M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature \qquad
$(3+3$ pts) 1. Consider the set $A=\{1,2,\{1\},\{1,2\},\{1,2,3\}\}$. Find the following sets:

- $A-\mathcal{P}(A)=\{1,2,\{1,2,3\}\}$
- $A \cup \mathcal{P}(\{1,2\})=\{\emptyset, 1,2,\{1\},\{2\},\{1,2\},\{1,2,3\}\}$
(10 pts) 2. Let A, B, C be sets. Prove that

$$
(A \cap B) \subseteq C \quad \text { if and only if } \quad(A-C) \cap(B-C)=\emptyset
$$

(WARNING: Drawing Venn diagrams is not a proof!)

- (\Rightarrow) We shall prove this direction a proof by contrapositive.

Suppose that $(A-C) \cap(B-C) \neq \emptyset$. This means that there exists an element $a \in(A-C) \cap(B-C)$. So, $a \in A-C$ and $a \in B-C$. This implies that $a \in A$ and $a \in B$, but $a \notin C$. Hence, $a \in A \cap B$ but $a \notin C$. Therefore $(A \cap B) \nsubseteq C$.

- (\Leftarrow) We shall also prove this direction a proof by contrapositive.

Suppose that $(A \cap B) \nsubseteq C$. This means that there exists an element $a \in A \cap B$ such that $a \notin C$. So, $a \in A$ and $a \in B$, but $a \notin C$. It then follows from the definition of set difference that $a \in A-C$ and $a \in B-C$. Consequently, we have that $a \in(A-C) \cap(B-C)$ and hence $(A-C) \cap(B-C) \neq \emptyset$.

For any integer m and for any integer n, if m is even and n is odd, then $m n+n$ is odd.
The following is an incorrect proof of this statement:
Proof: Let m be an integer and let $n=m+1$. Assume that m is even and n is odd. By assumption, since n is odd, $n=2 k+1$ for some integer k. It follows that $m n+n=(m+1) \cdot n=n \cdot n=(2 k+1)(2 k+1)=$ $4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. Hence $m n+n$ is odd.
a) Find the mistake in this incorrect proof and explain why it is incorrect.

The statement asserts that the conclusion is true for any integers m and n. In the proof, m is arbitrarily chosen arbitrarily but the integer n is chosen as the successor of m and hence not arbitrary. Consequently, this proof shows that the conclusion is true for any two consecutive integers, and not for arbitrary integers.
b) Write a correct proof of this statement.

Let m and n be integers. Assume that m is even and n is odd. Then, by definition, there exist integers k, ℓ such that $m=2 k$ and $n=2 \ell+1$. Hence, $m n+n=(2 k)(2 \ell+1)+2 \ell+1=2(2 k \ell+k+\ell)+1$. It follows that $m n+n$ is odd.

($3+4 \mathrm{pts}) 4$. Let x, y be integers.

a) Prove the following statement by a direct proof: If x is even or y is even, then 4 divides $x^{2} \cdot y^{2}$.

Suppose that x or y is even. We split into two cases.
Case $1, x$ is even: This means $x=2 k$ for some integer $k:$ So, $x^{2} \cdot y^{2}=(2 k)^{2} \cdot y^{2}=4\left(k^{2} y^{2}\right)$. Hence, 4 divides $x^{2} \cdot y^{2}$.
$\frac{\text { Case } 2, y \text { is even: }}{\text { divides } x^{2} \cdot y^{2}}$ This means $y=2 m$ for some integer m. So, $x^{2} y^{2}=x^{2} \cdot(2 m)^{2}=4\left(x^{2} m^{2}\right)$. Hence, 4 divides $x^{2} \cdot y^{2}$.

In both cases, we have that 4 divides $x^{2} \cdot y^{2}$.

b) Prove the following statement by a proof by contrapositive: If 4 divides $x^{2} \cdot y^{2}$, then x is even or y is even.

We shall prove the contrapositive of the statement, that is, if x is odd and y is odd, then 4 does not divide $x^{2} \cdot y^{2}$.

Suppose that x and y are odd integers. Then, by definition, $x=2 i+1$ for some integer i and $y=2 j+1$ for some integer j. It follows that $x^{2} \cdot y^{2}=(2 i+1)^{2}(2 j+1)^{2}=\left(4 i^{2}+4 i+1\right)\left(4 j^{2}+4 j+1\right)=$ $4\left(4\left(i^{2}+i\right)\left(j^{2}+j\right)+\left(i^{2}+i\right)+\left(j^{2}+j\right)\right)+1$ and so $x^{2} \cdot y^{2}=4 p+1$ for some integer p. If it were the case that 4 divides $x^{2} \cdot y^{2}$, then we would have that $x^{2} \cdot y^{2}=4 q$ for some integer q and so we would have $4(q-p)=1$ for some integers p and q, which is a contradiction, since 4 does not divide 1 . Hence, 4 does not divide $x^{2} \cdot y^{2}$.

