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The main purpose of these lecture notes is to prove one of the most counter-
intuitive results in mathematics, namely, the Banach-Tarski paradox1 which states
that

“A unit ball in R3 can be decomposed into finitely many disjoint
pieces and reassembled into two unit balls using only translations
and rotations of R3.”

We shall indeed prove the stronger version of the Banach-Tarski theorem which
states that any two bounded subsets of R3 with non-empty interior can be trans-
formed into each other via rotations and translations after being decomposed into
finitely many pieces. We will also learn about various other geometrical “para-
doxes”. Finally, after an examination of the proof of the Banach-Tarski theorem,
we shall introduce a property of groups that does not allow such paradoxical decom-
positions, namely, the notion of amenability, and prove some basic fact regarding
amenable groups.

1We would like to warn the reader who is learning about this for the first time that the Banach-

Tarski paradox is not really a “paradox” in the sense that it leads to a contradiction. It is called
a paradox because of its counter-intuitive nature. In order to avoid any confusion, from now on,

we will call it the Banach-Tarski theorem.

1
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These lecture notes2 mainly follow the excellent book The Banach-Tarski paradox
by Stan Wagon. The reader who is interested in a comprehensive treatment on
geometric paradoxes is strongly advised to read Wagon’s book.

1. A mathemagical trick

1.1. The Pledge. What does it mean for a mathematical object to be “decom-
posed into finitely many pieces and reassembled into another one”? We begin our
discussion by giving a precise answer to this question in a mathematical context.

Definition 1. Let G be a group acting on a set X. Two subsets A,B ⊆ X are said
to be G-equidecomposable if there exist sets A1, . . . , An ⊆ A and B1, . . . , Bn ⊆ B
and group elements g1, . . . , gn ∈ G such that

• A =
⋃n
i=1Ai and B =

⋃n
i=1Bi,

• Ai ∩Aj = ∅ = Bi ∩Bj for all 1 ≤ i < j ≤ n, and
• gi[Ai] = Bi for all 1 ≤ i ≤ n.

In other words, A and B are G-equidecomposable if A can be partitioned into
finitely many pieces whose images under the action of G form a partition of B.
Intuitively speaking, the action of the group G is our “toolbox”, that is, the set of
functions that will be used to move points of the “space” X.

In this terminology, we may restate the Banach-Tarski theorem as follows: A unit
ball in R3 and the union of two disjoint unit balls in R3 are G-equidecomposable,
where G is the subgroup of the isometry group of R3 generated by translations and
rotations.

Next will be shown that if we have “too many” arbitrary functions in our tool-
box, then the notion of G-equidecomposability does not produce interesting results.
More specifically, we have the following.

Proposition 1. Let X be an infinite set. For every Y ⊆ X with |Y | = |X|, we
have that Y and X are Sym(X)-equidecomposable.

Proof. Let Y ⊆ X be such that |Y | = |X|. Since |Y | = |Y |+|Y |, we can find disjoint
sets A,B ⊆ Y with |A| = |B| = |Y | and AtB = Y . Fix some bijection f : Y → X
and set C = f [A] and D = f [B]. It is easily seen that |X − A| = |X| = |X − C|
and hence there exists a bijection φ : X → X such that φ � A = f � A. Similarly,
we have |X − B| = |X| = |X −D| and hence there exists a bijection ψ : X → X
such that ψ � B = f � B. Since A tB = Y and φ[A] t ψ[B] = X, we have that X
and Y are Sym(X)-equidecomposable (via 2 pieces.) �

Therefore, the Banach-Tarski theorem would not be interesting if one were al-
lowed to use all functions in Sym(R3). What makes the Banach-Tarski theorem
interesting (and counter-intuitive) is the fact that it is achieved via rotations and
translations of R3 which are known to preserve length, area and volume.

For the rest of this subsection, let G be a group acting on a set X. Consider
the relation ∼G on the set P(X) defined by A ∼G B if and only if A and B are
G-equidecomposable. The following is easily observed.

2The intended audience of this course was undergraduate mathematics students with basic

background in group theory. While the lectures were self-contained and the necessary background
regarding group actions, matrix groups and topology of Euclidean space was introduced in class,

it is not included in the lecture notes.
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Lemma 1. ∼G is an equivalence relation.

Proof. It is straightforward to check that ∼G is reflexive and symmetric. We shall
only prove that ∼G is transitive. Let A,B,C ⊆ X such that A ∼G B and B ∼G C.

Since we have A ∼G B, by definition, there exist partitions {Ai : 1 ≤ i ≤ n}
and {Bi : 1 ≤ i ≤ n} of A and B respectively such that gi[Ai] = Bi for some
group elements g1, . . . , gn ∈ G. Similarly, it follows from B ∼G C that there exists
partitions {B̂i : 1 ≤ i ≤ m} and {Ci : 1 ≤ i ≤ m} of B and C respectively such

that hi[B̂i] = Ci for some group elements h1, . . . , hm ∈ G.

For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, consider the set Âij = g−1i [Bi ∩ B̂j ] ⊆ A and

the set Ĉij = hj [Bi ∩ B̂j ] ⊆ C. We claim that A and C are G-equidecomposable

via these pieces. It is straightforward to check that the collections {Âij} and {Ĉij}
consist of pairwise disjoint sets whose unions are A and C respectively. Set kij =

hjg
−1
i and Dij = Bi ∩ B̂j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then we have that

kij [Âij ] = kij [g
−1
i [Dij ]] = hj [Dij ] = Ĉij . Therefore, A ∼G C and hence ∼G is

transitive. �

It follows from the proof of Lemma 1 that if A and B are G-equidecomposable
with n pieces and B and C are G-equidecomposable with m pieces, then A and
C are G-equidecomposable with at most3 nm pieces. Later on, this observation
will allow us to count the number of pieces that we use for the Banach-Tarski
decomposition.

We will next learn a variant of the Cantor-Schröder-Bernstein theorem for G-
equidecomposability first realized by Banach, which will be the main ingredient
of the strong form of the Banach-Tarski theorem. For the rest of these notes, let
A 4G B denote that A is G-equidecomposable with a subset of B.

Theorem 2. If A 4G B and B 4G A, then A ∼G B.

Proof. The usual back-and-forth proof of the Cantor-Schröder-Bernstein theorem
works if one uses the injections between A and B induced by the decompositions.
(A careful unpacking of the proof should reveal that if A 4G B via n pieces and
B 4G A via m pieces, then A ∼G B via at most n+m pieces.) �

Before we conclude this subsection, we shall see a basic geometric example of
G-equidecomposability.

Theorem 3. Let SO2(R) act on the unit circle S1 by rotations about the origin. For
every countable D ⊆ S1, we have that S1 and S1−D are SO2(R)-equidecomposable.

Proof. Let ρθ : S1 → S1 be the bijection induced by the action of the matrix[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
which rotates S1 about the origin by θ radians in the counter-clockwise direction.
Consider the set

W = {θ : ∃d ∈ D ∃ k ∈ N+ ρkθ(d) ∈ D}
Since D is countable, W is a countable union of countable sets and hence is count-
able. Therefore there exists some γ /∈ W . Note that, by definition, ρkγ(d) /∈ D for

all k ∈ N+ and for all d ∈ D.

3Note that some of the sets Âij and Ĉij in our construction may be empty, which is actually

allowed in our definition of G-equidecomposability.
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We claim that the collection {ρkγ [D] : k ∈ N} consists of pairwise disjoint sets.

Assume towards a contradiction that there exists x ∈ ρkγ [D]∩ρlγ [D] for some natural
numbers k 6= l. Without loss of generality, we may assume that k < l. Then we
would have ρ−kγ (x) ∈ D ∩ ρl−kγ [D], which is a contradiction. Therefore the sets

D, ργ [D], ρ2γ [D], . . . are pairwise disjoint.

Let A =
⋃∞
k=0 ρ

k
γ [D] and B = S1 − A. Then we have that A t B = S1 and

ργ [A] tB = S1 −D. Therefore, S1 −D and S1 are SO2(R)-equidecomposable via
2 pieces. �

This example shows that any countable subset of S1 can be “absorbed” via
rotations. The generalization of this idea to two dimensions will be central to the
proof of the Banach-Tarski theorem. Finally, let us give a special name those sets
for which we have the Banach-Tarski phenomenon.

Definition 2. A non-empty set E ⊆ X is said to be G-paradoxical if for some posi-
tive integers n and m, there exist pairwise disjoint sets A1, . . . , An, B1, . . . , Bm ⊆ E
and group elements g1, . . . , gn, h1, . . . , hm ∈ G such that

E =

n⋃
i=1

gi[Ai] =

m⋃
j=1

hj [Bj ]

In other words, E is G-paradoxical if there exist disjoint subsets A,B ⊆ E such
that A and B are G-equidecomposable with E. Observe that if E is G-paradoxical
with pieces A,B ⊆ E, then it follows from E ∼G B 4G E−A 4G E and Theorem 2
that E−A ∼G E. Therefore, the sets A1, . . . , An, B1, . . . , Bm ⊆ E in the definition
above may be chosen to form a partition of E.

In this terminology, the Banach-Tarski theorem can be restated as follows: The
unit ball in R3 is G-paradoxical, where G is the subgroup of the isometry group of
R3 generated by translations and rotations.

1.2. The Turn. We shall now focus on groups. Every group acts freely on itself
by left multiplication. We would like to understand those groups that admit para-
doxical decompositions which respect to this action. The motivation behind this is
the following: When a group G acts on a set X in a certain way, the “geometry”
of the group G can be transferred to the set X. Our expectation is to achieve a
Banach-Tarski-like decomposition on various groups and transfer this decomposi-
tion to various sets they act on.

Definition 3. A group G is said to be paradoxical if G is G-paradoxical with respect
to its action on itself by left multiplication.

What are examples of paradoxical groups? A moment’s thought reveals that no
finite group can be paradoxical. It turns out that the most natural examples of
paradoxical groups are non-abelian free groups.

Lemma 4. Let F2 be the free group on 2 generators. Then F2 is paradoxical

Proof. Let σ and τ be the generators of F2. For each ρ = σ±1, τ±1, let W (ρ) denote
the set of (reduced) words in F2 starting with ρ. It is clear that

F2 = {e} tW (σ) tW (σ−1) tW (τ) tW (τ−1)

Moreover, we have that W (σ) ∪ σW (σ−1) = W (τ) ∪ τW (τ−1) and hence F2 is
F2-paradoxical. �
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It is indeed possible to choose the pieces in this proof to form a partition of F2.
It is an exercise to the reader to check that the pieces

F2 = (W (σ) ∪ Σ ∪ {e}) t (W (σ−1)− Σ) tW (τ) tW (τ−1)

works, where Σ = {σ−n : n ∈ N+}. That it suffices to use four pieces to duplicate
F2 shall later be used to find an upper bound for the number of pieces that we are
going to use for the Banach-Tarski decomposition of the unit ball.

The next lemma confirms our expectation that the paradoxical decomposition
of a group can be transferred to sets it acts on if the action is “nice”.

Lemma 5. Let G be a paradoxical group with a free action on a set X. Then X
is G-paradoxical.

Proof. Since G is paradoxical, there exists a partition {A1, . . . , An, B1, . . . , Bm}
such that G =

⋃n
i=1 giAi =

⋃m
j=1 hjBj for some g1, . . . , gn, h1, . . . , hm ∈ G. By

the axiom of choice, there exists a set T ⊆ X which is a transversal for the orbit
equivalence relation of the action G y X, that is, T contains exactly one element
from each orbit of the action Gy X. Since the action Gy X is free, the collection
{g[T ] : g ∈ G} is a partition of X. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

Âi =
⋃
g∈Ai

g[T ] and B̂j =
⋃
g∈Bj

g[T ]

It is not difficult to check that these sets are pairwise disjoint and that

X =

n⋃
i=1

gi[Âi] =

m⋃
j=1

hj [B̂j ]

Thus X is G-paradoxical with the same number of pieces witnessing that G is
paradoxical. �

An immediate corollary of this lemma is that the property of being paradoxical
passes from subgroups to supergroups.

Corollary 6. If H 6 G and H is paradoxical, then G is paradoxical.

Proof. The action of H on G by left multiplication is free. Thus, by Lemma 5, G
is H-paradoxical and hence is G-paradoxical. �

Having proven Lemma 4 and Lemma 5, we shall next seek isomorphic copies
of non-abelian free groups in the isometry group of R3 hoping to transfer their
paradoxical decompositions to various subsets of R3. It turns out that the rotation
group SO3(R) already contains a copy of F2.

Lemma 7. There exists a subgroup G 6 SO3(R) isomorphic to F2.

Proof. See [1, Theorem 2.1] for a construction of such a subgroup inside SO3(Q).
�

We are now in a position to prove the Hausdorff paradox which, besides being
an ingredient of the Banach-Tarski theorem, is surprising on its own.

Theorem 8 (The Hausdorff paradox). There exists a countable subset D ⊆ S2

such that S2 −D is SO3(R)-paradoxical.
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Proof. Let G 6 SO3(R) be an isomorphic copy of F2 which exists by Lemma 7.
Consider the set

D = {p ∈ S2 : ∃g ∈ G− {e} g · p = p}

that is, D is the set of all points fixed by some non-identity element in G. As every
non-identity element in G fixes two points on S2, we have that D is countable. By
the definition of D, it is clear that the action of G on S2 −D is free.

Since G is paradoxical and acting freely on S2 − D, it follows from Lemma 5
that S2 −D is G-paradoxical and hence, is SO3(R)-paradoxical. �

Recall by Theorem 3 that we were able to “absorb” a countable subset of S1 via
rotations. By imitating the proof, one can pull off the same trick with S2.

Lemma 9. Let SO3(R) act on the unit sphere S2 by rotations about the lines
passing through the origin. For every countable D ⊆ S2, we have that S2 and
S2 −D are SO3(R)-equidecomposable.

Proof sketch. Let D ⊆ S2 be a countable set. Then, D being countable, we can
find a line l through the origin which does not intersect D. It is easily seen that
the set of angles θ for which the rotation about the line l through nθ radians (with
respect to some fixed orientation) takes some point of D to D for some n > 0 is
countable.

It follows that there exists some angle γ for which the rotation ρnγ about the line

l through nθ radians moves points of D to S2−D for every n > 0. In this case, the
sets {ρkγ [D] : k ∈ N} are pairwise disjoint. Let A =

⋃∞
k=0 ρ

k
γ [D] and B = S2 − A.

Then we have that A t B = S2 and ργ [A] t B = S2 −D. Therefore, S2 −D and
S2 are SO3(R)-equidecomposable via 2 pieces. �

It is a relatively easy exercise for the reader to check that, given a group G acting
on a set X, if A,B ⊆ X are G-equidecomposable and A is G-paradoxical, then B
is G-paradoxical. This observation, together with Lemma 9 and the Hausdorff
paradox, imply the following result.

Corollary 10. S2 is SO3(R)-paradoxical.

In other words, we can partition the sphere S2 = AtB in such a way that both
of the parts A and B can be separately decomposed into finitely many pieces which,
after the application of various rotations of SO3(R), form S2. Having proven this
amazing result, we are now ready for the grand finale.

1.3. The Prestige. Having a paradoxical decomposition of S2, we shall “radi-
ally stretch” the pieces of this decomposition and “glue” these pieces together in
order to obtain a paradoxical decomposition of the unit ball minus the origin.
By Corollary 10, S2 is SO3(R)-paradoxical and hence there exist a partition of
{A1, . . . , An, B1, . . . , Bm} of S2 and rotations g1, . . . , gn, h1, . . . , hm ∈ SO3(R) such
that

S2 =

n⋃
i=1

gi[Ai] =

m⋃
j=1

hj [Bj ]
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Let B denote the unit ball in R3 and 0 denote the origin. It is straightforward to
verify that

B − {0} =
⊔

0<α≤1

{(αx, αy, αz) : x2 + y2 + z2 = 1}

=

n⋃
i=1

gi ·

 ⊔
0<α≤1

{(αx, αy, αz) : (x, y, z) ∈ Ai}


=

m⋃
i=j

hj ·

 ⊔
0<α≤1

{(αx, αy, αz) : (x, y, z) ∈ Bj}


Therefore, B − {0} is SO3(R)-paradoxical with the same number pieces that a
paradoxical decomposition of S2 uses. We have almost proven what we had set out
to prove. The only problem is that the set we duplicated is off by one point. What
are we going to do about the origin 0?

Recall that G denotes the subgroup of the isometry group of R3 generated by
rotations and translations. Consider the circle

C = {(x, y, z) : (x− 1/4)2 + y2 = 1/16, z = 0}

which contains the origin 0. By imitating the proof of Theorem 3, one can show
that C ∼G C − {0}. It then follows that

B = (B − C) t C ∼G (B − C) t (C − {0})
∼G B − {0}

Combining this observation with what we have proven so far, we have the following.

Theorem 11 (The Banach-Tarski theorem). The unit ball B is G-paradoxical.

We would like to note that, by allowing α to range in (0,∞) instead of (0, 1] while
“gluing” the pieces of the paradoxical decomposition of S2 together, one can also
prove that R3 − {0} is SO3(R)-paradoxical. Since a single point can be absorbed
via some rotation, we have that R3 is G-paradoxical.

Let us now estimate how many pieces are needed in order to duplicate the
unit ball B with our construction. We know that S2 and S2 − D are SO3(R)-
equidecomposable via 2 pieces where D is the fixed points of the action of F2 on
S2. Moreover, there exists a 4-piece paradoxical decomposition of F2 which induces
a 4-piece paradoxical decomposition of S2−D. Therefore, it takes 2× 4 = 8 pieces
to duplicate S2. Indeed, each copy of S2 is created via 2×2 pieces since both parts
of the 4-piece decomposition of F2 consists of 2 pieces.

It is now time to duplicate the unit ball B. We first decompose B into two
pieces, namely, {0} and B − {0}. Since S2 can be duplicated by 4 + 4 pieces, we
can duplicate B − {0} via 4 + 4 pieces by our construction. We can then translate
the piece {0} to be the center of one of the copies of the unit ball we created. In
order to “create” a center for the other ball, we use the fact that a missing point
on a circle can be retrieved back by a 2-piece decomposition. This means that, in
order to create the center of the other ball, the number of pieces we need is twice
the number of pieces required for its creation. Therefore, we need 4+1+4×2 = 13
pieces to duplicate the unit ball B.
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We should warn the reader that this number is far from the optimal. Indeed, it
is well-known that the Banach-Tarski paradox can be achieved with 5 pieces but
cannot be achieved with 4 pieces.

Finally, before we conclude this section, we shall prove the strong form of the
Banach-Tarski theorem which, as a corollary, implies not only a ball can be dupli-
cated but also a pea can be chopped up into finitely many pieces and reassembled
into the Sun using rotations and translations only!

Theorem 12 (The Banach-Tarski theorem, Strong Form). Let A and B be bounded
subsets of R3 with non-empty interior. Then A and B are G-equidecomposable.

Proof. Since A has non-empty interior, there exists an open ball Bε ⊆ A. Notice
that the proof of the Banach-Tarski theorem can easily be modified so that it holds
arbitrary open balls in R3. Consequently, we have that Bε is G-equidecomposable
with the union of n-copies of Bε for every n ∈ N+. Since B is bounded, one can
cover B using finitely many translates of Bε and it follows that B 4G A. Arguing
symmetrically, one can also obtain that A 4G B. Hence, by Theorem 2, we have
that A ∼G B. �

2. Some variations

At this point, the Banach-Tarski theorem may not (and indeed, should not) seem
as surprising and counter-intuitive as it had seemed in the first place. All in all, the
real reason behind this phenomenon is that the isometry group of R3 contains free
non-abelian subgroups which, not surprisingly, have paradoxical decompositions.
Having realized this, mathematicians have come up with various constructions of
similar paradoxical nature. In this section, we shall learn some of these variations.

The first variation we shall learn indeed predates the Banach-Tarski theorem and
is due to Mazurkiewicz and Sierpiński. Although the isometry group of R2 does
not contain a non-abelian free group, it does contain a non-abelian free semigroup.
Using ideas similar to those in the previous section, one can prove the following.

Theorem 13 (Sierpiński-Mazurkiewicz paradox). There exists a subset of R2 which
is Isom(R2)-paradoxical.

After the publication of the Banach-Tarski theorem, John von Neumann realized
that the group of area-preserving affine transformations of the plane contains a non-
abelian free group of rank 2 and hence one can imitate the proof of the Banach-
Tarski theorem to obtain the following.

Theorem 14 (von Neumann paradox). Any two bounded subsets of R2 with non-
empty interiors are SA2(R)-equidecomposable.

The next variation takes place in the hyperbolic plane H2 and is due to Mycielski
and Wagon. As before, it based on the existence of a free action of a non-abelian
free group of rank 2 on H2 by isometries.

Theorem 15 (Mycielski-Wagon paradox). H2 is Isom(H2)-paradoxical.

Since this course is not intended to be a comprehensive treatment of paradoxical
geometric constructions, we shall not attempt to prove any of these results. For
further information, we refer the reader to [1].
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3. Paradoxes and Amenability

The reader may have realized that the Banach-Tarski theorem and some of its
variations are all based on the fact that F2 is a paradoxical group. One may ask
whether or not being paradoxical can be characterized without explicitly appealing
to paradoxical decompositions.

Soon after the Banach-Tarski theorem was proven, John von Neumann intro-
duced an abstract property of groups that do not allow such paradoxical decom-
positions, namely, the property of being amenable. In this section, we shall learn
some basic facts regarding amenability.

Although the notion of amenability can be defined for locally compact Hausdorff
topological groups in the most general setting, we shall only restrict our attention
to countable (discrete) groups in this course.

Definition 4. Let G be a countable group. Then G is said to be amenable if
there exists a finitely additive G-invariant probability measure on P(G), that is, a
function µ : P(G)→ [0, 1] such that

• µ(G) = 1,
• µ(A ∪B) = µ(A) + µ(B) for all disjoint A,B ⊆ G, and
• µ(gA) = µ(A) for all g ∈ G and A ⊆ G.

The following proposition easily follows from the definition.

Proposition 2. Let G be a countable group. If G is amenable, then G is not
paradoxical.

Proof. Assume that G is amenable, say, µ : P(G) → [0, 1] is a finitely additive
G-invariant probability measure. Assume towards a contradiction that G is para-
doxical, say, we have a partition {A,B} of G such that both A and B are G-
equidecomposable with G. Since µ is G-invariant, any two G-equidecomposable
sets have the same measure. Consequently, we have that 1 = µ(G) = µ(A ∪ B) =
µ(A) + µ(B) = 1 + 1 = 2, which is a contradiction. Therefore, G is not paradoxi-
cal. �

It turns out that the converse implication also holds. However, we shall skip the
proof of this beautiful fact.

Theorem 16 (Tarski). Let G be a countable group. Then G is paradoxical if and
only if it is not amenable.

Tarski’s theorem together with Corollary 6 imply that if G is non-amenable, then
every supergroup of G is also non-amenable. Consequently, any group containing
the free group F2 is non-amenable. That this is the only obstruction for amenability
is known as the von Neumann conjecture4. More precisely, the von Neumann
conjecture is the statement that if G is non-amenable, then there exists a subgroup
of G isomorphic to F2. This conjecture was disproven in 1980 by Ol’shanskii.

Theorem 17 (Ol’shanskii). There exists a non-amenable group which does not
contain an isomorphic copy of F2.

4Although von Neumann’s name is attached to the conjecture, it turns out that the conjecture
is first explicitly state by Day in 1957.
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We have seen examples of non-amenable groups such as non-abelian free groups.
What groups are amenable? Every finite group is clearly amenable for the map
µ(G)→ [0, 1] given by µ(A) = |A|/|G| for all A ⊆ G can easily be checked to be a
finitely additive G-invariant probability measure. Are there any infinite amenable
groups?

It turns out that the group Z of integers is amenable5. The rest of the notes will
be devoted to a sketch of the proof of the fact that Z is amenable.

How can one define a finitely additive Z-invariant probability measure on P(Z)?
Let us try some naive ideas. We know how to measure the subsets of a finite group.
We simply consider the density of the subset in the whole group. One can try to
generalize this idea by trying to measure a subset of Z via its asymptotic density.
More precisely, we can define µ(A) to be

lim
n→∞

|A ∩ [−n, n]|
2n+ 1

It is not difficult to show that the map µ is indeed Z-invariant and that µ(Z) = 1 and
µ(A∪B) = µ(A)+µ(B) whenever these values exist. Unfortunately, the domain of
µ is not P(Z), that is, there are subsets of Z which do not have asymptotic density.
Our naive idea could have worked if we were able to extend this function to all of
P(Z) while keeping its nice properties. How are we going to fix the problem?

4. Ultrafilters to the rescue

Let X be a non-empty set. A set U ⊆ P(X) consisting of subsets of X is said
to be a filter on X if we have

- ∅ /∈ U and X ∈ U ,
- A ∩B ∈ U whenever A ∈ U and B ∈ U , and
- B ∈ U whenever A ∈ U and A ⊆ B.

An example of a filter on an infinite set X is the filter U = {A ⊆ X : |X−A| < ℵ0}
consisting of cofinite sets. A filter U on a set X is said to be an ultrafilter on X
if for every A ⊆ X we have either A ∈ U or X − A ∈ U . One should think of
ultrafilters as measuring the “bigness” of subsets of the underlying set. Indeed, if
U is an ultrafilter on a set X, then the map

χ(A) =

{
1 if A ∈ U
0 if A /∈ U

is a {0, 1}-valued finitely additive probability measure on P(X). What are examples
of ultrafilters?

It is straightforward to check that if x ∈ X, then the collection {A ⊆ X : x ∈ A}
is an ultrafilter. Such ultrafilters are known as principal ultrafilters. Are there
non-principal ultrafilters?

An application of Zorn’s lemma to the partially ordered set of proper filters on
a set X containing the cofinite filter shows that non-principal ultrafilters do exist.

Let U be a non-principal ultrafilter on N. Given a sequence (xi)i∈N of real
numbers and a real number L, we shall say that the ultralimit of the sequence

5More generally, solvable groups are amenable and the class of amenable groups is closed under
group extensions, quotients and direct limits. Using these operations, one can construct various

amenable groups. Unfortunately, we are not going to cover any of these facts in this course.
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(xi)i∈N along U is L and write

lim
U
xi = L

if we have that

∀ε > 0 {i ∈ N : |xi − L| < ε} ∈ U

Intuitively speaking, the ultralimit of a sequence is the usual limit of the sequence
on indices which form a “big” subset of N. It is an exercise6 to the reader to check
that if lim

n→∞
xi = L, then lim

U
xi = L. Therefore, the notion of ultralimit generalizes

the usual notion of limit.
One of the marvelous properties of the notion of ultralimit is that, if one is

working with sequences taking values in a compact topological space such as [0, 1],
then every sequence has an ultralimit along an ultrafilter.

Theorem 18. Let U be a non-principal ultrafilter on N and (xi)i∈N be a sequence
such that xi ∈ [0, 1] for all i ∈ N. Then lim

U
xi exists.

Proof. Assume to the contrary that lim
U
xi does not exist. Then, by the definition

of ultralimit, for every c ∈ [0, 1], we can find some εc such that

{i ∈ N : xi /∈ B(c, εc)} ∈ U

where B(c, εc) is the open ball in [0, 1] centered around c with radius εc. Since⋃
c∈[0,1]B(c, εc) is an open covering of [0, 1] and [0, 1] is compact, there exist finitely

many c1, . . . , cn such that [0, 1] = B(c1, εc1) ∪ · · · ∪B(cn, εcn). As filters are closed
under finite intersections, we have

n⋂
j=1

{i ∈ N : xi /∈ B(cj , εcj )} ∈ U

{i ∈ N : xi ∈
n⋂
j=1

(
B(cj , εcj )

)C} ∈ U
∅ = {i ∈ N : xi ∈ [0, 1]C} ∈ U

which is a contradiction. Therefore, lim
U
xi exists. �

Having show that the ultralimit of any sequence exists, we shall try to modify
our previous idea of measuring subsets via their asymptotic densities.

Theorem 19. Z is amenable.

Proof sketch. Fix a non-principal ultrafilter U on N and define µ : P(Z)→ [0, 1] by

µ(A) = lim
U

|A ∩ [−n, n]|
2n+ 1

for all A ⊆ Z. It is a (slightly difficult) exercise to the reader to check that µ is a
finitely additive Z-invariant probability measure. �

6Hint. First observe that any non-principal ultrafilter on an infinite set contains the cofinite
filter.
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