Math 111 Fundamentals of Mathematics							Fall 2018 Final Exam	15.01.2019	13:30
Last Name Name Student No	:				Sect Dur	ion ation	: : 120 minutes		
7 QUESTIONS ON 4 PAGES								TOTAL 80 POINTS	
1 2	3	4	5	6 7	,				

M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

A

(5+5+5 pts) 1. The parts of this question are unrelated.

a) Let A, B be sets such that $A \subseteq B$. Show that if B is uncountable and A is countable, then B is uncountable.

Assume towards a contradiction that B is uncountable and A is countable, and B - A is countable. Since $A \subseteq B$, we have that $B = A \cup (B - A)$. Because the union of two countable sets is countable and, A and B - A are both countable, we have that B is countable, which is a contradiction.

b) Show that the following statement is false:

For all sets A and B, if A and B are uncountable, then $A \cap B$ is uncountable.

We shall give a counterexample to this statement. Choose A = (0, 1) and B = (-1, 0). Then, we have that $A \sim B \sim \mathbb{R}$ and hence both A and B are uncountable. On the other hand, $A \cap B = \emptyset$, which is countable.

c) Prove that for any set A and B, we have that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Let A and B be sets. We will prove that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$. Let $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Then we have that $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, and so $S \subseteq A$ and $S \subseteq B$. It follows from $S \subseteq A$ and $S \subseteq B$ that $S \subseteq A \cap B$, and hence $S \in \mathcal{P}(A \cap B)$.

 $(5+5+5 \ pts) \ 2. \text{ Let } X = \{0, 1, 2, 3, 4, \dots\}, \ [0, \infty) = \{x \in \mathbb{R} : 0 \le x\} \text{ and } (0, 1) = \{x \in \mathbb{R} : 0 < x < 1\}.$ Consider the function

$$f: X \times (0,1) \to [0,\infty)$$

defined by f(n,r) = n + r for all $(n,r) \in X \times (0,1)$.

a) Show that the function f is injective.

Let (n, r) and (m, s) be elements of $X \times (0, 1)$. Assume that f(n, r) = f(m, s). Then we have that n + r = m + s and so n - m = s - r. Since m and n are integers, n - m is an integer. Since 0 < r, s < 1, we have that -1 < s - r = n - m < 1. This implies that n - m = 0 and hence n = m. Consequently, s = r and so (n, r) = (m, s). This shows that f is injective.

b) Show that the function f is not surjective.

Notice that $0 \in [0, \infty)$. We claim that there exists no $(n, r) \in X \times (0, 1)$ such that f(n, r) = 0 which will show that f is not surjective. Let $(n, r) \in X \times (0, 1)$. Then f(n, r) = n + r > 0 = 0. Hence $f(n, r) \neq 0$.

c) You are given the fact that there exists an injective function $g: [0, \infty) \to X \times (0, 1)$. Show that $X \times (0, 1)$ and $[0, \infty)$ have the same cardinality.

We have proven in (a) that there exists an injection $f : X \times (0,1) \to [0,\infty)$ and we are given that there exists an injection $g : [0,\infty) \to X \times (0,1)$. By Cantor-Schröder-Bernstein theorem, there exists a bijection between $X \times (0,1)$ and $[0,\infty)$ which shows that these sets have the same cardinality.

(5 pts) 3. Let A, B, C, D be sets and $f : A \to B$ and $g : C \to D$ be functions. Consider the function $h : A \times C \to B \times D$ given by h(a, c) = (f(a), g(c)) for all $(a, c) \in A \times C$. Show that if f and g are surjective, then h is surjective.

Assume that f and g are surjective. Let $(b, d) \in B \times D$. Then $b \in B$ and $d \in D$. Since f and g are surjective, there exist $a \in A$ and $c \in C$ such that f(a) = b and g(c) = d. Note that $(a, c) \in A \times C$ and h(a, c) = (f(a), g(c)) = (b, d). Thus h is surjective.

(5 pts) 4. Using induction, prove that

 $1+3+5+\ldots+(2n-1)=n^2$ for all natural numbers $n \ge 2$.

Base case. We have that $1 + (2 \cdot 2 - 1) = 1 + 3 = 4 = 2^2$, and hence the claim holds for n = 2.

Inductive step. Let $n \ge 2$ be an integer. Assume that $1+3+5+\ldots+(2n-1)=n^2$. Then, by adding 2n+1 to both sides, we have that

$$1 + 3 + 5 + \dots + (2n - 1) + (2n + 1) = n^{2} + (2n + 1)$$
$$1 + 3 + 5 + \dots + (2n - 1) + (2(n + 1) - 1) = (n + 1)^{2}$$

and hence the claim holds for n+1. It follows from the principle of induction that $1+3+5+\ldots+(2n-1)$, n^2 for all natural numbers $n \ge 2$.

<u>(10+5 pts)</u> 5. Let $\mathbb{N} = \{1, 2, 3, ...\}$ be the set of natural numbers. Consider the relation \sim on \mathbb{N} defined by

$$x \sim y$$
 if and only if $\frac{y}{x} = 2^i$ for some $i \in \mathbb{Z}$

for all $x, y \in \mathbb{N}$.

a) Show that \sim is an equivalence relation.

Let $x \in \mathbb{N}$. Then we have that $\frac{x}{x} = 2^0$ and $0 \in \mathbb{Z}$. Thus, by definition, $x \sim x$. Hence, \sim is reflexive. Let $x, y \in \mathbb{N}$. Assume that $x \sim y$. Then, by definition, $\frac{x}{y} = 2^i$ for some $i \in \mathbb{Z}$. This implies that $\frac{y}{x} = \frac{1}{2^i} = 2^{-i}$ and hence $y \sim x$. Therefore, \sim is symmetric. Let $x, y, z \in \mathbb{N}$. Assume that $x \sim y$ and $y \sim z$. Then, by definition, $\frac{x}{y} = 2^i$ and $\frac{y}{z} = 2^j$ for some $i, j \in \mathbb{Z}$. It follows that $\frac{x}{z} = \frac{x}{y} \cdot \frac{y}{z} = 2^i \cdot 2^j = 2^{i+j}$. Hence, $x \sim z$ and so \sim is transitive.

a) Construct a bijection from \mathbb{N} to [1].

We have that

$$[1] = \{n \in \mathbb{N} : 1 \sim n\} = \{n \in \mathbb{N} : \exists i \in \mathbb{Z} \ \frac{n}{1} = 2^i\} = \{1, 2, 4, 8, \dots\}$$

Consider the function $f: \mathbb{N} \to [1]$ given by $f(i) = 2^{i-1}$ for all $i \in \mathbb{N}$. Then f is a bijection.

(5 pts) 6. Let $X = \{2, 3, 4, 5, 6, 7, 8\}$. Consider the relation \leq on the set X defined by

 $x \preceq y$ if and only if $\frac{y}{x} = 2^i$ for some $i \in \mathbb{N} \cup \{0\}$

for all $x, y \in X$. You are given that \preceq is a partial order relation. Draw the Hasse diagram of \preceq .

(5+5+5+5 pts) 7. The following proofs are incorrect. Briefly explain the mistake in each of the following proofs.

Theorem. Let A, B, C be sets. If $(A \cap B) \subseteq C$, then $(A - C) \cap (B - C) = \emptyset$.

Proof. We shall prove this statement by proving the contrapositive. Assume that $(A \cap B) \notin C$. Then there exists $a \in A \cap B$ such that $a \notin C$. Since $a \in A \cap B$, we have that $a \in A$ and $a \in B$. It follows from $a \in A$ and $a \notin C$ that $a \in A - C$. Similarly, it follows from $a \in B$ and $a \notin C$ that $a \in B - C$. Therefore, $a \in (A - C) \cap (B - C)$ and hence $(A - C) \cap (B - C) \neq \emptyset$.

Mistake in the proof: The mistake in the proof is that the argument does not prove the contrapositive of the given statement. The contrapositive of the statement is that if $(A - C) \cap (B - C) \neq \emptyset$, then $(A \cap B) \notin C$.

Theorem. For all $i \in \mathbb{Z}$, there exists $j \in \mathbb{Z}$ such that for all $k \in \mathbb{N}$ we have $2^i \cdot 2^j \leq k+1$. **Proof.** Let $i \in \mathbb{Z}$ and $k \in \mathbb{N}$. Choose j = -k - i. Then $j \in \mathbb{Z}$ and

$$2^{i} \cdot 2^{j} = 2^{i} \cdot 2^{-k-i} = 2^{i-k-i} = 2^{-k} = \frac{1}{2^{k}} \le 1 \le k+1$$

Mistake in the proof: The mistake in the proof is that the integer j cannot depend on the natural number k. For each $i \in \mathbb{Z}$, one should find some $j \in \mathbb{N}$ which works for every $k \in \mathbb{N}$ at the same time,

Theorem. Let ~ be the relation on $\mathbb{N} = \{1, 2, 3, ...\}$ defined by

$$x \sim y$$
 if and only if $\frac{y}{x} = 2^i$ for some $i \in$

for all $x, y \in \mathbb{N}$. The relation \sim is reflexive.

Proof. Let $x \in \mathbb{N}$. Assume that $x \sim x$. Then, we have that $x = 1 = 2^0$ and $0 \in \mathbb{Z}$. Therefore, the relation is reflexive.

Mistake in the proof: The mistake in the proof is that the argument assumes the statement $x \sim x$ at the beginning. That $x \sim x$ should be the conclusion of the argument, not the assumption.

Theorem. For any set A, if $\mathcal{P}(A)$ is countable, then A is countable.

Proof. Let A be a set. Assume that $\mathcal{P}(A)$ is countable. Since $A \subseteq \mathcal{P}(A)$ and every subset of a countable set is countable.

Mistake in the proof: The mistake in the proof is that it is not true in general that $A \subseteq \mathcal{P}(A)$.