1$$

Therefore, if  $\left(1 + \frac{1}{n}\right)^n < n$ , then  $\left(1 + \frac{1}{n+1}\right)^{n+1} < n+1$ .

By the principle of induction, we have that  $\left(1+\frac{1}{n}\right)^n < n$  for all natural numbers  $n \ge 3$ .

 $(2+2 \ pts)$  3. Suppose that E is a relation on Z which is **both** an equivalence relation and a partial ordering.

a) Show that if aEb then a = b.

Assume that aEb. Since E is an equivalence relation, it is symmetric and hence bEa. On the other hand, since E is a partial ordering, it is anti-symmetric and hence aEb and bEa together imply that a = b.

b) Show that E is not a total order relation. (Hint. You can use part a).)

 $(2+2+2+2 \ pts)$  4. Consider the partial ordering on the set  $X = \{A, B, C, D, E, F, G, H\}$  whose Hasse diagram is given below. If they exist, find the following elements of X. (For this question only, you do not need to justify your answer.)



- a) Maximal element(s) G,H,C,D
- b) Greatest element

There is no greatest element

- c) Least upper bound of the subset  $\{B, E\}$ F
- d) Greatest lower bound of the subset  $\{G, F, C\}$