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Abstract. These are the lecture notes of a one-week course I taught at the

Nesin Mathematics Village in Şirince, İzmir, Turkey during Summer 2019. The

aim of the course was to introduce ultrafilters, prove some fundamental facts
and cover various constructions and results in algebra, model theory, topology

and social choice theory that use ultrafilters.
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The main purpose of this course is to introduce ultrafilters and their basic ap-
plications in various fields of mathematics. This course is intended for third and
fourth year undergraduate students and beginning graduate students. Although
the necessary background from algebra, topology, set theory and model theory was
briefly reviewed in class, it is not included in these lectures notes. We refer the
reader to [Hun80], [Mun00], [Jec03], [SS17] and [Hod93] for the basic definitions
and facts necessary for these lecture notes.

1. Big sets and small sets

In this section, we shall introduce ultrafilters on sets, prove some basic facts
about them and show their existence.

Let X be a non-empty set. A filter on the set X is a collection of sets F ⊆ P(X)
such that

• ∅ /∈ F and X ∈ F ,
• if A ∈ F and A ⊆ B ⊆ X, then B ∈ F , and
• if A ∈ F and B ∈ F , then A ∩B ∈ F .

The most basic example of a filter is the trivial filter F = {X}. For any non-empty

subset X̂ ⊆ X, the collection F = {A ⊆ X : X̂ ⊆ A} is also a filter which is called
the principal filter generated by X.

We shall next make some observations about filters which immediately follow
from the definition. The intersection of a collection of filters on X is also a filter
on X and the union of a collection of filters which are pairwise ⊆-comparable is
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a filter on X. Filters, being closed under intersection of two sets, have the finite
intersection property1. It turns out that collections with finite intersection property
can be extended to filters as well.

Proposition 1. Let X be a non-empty set and C ⊆ P(X) be a non-empty set with
the finite intersection property. Then there exists a filter F ⊇ C on X.

Proof. It is an exercise to the reader to check that the collection

F = {A : ∃n ∈ N+ ∃C1, C2, . . . , Cn ∈ C C1 ∩ C2 ∩ . . . Cn ⊆ A}
is a filter on X containing C as a subset. �

A filter U on the set X is said to be an ultrafilter2 if it satisfies that

• A ∈ U or X−A ∈ U for every A ∈ P(X).

An ultrafilter on a set can be considered as a tool to split the power set of that set
into two: “Big sets” and “small sets”. Big sets are those that are in the ultrafilter3.
Indeed, in order for the reader to understand this motivation, we expect the reader
to check that an ultrafilter U on a set X canonically induces a finitely additive
measure µU : P(X)→ {0, 1} and vice versa.

Let X be a non-empty set and x ∈ X. Then, since x ∈ A or x /∈ A for every
A ⊆ X, the principal filter generated by {x} is an ultrafilter and is called the
principal ultrafilter generated by x. It is also clear that any ultrafilter which is also
principal has a generating set that is a singleton and has to be of this form. Before
we proceed, let us prove a basic but important fact.

Proposition 2. Any ultrafilter on a non-empty finite set is principal.

Proof. Let X be a non-empty finite set and U be an ultrafilter. Consider the set
A =

⋂
U∈U U . Since X is finite, so is the ultrafilter U . It then follows from the

properties of a filter that A ∈ U and hence A 6= ∅. (Up to now, we have only used
that U is a filter and indeed shown that any filter on a non-empty set is principal
whose generating set is the intersection of all sets in the filter.)

Let a ∈ A. Being an ultrafilter, we know that either {a} ∈ U or X − {a} ∈ U .
If it were the case that X− {a} ∈ U , then we would have a ∈ A ⊆ X− {a} which
is a contradiction. Thus, {a} ∈ U . We claim that U is generated by a. If it were
not, then there would be B ∈ U such that {a} * B in which case {a} ∩B = ∅ ∈ U
which is a contradiction. Therefore, U is generated by a and is principal. �

2. Fantastic beasts and where to find them

What about ultrafilters on infinite sets? Are there any non-principal ultrafilters
on infinite sets? As we shall see soon, the answer to this question is affirmative.
However, we will not be able to “explicitly see” any of these non-principal ultra-
filters. In order to prove the existence of non-principal ultrafilters, we need to
introduce a very special filter.

1A collection C of sets is said to have the finite intersection property if for every n ∈ N+ and
C1, C2, . . . , Cn we have that C1 ∩ C2 ∩ · · · ∩ Cn 6= ∅.

2Our definition corresponds to the special case of that definition where one considers the
Boolean algebra (P(X),∩,∪, ∅,X)

3The notion of a filter has a dual notion, namely, the notion of an ideal. Ideals contain the
empty set, are closed ⊆-downwards and with respect to finite unions. Small sets are those that

are in the corresponding ideal.
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Let X be an infinite set. The collection F = {A ⊆ X : X−A is finite} consisting
of cofinite subsets of X is a filter called the Fréchet filter on X. The Fréchet filter
is clearly non-principal. As will be shown in the next proposition, whether an
ultrafilter is non-principal is determined by whether it contains the Fréchet filter
as a subset.

Proposition 3. Let U be an ultrafilter on an infinite set X. Then U is non-
principal if and only if it contains the Fréchet filter.

Proof. Assume that U is principal, say, U = {A ⊆ X : a ∈ A}. Then, since {a} ∈ U ,
we have that X − {a} /∈ U . On the other hand, X − {a} is cofinite. Thus U does
not contain the Fréchet filter.

Assume that U does not contain the Fréchet filter. Then there exists a cofinite
A ⊆ X such that A /∈ U and hence X − A ∈ U . Enumerate the set X − A, say,
X − A = {x1, x2, . . . , xn}. If it were that X − {xi} ∈ U for every 1 ≤ i ≤ n, then
we would have

n⋂
i=1

X− {xi} = X− {x1, x2, . . . , xn} ∈ U

which is a contradiction, as the intersection of this set with X−A is empty. There-
fore, there exists 1 ≤ i ≤ n such that X − {xi} /∈ U and hence {xi} ∈ U . Then, as
in the proof of Proposition 2, we necessarily have {A ⊆ X : xi ∈ A} = U . �

Thus, in order to show the existence of non-principal ultrafilters, we just need
to find one that contains the Fréchet filter. How are we supposed to do that?
Let us take the Fréchet filter on an infinite set X. The Fréchet filter is clearly
not an ultrafilter. We can fix this by extending the Fréchet filter as transfinitely
going through all elements of P(X) and appropriately adding each element or its
complement. Although such processes are usually done by transfinite recursion, we
are not expecting every person taking this course to be familiar with transfinite
recursion and hence we will handle this procedure using Zorn’s lemma.

Theorem 1 (Tarski). Let X be a non-empty set and F̂ ⊆ P(X) be a filter. Then

there exists an ultrafilter U on X such that F̂ ⊆ U .

Proof. Let P = {F : F is a filter and F̂ ⊆ F} and consider the partially ordered
set (P,⊆). Given a chain C ⊆ P, as pointed out before, the set

⋃
C is a filter on X

containing F̂ and is an upper bound for C. Therefore, (P,⊆) satisfies the hypotheses
of Zorn’s lemma and has a maximal element, say, U is a maximal element of (P,⊆).

We claim that U is indeed an ultrafilter. Assume towards a contradiction that
it is not. Then there exists A ⊆ X such that A /∈ U and X− A /∈ U . Consider the
collection C = U ∪ {A}. We claim that C has the finite intersection property. Let
X1, X2, . . . , Xn ∈ C. We split into cases.

• Case 1: Assume that Xi ∈ U for every 1 ≤ i ≤ n. Then X1∩X2∩· · ·∩Xn ∈
U ⊆ C since U has the finite intersection property.

• Case 2: Assume that Xi /∈ U for some 1 ≤ i ≤ n. By replacing these sets
without changing their intersection, we can assume without loss of gener-
ality that X1 = A and X2, . . . , Xn ∈ U . As U has the finite intersection
property, we have that X2 ∩ · · · ∩ Xn ∈ U . It follows that any super-
set of X2 ∩ · · · ∩ Xn is in U . On the other hand, X − A /∈ U and hence
X2 ∩ · · · ∩Xn * X−A, that is, A ∩X2 ∩ · · · ∩Xn 6= ∅.
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Therefore C has the finite intersection property and can be extended to a filter
F ⊇ C ⊇ U which contradicts the maximality of U .4 �

We are now ready to construct a non-principal ultrafilter. Let X be a non-empty
infinite set. By Theorem 1, there exists an ultrafilter U on X containing the Fréchet
filter on X. It follows from Proposition 3 that U is non-principal.

Objects constructed via Zorn’s lemma usually tend to be “pathological”. One
can ask whether or not it is possible to construct a non-principal ultrafilter without
the use of the axiom of choice or its equivalents. The answer to this question is
negative. While this fact is too advanced to be covered in this course, we can briefly
describe the reasoning behind it:

We can identify P(N) with the Cantor space 2N through characteristic functions.
There is a Borel probability measure on 2N which is induced from the product
measure where each component 2 = {0, 1} has the coin-flipping probability measure.
An application of the Kolmogorov 0-1 law to the probability space 2N shows that
any measurable subset of 2N that is invariant under finite changes5 has to be of
measure 0 or 1. Any non-principal ultrafilter on N contains the Fréchet filter and
closed under finite intersections and consequently, is invariant under finite changes.
If a non-principal ultrafilter on N were measurable as a subset of 2N, it would have
to have measure 0 or 1. However, the bit-flipping transformation, which takes
an ultrafilter to its complement, is a measure-preserving transformation of 2N and
hence an ultrafilter has to have measure 1/2 as a subset of 2N. Therefore, any non-
principal ultrafilter is necessarily non-measurable as a subset of 2N. Assuming the
relative consistency of an inaccessible cardinal with ZFC, Robert Solovay proved
in his celebrated work [Sol70] that the existence of a non-measurable subset of
2N cannot be proven using ZF+DC. Hence, in order to show the existence of a
non-principal ultrafilter on N, one should use “more choice” than DC.

Having shown that non-principal ultrafilters on an infinite set exist, the next
obvious question is: How many such ultrafilters are there? For any set X with
cardinality κ, the cardinality of the set of ultrafilters on X is trivially less than or
equal to the cardinality of P(P(X)) which is 22

κ

. It turns out that, for an infinite
set X, this upper bound is always achieved and there are exactly 22

κ

non-principal
ultrafilters on X.

In order to prove this result, we shall need a result of Hausdorff on independent
families which is important on its own. Let us recall the notion of an independent
family. Given a set X, a collection C ⊆ P(X) is called an independent family on X
if

X1 ∩X2 ∩ · · · ∩Xn ∩ (X− Y1) ∩ (X− Y2) ∩ · · · ∩ (X− Ym) 6= ∅

for every distinct X1, X2, . . . , Xn, Y1, Y2, . . . , Ym ∈ C. The next lemma shows that
independent families can get as big as possible.

Lemma 1 (Hausdorff, Fichtenholz-Kantorovich). Let X be an infinite set with
cardinality κ. Then there exists an independent family C on X of size 2κ.

4The reader should be aware of that the argument in the second part of this proof in fact shows
that ⊆-maximal filters are ultrafilters. The converse proposition also holds. Thus, a filter is an
ultrafilter if and only if it is ⊆-maximal.

5A subset C ⊆ P(N) is said to be invariant under finite changes if C ∈ C, A ⊆ N and |C∆A| <∞
imply that A ∈ C.
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Proof. Consider the set

X̂ = {(F,F) : F ∈ Pfin(X) and F ∈ Pfin(Pfin(X))}

It is easily seen that |X̂| = |X| = κ and that, using a fixed bijection between these
sets, one can obtain an independent family on X from an independent family on
X of the same size. Thus it suffices to find an independent family of size 2κ on X̂.
For each subset A ⊆ X, set

XA = {(F,F) ∈ X̂ : F ∩A ∈ F}
Note that if A,B ⊆ X and x ∈ A−B, then we have that ({x}, {{x}}) ∈ XA−XB . It

follows that XA 6= XB whenever A 6= B. Thus the collection Ĉ = {XA : A ∈ P(X̂)}
has size 2κ. We claim that Ĉ is an independent family on X̂.

Let XA1 , XA2 , . . . , XAn , XB1 , XB2 , . . . , XBm ∈ Ĉ be distinct. For each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, choose an element xij ∈ Ai∆Bj . Consider the finite set

K = {xij : 1 ≤ i ≤ n and 1 ≤ j ≤ m}
Set F = {K ∩ Ai : 1 ≤ i ≤ n}. Then, by the choice of xij ’s, we have that
(K,F) ∈ XAi −XBj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. It follows that

XA1
∩XA2

∩ · · · ∩XAn ∩ (X̂−XB1
) ∩ (X̂−XB2

) ∩ · · · ∩ (X̂−XBm) 6= ∅

Thus Ĉ is an independent family on X̂. �

We are now ready to prove the final result of this section.

Theorem 2 (Posṕı̆sil). Let X be an infinite set with cardinality κ. Then there
exist 22

κ

ultrafilters on X.

Proof. By Lemma 1, there exists an independent family C ⊆ P(X) of size 2κ. Let
f : C → {0, 1} be a function and consider the collection

Bf = {A ∈ C : f(A) = 1} ∪ {X−A ∈ C : f(A) = 0}
Since C is an independent family, Bf has the finite intersection property and can be
extended to an ultrafilter Uf by Proposition 1 and Theorem 1. It is easily seen that,
if f, g ∈ C{0, 1} are distinct, then there exists A ∈ C such that f(A) 6= g(A) in which
case A belongs to exactly one of Bf and Bg and X − A belongs to the other one.
It follows that Uf 6= Ug whenever f 6= g and hence the collection {Uf : f ∈ C{0, 1}}
of ultrafilters on X has cardinality |C{0, 1}| = 22

κ

�

3. Ultraproducts and  Los’s theorem

In this section, we shall learn a very important model-theoretic construction
that is frequently used in algebra and model theory, namely, the ultraproduct of
a collection of structures. For the rest of this section, fix a language L whose sets
of functions symbols, relation symbols and constant symbols will be shown by LF ,
LR and LC respectively.

Let I be an infinite set, U be an ultrafilter on I and {Mi : i ∈ I} be a set of
L-structures, say, we have Mi = (Mi, {fMi

s }s∈LF , {RMi
s }s∈LR , {cMi

s }s∈LC ). Con-
sider the relation ∼ defined on

∏
i∈IMi given by

(xi)i∈I ∼ (yi)i∈I if and only if {i ∈ I : xi = yi} ∈ U
In other words, two sequences in

∏
i∈IMi are related under ∼ if and only if they

agree on a “large” set. A moment’s thought reveals that∼ is an equivalence relation.
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We shall now create a structure whose underlying set is the quotient set

M =
∏
i∈I

Mi/ ∼

In order to do this, we need to appropriately interpret each symbol in L onM. For
notational simplicity, the equivalence class [(xi)i∈I ]∼ will be denoted by (xi)i∈I .
For every function symbol f ∈ LF , we define

fM
(
(xi)i∈I , (yi)i∈I , . . . , (wi)i∈I

)
=
(
fMi(xi, yi, . . . , wi)

)
i∈I

We claim that the relation fM defined above is well-defined and hence is indeed a
function.

Lemma 2. fM is well-defined.

Proof. We shall assume throughout the proof that f is a binary function symbol for,
otherwise, there would be too many indices around creating ugliness and confusion.

Let (xi)i∈I , (x
′
i)i∈I , (yi)i∈I , (yi)i∈I ∈

∏
i∈IMi be such that (xi)i∈I = (x′i)i∈I and

(yi)i∈I = (y′i)i∈I . By definition, this means that {i ∈ I : xi = x′i} ∈ U and
{i ∈ I : yi = y′i} ∈ U . As U is closed under finite intersections, we have that
{i ∈ I : (xi, yi) = (x′i, y

′
i)} ∈ U . As U is closed upwards, we have that

{i ∈ I : (xi, yi) = (x′i, y
′
i)} ⊆ {i ∈ I : fMi(xi, yi) = fMi(x′i, y

′
i)} ∈ U

and hence fM((xi)i∈I) =
(
fMi(xi)

)
i∈I =

(
fMi(x′i)

)
i∈I = fM((x′i)i∈I). Therefore

fM is well-defined. �

For every relation R ∈ LF , we define(
(xi)i∈I , (yi)i∈I , . . . , (wi)i∈I

)
∈ RM ⇔ {i ∈ I : (xi, yi, . . . , wi) ∈ RMi} ∈ U

That is, if the relations RMi componentwise hold on a “large” set, then RM holds
between the elements of M defined by the corresponding sequences. As before,
whether or not RM holds between elements of M is independent of the choice of
representative sequences of these elements. The reader is expected to check this
fact. For every constant symbol c ∈ LC , we define

cM = (cMi)i∈I

The structure ∏
i∈I
Mi/U =

(
M, {fMs }s∈LF , {RMs }s∈LR , {cMs }s∈LC

)
is called the ultraproduct of {Mi}i∈I with respect to U . In the case that Mi = N
for all i ∈ I for a fixed L-structure N , the ultraproduct

∏
i∈I N/U is called the

ultrapower of N with respect to U .
Next shall be proven a remarkable theorem of  Los, which states that a first-

order L-sentence holds in an ultraproduct if and only if it componentwise holds on
a “large” set.

Theorem 3 ( Los’s theorem). Let ϕ(α1, . . . , αn) be a first-order L-formula with n

free variables and let (x1i )i∈I , . . . , (x
n
i )i∈I ∈M. Then∏

i∈I
Mi/U |= ϕ((x1i )i∈I , . . . , (x

n
i )i∈I) ⇔ {i ∈ I :Mi |= ϕ(x1i , . . . , x

n
i )} ∈ U
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Proof. We shall prove this by induction on the complexity of the formulas. As the
base case, one should first show that the statement of the theorem holds for all
atomic formulas and for all n ∈ N. It is an (pedagogically important) exercise to
the reader to prove this fact by induction. We continue the proof assuming that
the statement has been proven for all atomic formulas and for all n ∈ N.

Let (x1i )i∈I , . . . , (x
n
i )i∈I ∈M and let ψ(α1, . . . , αn) be a formula which is of the

form ¬ϕ(α1, . . . , αn). As inductive hypothesis, assume that the statement holds for
ϕ(α1, . . . , αn). Then, by definition, we have that∏

i∈I
Mi/U |= ψ((x1i )i∈I , . . . , (x

n
i )i∈I)⇔

∏
i∈I
Mi/U |= ¬ϕ((x1i )i∈I , . . . , (x

n
i )i∈I)

⇔
∏
i∈I
Mi/U 2 ϕ((x1i )i∈I , . . . , (x

n
i )i∈I)

⇔ {i ∈ I :Mi |= ϕ(x1i , . . . , x
n
i )} /∈ U

⇔ {i ∈ I :Mi 2 ϕ(x1i , . . . , x
n
i )} ∈ U

⇔ {i ∈ I :Mi |= ¬ϕ(x1i , . . . , x
n
i )} ∈ U

⇔ {i ∈ I :Mi |= ψ(x1i , . . . , x
n
i )} ∈ U

Now, let (x1i )i∈I , . . . , (x
n
i )i∈I ∈ M and let ψ(α1, . . . , αn) be a formula which is

of the form ϕ ∧ χ.6 As inductive hypothesis, assume that the statement holds for
both ϕ and χ. Then, we have that∏

i∈I
Mi/U |= ψ((x1i )i∈I , . . . , (x

n
i )i∈I) ⇔

∏
i∈I
Mi/U |= ϕ ∧ χ

⇔
∏
i∈I
Mi/U |= ϕ and

∏
i∈I
Mi/U |= χ

⇔ {i ∈ I :Mi |= ϕ} ∈ U
and

{i ∈ I :Mi |= χ} ∈ U
⇔ {i ∈ I :Mi |= ϕ and Mi |= χ} ∈ U
⇔ {i ∈ I :Mi |= ϕ ∧ χ} ∈ U
⇔ {i ∈ I :Mi |= ψ(x1i , . . . , x

n
i )} ∈ U

Finally, let (x1i )i∈I , . . . , (x
n
i )i∈I ∈M and let ψ(α1, . . . , αn) be a formula which is of

the form ∃α ϕ(α, α1, . . . , αn). As inductive hypothesis, assume that the statement

holds for ϕ((y0i )i∈I , . . . , (yni )i∈I) and for all (y0i )i∈I , . . . , (yni )i∈I ∈ M. We shall

show that the statement holds for ψ((x1i )i∈I , . . . , (x
n
i )i∈I).

Assume that
∏
i∈IMi/U |= ψ((x1i )i∈I , . . . , (x

n
i )i∈I). Then, by definition, there

exists (x0i )i∈I ∈ M such that
∏
i∈IMi/U |= ϕ((x0i )i∈I , (x

1
i )i∈I , . . . , (x

n
i )i∈I). It

follows from the inductive hypothesis that {i ∈ I : Mi |= ϕ(x0i , x
1
i , . . . , x

n
i )} ∈ U .

This implies that {i ∈ I : Mi |= ∃α ϕ(α, x1i , . . . , x
n
i )} ∈ U and hence we have

{i ∈ I :Mi |= ψ(x1i , . . . , x
n
i )} ∈ U .

6We shall supress the free variables in these subformulas to save space.
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For the converse direction, assume that {i ∈ I : Mi |= ψ(x1i , . . . , x
n
i )} ∈ U .

Then, A = {i ∈ I :Mi |= ∃α ϕ(α, x1i , . . . , x
n
i )} ∈ U . Using the axiom of choice,

• For i ∈ A, choose an element x0i ∈Mi such that Mi |= ϕ(x0i , x
1
i , . . . , x

n
i ).

• For i /∈ A, choose x0i to be an arbitrary element of Mi.

Then, (x0i )i∈I ∈M and moreover, by construction, we have that

{i ∈ I :Mi |= ϕ(x0i , x
1
i , . . . , x

n
i )} ∈ U

It follows from the inductive hypothesis that∏
i∈I
Mi/U |= ϕ((x0i )i∈I , (x

1
i )i∈I , . . . , (x

n
i )i∈I)

and hence ∏
i∈I
Mi/U |= ∃α ϕ(α, (x1i )i∈I , . . . , (x

n
i )i∈I)

This completes the proof that the statement holds for ψ((x1i )i∈I , . . . , (x
n
i )i∈I). Since

the statement holds for atomic formulas and it holds for a formula whenever it holds
for its subformulas, it follows by induction on the complexity of formulas that the
statement holds for all formulas. �

As a consequence of  Los’s theorem, a structure and its ultrapowers are elementar-
ily equivalent. However, while they satisfy the same first-order sentences, structures
and their ultrapowers may behave in vastly different ways. To illustrate this, we
shall next construct a field of hyperreal numbers.

Let L = {+, ∗, 0, 1, <} be the language of ordered fields and let U be a non-
principal ultrafilter on N. Consider the ultrapower

∗R =
∏
i∈N

R/U

On the one hand, since the cartesian product
∏
i∈N R has cardinality c, we have

that |∗R| ≤ c. On the other hand, the map given by x 7→ (x, x, . . . ) is injective7

and hence c ≤ |∗R|. It follows that |∗R| = c. By  Los’s theorem, ∗R is elementarily
equivalent to the ordered field of real numbers and hence is an ordered field itself.
So far, we have constructed an ordered field of cardinality c which, from the point
of view of first-order statements, behaves exactly like the real numbers.

Set ε =
(
1
1 ,

1
2 ,

1
3 , . . .

)
∈ ∗R. Let r ∈ R+ and consider (r, r, r . . . ) ∈ ∗R. As R is a

Archimedean field, there exists K ∈ N such that 1
K < r. Since U is non-principal,

it contains the Fréchet filter and hence

{i ∈ N : K ≤ i} ⊆
{
i ∈ N : R |= 1

i+ 1
< r

}
∈ U

Thus, by  Los’s theorem, we have that ε < (r, r, r . . . ) for every r ∈ R+. In other
words, the ordered field ∗R contains infinitesimal elements and is non-Archimedean.
One can similarly show that the multiplicative inverse of ε which is ε−1 = (1, 2, 3, . . . )
is an “infinite” number in the sense that 1 < ε−1, 1 + 1 < ε−1, 1 + 1 + 1 < ε−1

and so on where 1 = (1, 1, 1, . . . ). The reader may find it intriguing that one can

7In general, by  Los’s theorem, the diagonal map x 7→ (x, x, x, . . . ) is an elementary embedding
from a structure into any of its ultrapowers.
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carry out all of Calculus using the hyperreal field via the help of infinitesimal just
as Newton and Leibniz originally imagined.8

4. Topologizing ultrafilters and Stone-C̆ech compactification

In general topology, there are various ways to “compactify” a topological space,
that is, to densely embed a topological space into a compact topological space.
In this section, we shall learn one of these compactification methods, namely, the
Stone-C̆ech compactification. While there are several ways to carry out the con-
struction of this compactification for arbitrary spaces, we shall focus on the con-
struction of the Stone-C̆ech compactification of a discrete space using ultrafilters.

Fix X be a discrete topological space and let

βX = {U : U is an ultrafilter on X}

For any subset A ⊆ X, consider the set

OA = {U ∈ βX : A ∈ U}

It is straightforward to check that OA ∩OB = OA∩B and hence the collection

B = {OA : A ∈ P(X)} ⊆ P(βX)

is closed under finite intersection. Consequently, it is a base for a topology on βX,
namely, the topology τ whose open sets are unions of sets of the form OA. We shall
next explore some basic properties of the topological space (βX, τ).

Theorem 4. βX is a compact Hausdorff space.

Proof. Let U ,V be distinct points in βX. Then there exists A ⊆ X such that
A ∈ U − V and X−A ∈ V − U . It follows that U ∈ OA and V ∈ OX−A. Therefore
βX is Hausdorff.

To show that βX is compact, we shall use the following characterization of
compactness: A Hausdorff space is compact if and only if every collection of closed
sets satisfying the finite intersection property has non-empty intersection.

We claim that any collection A with the finite intersection property which con-
sists of sets of the form OA has non-empty intersection. Let A be such a family, say,
A = {OA : A ∈ D} for some set D ⊆ P(X). Now, for any finite subset F ⊆ D, by
assumption, there exists U ∈

⋂
A∈F OA and hence

⋂
A∈F A ∈ U , which implies that⋂

A∈F A 6= ∅. Therefore, D has the finite intersection property. By Proposition 1
and Theorem 1, there exists an ultrafilter V ⊇ D on X. Then, by definition, we
have that V ∈

⋂
A∈D OA =

⋂
A. This completes the proof of the claim.

Now, observe that βX − OA = OX−A and hence the collection of sets of the
form OA are also a base for closed sets, that is, any closed set is the intersection of
such sets. Thus, if we take a collection Â of closed sets with the finite intersection
property, we can find a collection A with the finite intersection property which
consists of sets of the form OA such that

⋂
Â =

⋂
A. However, we have just proven

that
⋂
A =6= for such families. Thus, every collection of closed sets satisfying the

finite intersection property has non-empty intersection and hence βX is compact.
�

Theorem 5. The collection of clopen sets of βX is {OA : A ∈ P(X)}.

8The curious reader may Google the term “non-standard analysis”.
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Proof. As observed in the previous proof, we have that βX − OA = OX−A for all
A ⊆ X and hence OA is clopen for every A ⊆ X. Now, let C ⊆ βX be a clopen
set. Then, A = {OA : A ⊆ X and OA ⊆ C} is an open cover of C as OA’s form
a base for the topology of βX. As C is closed and βX is compact by Theorem 4,
C is compact as well and hence there exists finitely many A1, A2, . . . , An ⊆ X such
that C =

⋃n
i=1OAi = OA1∪A2∪···∪An . �

For the rest of this section, given x ∈ X, the principal ultrafilter {A ⊆ X : x ∈ A}
will be denoted by Ux. It is easily seen that x 6= y implies that Ux 6= Uy.

Theorem 6. The collection {Ux ∈ βX : x ∈ X} of principal ultrafilters on X is
precisely the set of isolated points of βX and is dense in βX.

Proof. Let x ∈ X. Then O{x} = Ux and hence Ux is an isolated point of βX. Now,
let U be an isolated point of βX. Then, by definition, there exists a non-empty
A ⊆ X such that OA = {U}. Let x ∈ A. Then {x} ⊆ A ∈ Ux and so Ux ∈ OA
which implies that Ux = U .

To see that {Ux ∈ βX : x ∈ X} is dense in βX, we need to show that this set
intersects every non-empty open set. Let O ⊆ βX be a non-empty open set. Then,
by definition, there exists a non-empty A ⊆ X such that OA ⊆ O. Let x ∈ A. Then
{x} ⊆ A ∈ Ux and hence Ux ∈ OA ⊆ O, which completes the proof. �

Before we prove the main result of this section, let us recall some definitions.
Given a completely regular topological space X, a Stone-C̆ech compactification of
X is a compact Hausdorff space Z together with an embedding ϕ : X → Z such
that ϕ[X] is dense in Z and for every compact Hausdorff space Y and for every
continuous map f : X → Y there exists a continuous map g : Z → Y with
f = g ◦ϕ. It is not difficult to check that the Stone-C̆ech compactification is unique
up to homeomorphism leaving the image ϕ[X] is fixed.

Theorem 7. βX is the Stone-C̆ech compactification of the discrete space X, where
X is embedded into βX via the map ϕ : X→ βX given by x 7→ Ux.

Proof. In Theorem 4 and Theorem 6, we have already proven that βX is a compact
Hausdorff space and that ϕ[X] is dense in βX.

It remains to check that βX has the aforementioned lifting property. Let Y be
a compact Hausdorff space and f : X → Y be a continuous map. Define a map
g : βX→ Y as follows: For every U ∈ βX, choose some element

g(U) ∈
⋂
A∈U

f [A]

where f [A] denotes the closure of the set f [A]. We claim that g is continuous and
satisfies f = g ◦ ϕ. To see the latter, let x ∈ X. Then ϕ(x) = {x} ∈ Ux and so

g(ϕ(x)) = g(Ux) ∈
⋂
A∈Ux

f [A] ⊆ f [{x}] = {f(x)} = {f(x)}

which means that g(ϕ(x)) = f(x).
We now show that g is continuous. Let O ⊆ Y be an open set. We wish to

show that g−1[O] is open. If O∩ im(g) = ∅, then g−1[O] = ∅ which is clearly open.
Assume that O ∩ im(g) 6= ∅, say, U ∈ g−1[O] for some U ∈ βX. Since Y is regular,
we can find some open set V ⊆ O such that g(U) ∈ V ⊆ V ⊆ O. Set A = f−1[V ].
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We claim that A ∈ U . Assume towards a contradiction that A /∈ U . Then
X−A ∈ U and, by the definition of g, we have that

g(U) ∈
⋂
S∈U

f [S] ⊆ f [X−A]

But then, the definition of closure and V being a neighborhood of g(U) together
that V ∩ f [X−A] 6= ∅, which is a contradiction as V = f−1[A]. Therefore A ∈ U .

Since A ∈ U , we have that U ∈ OA. We claim that OA ⊆ g−1[O] which would
complete the proof that O is open. Assume towards a contradiction that there
exists V ∈ OA such that g(V) /∈ O. Then, Y − V is an open neighborhood of g(V).
On the other hand, by the definition of g, we have that

g(V) ∈
⋂
S∈V

f [S] ⊆ f [A]

and hence Y − V ∩ f [A] 6= ∅, contradicting that A = f−1[V ]. This completes the

proof that g is continuous. Therefore, βX is the Stone-C̆ech compactification of
X. �

The study of the Stone-C̆ech compactification of discrete spaces, such as βN,
has been an active area of research which has important applications. The curious
reader may check [HS12] which is just devoted to this topic.

5. Ultralimits and amenability of Z

(To be added later.)

6. Principal ultrafilters and dictators

(To be added later.)
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