M E T U Department of Mathematics

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

\qquad
$(5+5+5 p t s) 1$. The parts of this question are unrelated.
a) Let A, B be sets such that $A \subseteq B$. Show that if B is uncountable and A is countable, then $B-A$ is uncountable.

Assume towards a contradiction that B is uncountable and A is countable, and $B-A$ is countable. Since $A \subseteq B$, we have that $B=A \cup(B-A)$. Because the union of two countable sets is countable and, A and $B-A$ are both countable, we have that B is countable, which is a contradiction.
b) Show that the following statement is false:

For all sets A and B, if A and B are uncountable, then $A \cap B$ is uncountable.

We shall give a counterexample to this statement. Choose $A=(0,1)$ and $B=(-1,0)$. Then, we have that $A \sim B \sim \mathbb{R}$ and hence both A and B are uncountable. On the other hand, $A \cap B=\emptyset$, which is countable.
c) Prove that for any set A and B, we have that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Let A and B be sets. We will prove that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
Let $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Then we have that $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, and so $S \subseteq A$ and $S \subseteq B$. It follows from $S \subseteq A$ and $S \subseteq B$ that $S \subseteq A \cap B$, and hence $S \in \mathcal{P}(A \cap B)$.
(5+5+5 pts) 2. Let $X=\{0,1,2,3,4, \ldots\},[0, \infty)=\{x \in \mathbb{R}: 0 \leq x\}$ and $(0,1)=\{x \in \mathbb{R}: 0<x<1\}$.
Consider the function

$$
f: X \times(0,1) \rightarrow[0, \infty)
$$

defined by $f(n, r)=n+r$ for all $(n, r) \in X \times(0,1)$.
a) Show that the function f is injective.

Let (n, r) and (m, s) be elements of $X \times(0,1)$. Assume that $f(n, r)=f(m, s)$. Then we have that $n+r=m+s$ and so $n-m=s-r$. Since m and n are integers, $n-m$ is an integer. Since $0<r, s<1$, we have that $-1<s-r=n-m<1$. This implies that $n-m=0$ and hence $n=m$. Consequently, $s=r$ and so $(n, r)=(m, s)$. This shows that f is injective.
b) Show that the function f is not surjective.

Notice that $0 \in[0, \infty)$. We claim that there exists no $(n, r) \in X \times(0,1)$ such that $f(n, r)=0$ which will show that f is not surjective. Let $(n, r) \in X \times(0,1)$. Then $f(n, r)=n+r>0=0$. Hence $f(n, r) \neq 0$.
c) You are given the fact that there exists an injective function $g:[0, \infty) \rightarrow X \times(0,1)$. Show that $X \times(0,1)$ and $[0, \infty)$ have the same cardinality.

We have proven in (a) that there exists an injection $f: X \times(0,1) \rightarrow[0, \infty)$ and we are given that there exists an injection $g:[0, \infty) \rightarrow X \times(0,1)$. By Cantor-Schröder-Bernstein theorem, there exists a bijection between $X \times(0,1)$ and $[0, \infty)$ which shows that these sets have the same cardinality.
(5 pts) 3. Let A, B, C, D be sets and $f: A \rightarrow B$ and $g: C \rightarrow D$ be functions. Consider the function $\overline{h: A \times C} \rightarrow B \times D$ given by $h(a, c)=(f(a), g(c))$ for all $(a, c) \in A \times C$. Show that if f and g are surjective, then h is surjective.

Assume that f and g are surjective. Let $(b, d) \in B \times D$. Then $b \in B$ and $d \in D$. Since f and g are surjective, there exist $a \in A$ and $c \in C$ such that $f(a)=b$ and $g(c)=d$. Note that $(a, c) \in A \times C$ and $h(a, c)=(f(a), g(c))=(b, d)$. Thus h is surjective.
(5 pts) 4. Using induction, prove that

$$
1+3+5+\ldots+(2 n-1)=n^{2} \text { for all natural numbers } n \geq 2
$$

Base case. We have that $1+(2 \cdot 2-1)=1+3=4=2^{2}$, and hence the claim holds for $n=2$.

Inductive step. Let $n \geq 2$ be an integer. Assume that $1+3+5+\ldots+(2 n-1)=n^{2}$. Then, by adding $2 n+1$ to both sides, we have that

$$
\begin{aligned}
& 1+3+5+\ldots+(2 n-1)+(2 n+1)=n^{2}+(2 n+1) \\
& 1+3+5+\ldots+(2 n-1)+(2(n+1)-1)=(n+1)^{2}
\end{aligned}
$$

and hence the claim holds for $n+1$. It follows from the principle of induction that $1+3+5+\ldots+(2 n-1)$ n^{2} for all natural numbers $n \geq 2$.
$\underline{(10+5} \boldsymbol{p t s}) 5$. Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of natural numbers. Consider the relation $\sim \sim \mathbb{N}$ defined by

$$
x \sim y \quad \text { if and only if } \quad \frac{y}{x}=2^{i} \quad \text { for some } i \in \mathbb{Z}
$$

for all $x, y \in \mathbb{N}$.
a) Show that \sim is an equivalence relation.

Let $x \in \mathbb{N}$. Then we have that $\frac{x}{x}=2^{0}$ and $0 \in \mathbb{Z}$. Thus, by definition, $x \sim x$. Hence, \sim is reflexive.
Let $x, y \in \mathbb{N}$. Assume that $x \sim y$. Then, by definition, $\frac{x}{y}=2^{i}$ for some $i \in \mathbb{Z}$. This implies that $\frac{y}{x}=\frac{1}{2^{i}}=2^{-i}$ and hence $y \sim x$. Therefore, \sim is symmetric.
Let $x, y, z \in \mathbb{N}$. Assume that $x \sim y$ and $y \sim z$. Then, by definition, $\frac{x}{y}=2^{i}$ and $\frac{y}{z}=2^{j}$ for some $i, j \in \mathbb{Z}$. It follows that $\frac{x}{z}=\frac{x}{y} \cdot \frac{y}{z}=2^{i} \cdot 2^{j}=2^{i+j}$. Hence, $x \sim z$ and so \sim is transitive.
a) Construct a bijection from \mathbb{N} to [1].

We have that

$$
[1]=\{n \in \mathbb{N}: 1 \sim n\}=\left\{n \in \mathbb{N}: \exists i \in \mathbb{Z} \frac{n}{1}=2^{i}\right\}=\{1,2,4,8, \ldots\}
$$

Consider the function $f: \mathbb{N} \rightarrow[1]$ given by $f(i)=2^{i-1}$ for all $i \in \mathbb{N}$. Then f is a bijection.
(5 pts) 6. Let $X=\{2,3,4,5,6,7,8\}$. Consider the relation \preceq on the set X defined by

$$
x \preceq y \quad \text { if and only if } \quad \frac{y}{x}=2^{i} \quad \text { for some } i \in \mathbb{N} \cup\{0\}
$$

for all $x, y \in X$. You are given that \preceq is a partial order relation. Draw the Hasse diagram of \preceq.

$\underline{(5+5+5+5 p t s)} 7$. The following proofs are incorrect. Briefly explain the mistake in each of the following proofs.

Theorem. Let A, B, C be sets. If $(A \cap B) \subseteq C$, then $(A-C) \cap(B-C)=\emptyset$.
Proof. We shall prove this statement by proving the contrapositive. Assume that $(A \cap B) \nsubseteq C$. Then there exists $a \in A \cap B$ such that $a \notin C$. Since $a \in A \cap B$, we have that $a \in A$ and $a \in B$. It follows from $a \in A$ and $a \notin C$ that $a \in A-C$. Similarly, it follows from $a \in B$ and $a \notin C$ that $a \in B-C$. Therefore, $a \in(A-C) \cap(B-C)$ and hence $(A-C) \cap(B-C) \neq \emptyset$.
Mistake in the proof: The mistake in the proof is that the argument does not prove the contrapositive of the given statement. The contrapositive of the statement is that if $(A-C) \cap(B-C) \neq \emptyset$, then $(A \cap B) \nsubseteq C$.

Theorem. For all $i \in \mathbb{Z}$, there exists $j \in \mathbb{Z}$ such that for all $k \in \mathbb{N}$ we have $2^{i} \cdot 2^{j} \leq k+1$.
Proof. Let $i \in \mathbb{Z}$ and $k \in \mathbb{N}$. Choose $j=-k-i$. Then $j \in \mathbb{Z}$ and

$$
2^{i} \cdot 2^{j}=2^{i} \cdot 2^{-k-i}=2^{i-k-i}=2^{-k}=\frac{1}{2^{k}} \leq 1 \leq k+1
$$

Mistake in the proof: The mistake in the proof is that the integer j cannot depend on the natural number k. For each $i \in \mathbb{Z}$, one should find some $j \in \mathbb{N}$ which works for every $k \in \mathbb{N}$ at the same time.

Theorem. Let \sim be the relation on $\mathbb{N}=\{1,2,3, \ldots\}$ defined by

$$
x \sim y \quad \text { if and only if } \quad \frac{y}{x}=2^{i} \quad \text { for some } i \in \mathbb{Z}
$$

for all $x, y \in \mathbb{N}$. The relation \sim is reflexive.
Proof. Let $x \in \mathbb{N}$. Assume that $x \sim x$. Then, we have that $\frac{x}{x}=1=2^{0}$ and $0 \in \mathbb{Z}$. Therefore, the relation is reflexive.
Mistake in the proof: The mistake in the proof is that the argument assumes the statement $x \sim x$ at the beginning. That $x \sim x$ should be the conclusion of the argument, not the assumption.

Theorem. For any set A, if $\mathcal{P}(A)$ is countable, then A is countable.
Proof. Let A be a set. Assume that $\mathcal{P}(A)$ is countable. Since $A \subseteq \mathcal{P}(A)$ and every subset of a countable set is countable, A is countable.
Mistake in the proof: The mistake in the proof is that it is not true in general that $A \subseteq \mathcal{P}(A)$.

