M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature
$\underline{(4+2+2+4} \boldsymbol{p t s})$ 1. Let $X=\{0,1,2,3,4,5,6,7\}$.
a) Let $f: X \rightarrow \mathbb{Z}$ be a function. Define the relation \sim on X by
$x \sim y \quad$ if and only if $\quad f(x)=f(y)$
for all $x, y \in X$. Prove that \sim is an equivalence relation on X.
We will prove that \sim is reflexive, symmetric and transitive.
Let $x \in X$. Then, we have $f(x)=f(x)$ which implies that $x \sim x$. Hence, \sim is reflexive.
Let $x, y \in X$. Assume that $x \sim y$. Then, by definition, $f(x)=f(y)$ and so $f(y)=f(x)$. It follows that $y \sim x$, and hence \sim is symmetric.

Let $x, y, z \in X$. Assume that $x \sim y$ and $y \sim z$. Then, by definition, $f(x)=f(y)$ and $f(y)=f(z)$. It follows that $f(x)=f(z)$ and hence, $x \sim z$. Therefore, \sim is transitive.
b) For this part of the question only, assume that $f(x)= \begin{cases}111 & \text { if } x \text { is even and } x \neq 5 \\ 115 & \text { if } x \text { is odd and } x \neq 5\end{cases}$

Find the equivalence class [1].
$[1]=\{x \in X: 1 \sim x\}=\{x \in X: f(1)=f(x)\}=\{x \in X: 115=f(x)\}=\{1,3,7\}$
c) For this part of the question only, assume that

$$
f(0)=1 \quad f(1)=2 \quad f(2)=1 \quad f(3)=3 \quad f(4)=1 \quad f(5)=2 \quad f(6)=1 \quad f(7)=3
$$

Find the quotient set X / \sim
$X / \sim=\{[x]: x \in X\}=\{[0],[1],[3]\}=\{\{0,2,4,6\},\{1,5\},\{3,7\}\}$
d) Let $g: X \rightarrow \mathbb{Z}$ be an injective function. Define the relation \preccurlyeq on X defined by

$$
x \preccurlyeq y \quad \text { if and only if } \quad g(x) \leq g(y)
$$

for all $x, y \in X$, where \leq denote the usual ordering on \mathbb{Z}. Prove that \preccurlyeq is a partial ordering on X.
We shall prove that \preccurlyeq is reflexive, anti-symmetric and transitive.
Let $x \in X$. Then, we have $g(x) \leq g(x)$ and so $x \preccurlyeq x$. Thus, \preccurlyeq is reflexive.
Let $x, y \in X$. Assume that $x \preccurlyeq y$ and $y \preccurlyeq x$. Then, by definition, $g(x) \leq g(y)$ and $g(y) \leq g(x)$. It follows that $g(x)=g(y)$. Since g is injective, this implies that $x=y$. Thus \preccurlyeq is anti-symmetric.
Let $x, y, z \in X$. Assume that $x \preccurlyeq y$ and $y \preccurlyeq z$. Then, by definition, $f(x) \leq f(y)$ and $f(y) \leq f(z)$. These imply that $f(x) \leq f(z)$ and so $x \preccurlyeq z$. Therefore, \preccurlyeq is transitive.
(6 pts) 2. Using induction, prove that $\left(1+\frac{1}{n}\right)^{n}<n$ for all $n \geq 3$.

Base case: We have that $\left(1+\frac{1}{3}\right)^{3}=\frac{4^{3}}{3^{3}}=\frac{64}{27}<\frac{81}{27}=3$ and hence the claim holds for $n=3$. Inductive step: Let $n \geq 3$ be a natural number. Assume that $\left(1+\frac{1}{n}\right)^{n}<n$. This assumption and the fact that $\frac{1}{n+1}<\frac{1}{n}$ together imply that

$$
\left(1+\frac{1}{n+1}\right)^{n+1}=\left(1+\frac{1}{n+1}\right)^{n} \cdot\left(1+\frac{1}{n+1}\right)<\left(1+\frac{1}{n}\right)^{n} \cdot\left(1+\frac{1}{n}\right)<n \cdot \frac{n+1}{n}=n+1
$$

Therefore, if $\left(1+\frac{1}{n}\right)^{n}<n$, then $\left(1+\frac{1}{n+1}\right)^{n+1}<n+1$.

By the principle of induction, we have that $\left(1+\frac{1}{n}\right)^{n}<n$ for all natural numbers $n \geq 3$.
(2+2 pts) 3. Suppose that E is a relation on \mathbb{Z} which is both an equivalence relation and a partial ordering.
a) Show that if $a E b$ then $a=b$.

Assume that $a E b$. Since E is an equivalence relation, it is symmetric and hence $b E a$. On the other hand, since E is a partial ordering, it is anti-symmetric and hence $a E b$ and $b E a$ together imply that $a=b$.
b) Show that E is not a total order relation. (Hint. You can use part a).)

It follows from the previous part of the question that if $a \neq b$, then $a \notin b$. In particular, we have that, for example, $111 \notin 112$ and $112 \notin 111$. If E were a total order, then we would have $a E b$ or $b E a$ for all $a, b \in \mathbb{Z}$. Hence, E cannot be a total order relation.
$\underline{(2+2+2+2 ~ p t s) ~ 4 . ~ C o n s i d e r ~ t h e ~ p a r t i a l ~ o r d e r i n g ~ o n ~ t h e ~ s e t ~} X=\{A, B, C, D, E, F, G, H\}$ whose Hasse diagram is given below. If they exist, find the following elements of X. (For this question only, you do not need to justify your answer.)

a) Maximal element(s) G,H,C,D
b) Greatest element

There is no greatest element
c) Least upper bound of the subset $\{B, E\}$ F
d) Greatest lower bound of the subset $\{G, F, C\}$

