METU Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature \qquad

(4+4 pts) 1.

a) Find a left inverse for the function $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by $f(m)=m$ for all $m \in \mathbb{N}$.

Consider the function $g: \mathbb{Z} \rightarrow \mathbb{N}$ defined by

$$
g(k)= \begin{cases}k & \text { if } k \in \mathbb{N} \\ 0 & \text { if } k \in \mathbb{Z}-\mathbb{N}\end{cases}
$$

Then, for any $k \in \mathbb{N}$, we have that

$$
(g \circ f)(k)=g(f(k))=g(k)=k
$$

Hence, $g \circ f=1_{\mathbb{N}}$ and so g is a left inverse for f.
b) Let $f: A \rightarrow B$ be a function and let $Y \subseteq B$. Prove that if f is onto, then $Y \subseteq f\left(f^{-1}(Y)\right)$.

Assume that f is onto. We wish to show that $Y \subseteq f\left(f^{-1}(Y)\right)$. Let $b \in Y$. Since f is onto, there exists $a \in A$ such that $f(a)=b$. Then, by definition, as $f(a) \in Y$, we have that $a \in f^{-1}(Y)$.

By the definition of the image of a set under a function, we have that

$$
f\left(f^{-1}(Y)\right)=\left\{y \in Y \mid \exists x \in f^{-1}(Y) \quad f(x)=y\right\}
$$

It then follows from $b=f(a)$ and $a \in f^{-1}(Y)$ that $b \in f\left(f^{-1}(Y)\right)$. Therefore, $Y \subseteq f\left(f^{-1}(Y)\right)$.

(2+4 pts) 2.

a) Consider the set $A=\{1,2,\{1\},\{1,2\},\{1,2,3\}\}$. Find the following set:
$A-\mathcal{P}(A)=\{1,2,\{1,2,3\}\}$
b) Show that the following statement is false:

For every set $A, B, C, D, \quad(A \times B)-(C \times D)=(A-C) \times(B-D)$.
We wish to prove that there exist sets A, B, C, D such that $(A \times B)-(C \times D) \neq(A-C) \times(B-D)$.
Choose $A=B=D=\{0\}$ and $C=\emptyset$. Then we have that $A \times B=\{(0,0)\}$ and $C \times D=\emptyset$ and so $(A \times B)-(C \times D)=\{(0,0)\}$. However, $A-C=\{0\}$ and $B-D=\emptyset$ and hence, $(A-C) \times(B-D)=\emptyset$. Therefore, $(A \times B)-(C \times D) \neq(A-C) \times(B-D)$.

Find the following sets. (For this question only, you do not need to prove your claim.)
a) $f([-2,1])=[-2,2]$
b) $f^{-1}((2,3))=(1,2) \cup(5,6)$
c) $f^{-1}(\{4\})=\emptyset$
d) $f^{-1}(\{0\})=\{-2,0,3,4\}$
(3+3+2 pts) 4. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined as follows:

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \text { is odd } \\
x+2 & \text { if } x \text { is even }
\end{array}, \text { for any } x \in \mathbb{Z}\right.
$$

a) Show that f is one-to-one. Let $x, y \in \mathbb{Z}$. Assume that $f(x)=f(y)$. We wish to show that $x=y$. We first make the following observation. For all $i \in \mathbb{Z}$, we have that i is even if and only if $f(i)$ is even. We now split into two cases by considering the number $m=f(x)=f(y)$:
Case 1. If m is odd, then, by the observation, x and y are both odd. But then, $x=f(x)=f(y)=y$.
Case 2. If m is even, then, by the observation, x and y are both even. But then, $x+2=f(x)=$ $f(y)=y+2$ implies that $x=y$.
In both cases, we have that $x=y$. Thus, f is one-to-one.
b) Show that f is onto. Let $y \in \mathbb{Z}$. We split into two cases:

Case 1. If y is odd, then choose $x=y$. In this case, $x \in \mathbb{Z}$ and x is odd. Thus, $f(x)=x=y$.
Case 2. If y is even, then choose $x=y-2$. In this case, $x \in \mathbb{Z}$ and x is even. Thus, $f(x)=x+2=$ $(y-2)+2=y$. In both cases, we have found $x \in \mathbb{Z}$ such that $f(x)=y$. Thus, f is onto.
c) Find f^{-1}. Since f is a bijection, it has an inverse f^{-1} which is equal to its right and left inverse. Let the function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $g(x)=\left\{\begin{array}{cc}x & \text { if } x \text { is odd } \\ x-2 & \text { if } x \text { is even }\end{array}\right.$, for any $x \in \mathbb{Z}$. Then, $(g \circ f)(x)=g(f(x))=g(x)=x$ for all odd $x \in \mathbb{Z}$ and $(g \circ f)(x)=g(f(x))=g(x+2)=(x+2)-2=x$ for all even $x \in \mathbb{Z}$. Thus, $g \circ f=1_{\mathbb{Z}}$ and so g is the left inverse of f, which implies that $g=f^{-1}$.

