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Abstract. These are the lecture notes of a one-week course I taught at the

Nesin Mathematics Village in Şirince, İzmir, Turkey during Summer 2017.

The aim of the course was to introduce some basic notions of combinatorial
set theory and prove some key results regarding partition relations for cardinals

and the tree property of cardinals.
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0. Prelude

Throughout these notes, we shall use the standard von Neumann construction of
ordinal and cardinal numbers. Even though there will be a review of the necessary
set theoretic background during the course, it will not be included in these notes.
We refer the reader who has not been exposed to axiomatic set theory before to
[5], the author’s lecture notes located at this hyperlink link or the relevant issues
of Matematik Dünyası if the reader knows Turkish.

0.1. Strangers at a party. We begin by considering the following question: Given
six people, is it always possible to find a group of three people who either all know
each other or all not know each other?

The answer to this question turns out to be affirmative. In order to prove this,
we first need to make the question mathematically precise. To that end, we shall
introduce the notions of colorings and homogeneous sets.
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For any set X and any non-zero cardinal µ, we shall write [X]µ to denote the set

{Y ⊆ X : |Y | = µ}

For any non-zero cardinal λ, any function f : [X]µ → λ is called a coloring of
[X]µ into λ colors. For any coloring f : [X]µ → λ, a subset H ⊆ X is said to be
homogeneous with respect to f if the function f is constant on [H]µ.

One can represent a group of six people by the set 6 = {0, 1, 2, 3, 4, 5} and
the relationship between these people by the coloring f : [6]2 → 2 defined by
f({i, j}) = 0 if and only if the person i and the person j know each other. Having
formalized the notions of “person” and “knowing each other” mathematically, we
can now rephrase our question as follows: Given a coloring f : [6]2 → 2, can we
always find a homogeneous set of size three?

Theorem 1. For any function f : [6]2 → 2, there exists a subset H ⊆ 6 such that
|H| = 3 and f is constant on [H]2.

Proof. By pigeonhole principle, at least three elements of the set {{0, i} : 1 ≤ i ≤ 5}
are colored with the same color under f , say f({0, a}) = f({0, b}) = f({0, c}) = k
for some distinct 1 ≤ a, b, c ≤ 5.

• If f does not take the value k on the set [{a, b, c}]2, then we choose H to
be the set {a, b, c} and f is constant on [H]2 with value 1− k.

• If f takes the value k on the set [{a, b, c}]2, then we choose H to be the set
{0, i, j}, where {i, j} is some element of [{a, b, c}]2 such that f({i, j}) = k.
Then f is constant on [H]2 with value k.

�

Using the terminology of graph theory, we can restate this theorem as follows:
If one colors the edges of the complete graph K6 with two colors, then there exists
a subgraph which is isomorphic to K3 and whose edges are of the same color.

Exercise. Show that there exists a function f : [5]2 → 2 with no homogeneous set
of size three. (In other words, it is possible color the edges of the complete graph
K5 into two colors without having K3 as a monochromatic subgraph.)
Exercise. Show that for any function f : [17]2 → 3 there exists a homogeneous set
of size three. (In other words, if one colors the edges of the complete graph K17

with three colors, then there exists a monochromatic subgraph isomorphic to K3.)

0.2. Afterparty at Hilbert’s Hotel. Let us now consider the following more
general question: Assume that countably infinitely many people are attending to
an afterparty at Hilbert’s Hotel. Is it always possible to find countably infinitely
many guests who either all know each or all not know each other?

Rephrased in the terminology we introduced, the question becomes the following:
Given a 2-coloring f : [N]2 → {0, 1} with 2 colors, is it always possible to find an
infinite homogeneous set H ⊆ N? The answer to this question is affirmative as
shown by the following remarkable theorem, which is usually referred to as the
infinite Ramsey theorem.

Theorem 2 (Ramsey). For every positive integer m,n, every countably infinite set
S and every coloring f : [S]n → m, there exists an infinite homogeneous set H ⊆ S.

Proof. We prove this by induction on n ≥ 1.
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• Base case. Given a function f : [S]1 → m, since finite unions of finite sets
are finite, there exists k ∈ m such that f−1(k) is infinite. Then we have
that

⋃
f−1(k) = H ⊆ S is infinite and f is constant on [H]1.

• Inductive step. We wish to show that the claim holds for n+ 1 whenever
it holds for n. Let n ≥ 1 and assume that the claim holds for n.

Let S be a countably infinite set, m be a positive integer and f : [S]n+1 →
m be a function. We need to find an infinite set H ⊆ S such that f is
constant on [H]n+1.

For each countably infinite R ⊆ S and s ∈ S, consider the function
Fs : [R− {s}]n → m given by

Fs(X) = f(X ∪ {s})
By induction hypothesis, for every countably infinite R ⊆ S and every
s ∈ R, there exists HR

s such that Fs is constant on [HR
s ]n.

Since S is countably infinite, we can linearly order the elements of S by
enumerating them, say s0 < s1 < s2 · · · <. By recursion, construct the
following sequences (ak)k∈N and (Sk)k∈N.

– S0 = S and a0 = s0,
– Sk+1 = HSk

ak
⊆ Sk − {ak} and ak+1 = min{s ∈ Sk+1 : s > ak}

for each k ∈ N. By construction, for each i ∈ N, since {aj : j > i} ⊆ Si+1,
the function Fai is constant on the infinite set [{aj : j > i}]n, say, with the
color bi. The entries of the sequence (bi)i∈N are elements of a finite set.
It follows that there exists a subsequence (bki)i∈N which is constant. Set
H = {aki : i ∈ N}. It is straightforward to check that the function f is
constant on the infinite set [H]n+1 with the color bk0 .

�

We shall next prove a finite version of Ramsey’s theorem as a corollary to the
infinite version. In order to do this, we will need the following lemma whose proof
is left to the reader as an exercise.

Lemma 3 (König’s tree lemma). Every infinite finitely branching tree has an in-
finite branch.

Proof. Exercise. (Hint. After fixing a vertex as the root, observe that, at every
level, there exists some vertex above which there are infinitely many vertices.) �

Theorem 4 (Ramsey). For all positive integers m,n, k, there exists a positive
integer r ≥ n such that any coloring f : [r]n → m admits some homogeneous set of
size k.

Proof. Assume to the contrary that there exist positive integers m,n, k such that
for every positive integer r ≥ n there exists a coloring f : [r]n → m admitting no
homogeneous sets of size k.

Fix such m,n, k and consider the set T of colorings f : [r]n → m with r ≥ n
which have no homogeneous set of size k. Then the set T ∪ {∅} together with the
partial order � defined by f � g ↔ f ⊆ g induces a finitely branching infinite tree,
which has an infinite branch by König’s lemma, say, the branch (∅, f0, f1, . . . ). It is
easily seen that

⋃
i∈N fi : [N]n → m is a coloring with no homogeneous set of size k

and hence with no homogeneous infinite set. This contradicts the infinite Ramsey
theorem. �
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When n = 2, the least number r in the statement of this theorem for which the
theorem holds is called the Ramsey number R(k, k, . . . , k) where there are m-many
k’s. For example, we have seen that R(3, 3) = 6 and that R(3, 3, 3) ≤ 171. We refer
the reader to any book on combinatorics including a section on Ramsey theory for
the general definition of the Ramsey number R(a1, a2, ..., an). Even though there
are known upper and lower bounds for Ramsey numbers, computing exact values of
Ramsey numbers turns out to be a notoriously difficult task2. Having proven both
versions of Ramsey’s theorem, we will next see some basic applications of these
results.

Theorem 5. Every infinite sequence of real numbers has a subsequence which is
constant, strictly increasing or strictly decreasing.

Proof. Let (xi)i∈N be a sequence of real numbers. Consider f : [N]2 → {0, 1, 2}
given by

f({i, j}) =


0 if i < j and xi < xj

1 if i < j and xi > xj

2 if i < j and xi = xj

It follows from Ramsey’s theorem that there exists an infinite homogeneous set
H ⊆ N, say, H = {ni}i∈N with n0 < n1 < . . . . Then (xni)i∈N is either constant,
strictly increasing or strictly decreasing. �

Theorem 6. Let k be a positive integer. There exists a positive integer r such that,
among any r points in the plane with no 3 collinear points, one can find k points
that form the vertices of a convex k-gon.

Proof. Let r be some positive integer obtained from the finite Ramsey theorem for
the values n = 3, m = 2 and k = k. Assume that we are given r points in the plane
with no 3 collinear points. We wish to show that there exist k points among these
r points which are the vertices of a convex k-gon.

Let us first enumerate these points, say, the points are in P = {p1, p2, . . . , pr}.
We shall color [P ]3 with two colors {0, 1} as follows: The set {pa, pb, pc} with
a < b < c is colored to 0 if and only if we move in the counter-clockwise direction
as we move on the union of the line segments papb and pbpc from the point pa to
the point pc. It follows from Ramsey’s theorem that there exists a homogeneous
subset of P of size k. It can be checked that the k-gon whose vertices are this
homogeneous set is convex. �

1. Partition Relations for Cardinals

In this section, we shall focus on the following question: To what extent can
Ramsey’s theorem be generalized for uncountable sets? For example, if there are
κ-many guests at a party for an infinite cardinal κ, is it always possible to find
κ-many guests who either all know each or all not know each other? If not, how
many such guests can be chosen?

1Indeed, we have that R(3, 3, 3) = 17.
2According to Joel Spencer’s book Ten Lectures on the Probabilistic Method: Second Edition,

“Erdös asks us to imagine an alien force, vastly more powerful than us, landing on Earth and

demanding the value of R(5,5) or they will destroy our planet. In that case, he claims, we
should marshal all our computers and all our mathematicians and attempt to find the value. But

suppose, instead, that they ask for R(6,6). In that case, he believes, we should attempt to destroy

the aliens.”
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1.1. The arrow notation and its basic properties. We begin our investigation
by introducing a notation, due to Erdös and Rado, which is usually called the arrow
notation. Given non-zero cardinals κ, λ, µ, ν, we shall write

κ→ (λ)µν

if for every coloring f : [κ]µ → ν with ν colors, there exists a homogeneous set
H ⊆ κ with |H| = λ. From now on, any statement of the form κ → (λ)µν will be
called a partition relation. Let us restate what we have learned so far using this
notation.

• 5 9 (3)22
• 6→ (3)22
• 17→ (3)23
• For all positive integers m,n, we have ω → (ω)nm
• For all positive integers m,n, k, there exists an integer r such that r → (k)nm

Before we proceed, we would like to mention some restrictions regarding the
arrow notation. First, we would like both the set [κ]µ to be colored and the homo-
geneous part [λ]µ of this set to be non-empty. Consequently, we need to assume
κ ≥ λ ≥ µ when we use the arrow notation.

Second, we will assume that the exponent µ is always a positive natural number.
The reason for this seemingly strong assumption is that µ cannot be infinite if we
are to obtain non-trivial partition relations as shown by the next theorem, which
is due to Erdös and Rado.

Theorem 7. For any infinite cardinal κ, κ9 (ω)ω2 .

Proof. Let κ be an infinite cardinal. It follows from the axiom of choice3 that there
exists a (strict) well-order relation ≺ on [κ]ω. Consider the coloring f : [κ]ω → 2
given by

f(x) =

{
0 if x ≺ y for every countably infinite y ( x

1 otherwise

We claim that no countably infinite subset of κ is homogeneous with respect to f .
Assume to the contrary that there exists a countably infinite homogeneous x ⊆ κ.
Then the restriction of ≺ onto [x]ω is a well-order relation as well and hence there
exists y ∈ [x]ω which is minimal with respect to ≺. Since y is ≺-minimal, we have
that f(y) = 0. Let (ai)i∈N be an enumeration of y. Then y0 ( y1 ( y2 ( · · · ( y
where ym = {a0, a2, . . . , a2m, a1, a3, a5, . . . } for each m ∈ N. It follows from the
homogeneity of x and y ⊆ x that f(ym) = 0 for all m ∈ N. This implies that
· · · ≺ y2 ≺ y1 ≺ y0 which contradicts that ≺ is a well-order relation. �

Finally, we note that if the number of colors ν exceeds κ, then we do not get
non-trivial partition relations4. Thus we shall only consider partition relations
κ → (λ)nν where κ, λ, ν are non-zero cardinals and n is a positive natural number
with κ ≥ λ ≥ n and κ > ν.

3Even though it is beyond the scope of this course, we would like to mention that this theorem

does not hold if one rejects the axiom of choice. Indeed, Donald Martin proved that ω1 → (ω1)ω1
2

under the axiom of determinacy.
4More precisely, we have that κ → (n)nκ for every positive integer n. The reason is that the

cardinality of [κ]n is κ and consequently, we can color the elements of [κ]n to distinct colors in
which case any homogeneous set with respect to this coloring is of size n.
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The following lemma shows that, given a partition relation, we can increase the
size of the set whose subsets we are coloring; and decrease the number of colors and
the size of the homogeneous set.

Lemma 8. Let κ, κ′, λ, λ′, ν, ν′ be non-zero cardinals and n be a positive integer
with κ′ ≥ κ ≥ n, n ≤ λ′ ≤ λ and ν′ ≤ ν ≤ κ. If κ→ (λ)nν , then κ′ → (λ′)nν′ .

Proof. Trivial. �

Exercise. Prove that if κ→ (λ)nν , then κ→ (λ)mν for every 0 < m < n.

1.2. The Erdös-Rado theorem. We have seen in the previous subsection that
the number of colors we use should be less than the size of the set whose subsets
we are coloring.

An obvious question to ask is the following: If we are coloring the two-element
subsets of a set with κ colors, how many elements should there be to guarantee the
existence of an infinite homogeneous set? We know that there must be at least κ+

elements. The following theorem shows that 2κ elements are not sufficient.

Theorem 9 (Gödel, Erdös-Kakutani). For any cardinal κ, 2κ 9 (3)2κ.

Proof. Recall that 2κ is the cardinality of the set κ2, the set of functions from κ to
2. Thus it suffices to color [κ2]2 with κ colors so that there exists no homogeneous
set of size 3. Consider the coloring f : [κ2]2 → κ given by

f({ϕ,ψ}) = min{α ∈ κ : ϕ(α) 6= ψ(α)}

It is straightforward to check that there exists no homogeneous set of size 3 with re-
spect to the coloring f as three distinct functions from κ to 2 cannot simultaneously
disagree for the first time at the same ordinal α. �

It follows that if we are to guarantee an infinite homogeneous set for κ colors,
then the set whose two-element subsets we are coloring must have size at least
(2κ)+. That the cardinal (2κ)+ suffices follows from the following famous theorem
known as the Erdös-Rado theorem.

Theorem 10 (Erdös-Rado). Let κ be an infinite cardinal. For every natural num-

ber n, we have that in(κ)
+ → (κ+)n+1

κ .

Proof. We prove this induction on n. For the base case n = 0, the partition relation
κ+ → (κ+)1κ holds since κ+ is a regular cardinal. For the inductive step, let n be a

natural number and assume that the partition relation in(κ)
+ → (κ+)n+1

κ holds.

We wish to prove that in+1(κ)
+ → (κ+)n+2

κ . Let f : [Λ]n+2 → κ be a coloring

where Λ denotes the set in+1(κ)
+

. For every a ∈ Λ, let fa : [Λ − {a}]n+1 → κ be
the coloring given by

fa(X) = f(X ∪ {a})

Assume for the moment that

Claim. There exists A ⊆ Λ of size in+1(κ) such that for every B ⊆ A of size
in(κ) and b ∈ Λ−B there exists a ∈ A−B such that fa � [B]n+1 = fb � [B]n+1.
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holds. Let A ⊆ Λ be some set as in the claim and choose a ∈ Λ−A. By transfinite
recursion, we can construct a transfinite sequence (xα)α∈in(κ)+ of distinct elements
of A such that

fxα � [{xβ : β < α}]n+1 = fa � [{xβ : β < α}]n+1

for every α < in(κ)
+

. Consider the coloring fa � [{xα : α < in(κ)
+}]n+1. By the

induction assumption, there exists a set

H ⊆ {xα : α < in(κ)
+}

of size κ+ which is homogeneous with respect to this coloring with some color θ ∈ κ.
We claim that H is also homogeneous with respect to the coloring f with the color
θ. To see this, let xα0

, xα1
, . . . , xαn+1

be elements of H with α0 < α1 < · · · < αn+1.
Then

f({xα0 , . . . , xαn+1}) = fxαn+1
({xα0 , . . . , xαn}) = fa({xα0 , . . . , xαn}) = θ

It remains to prove that the claim holds.

Proof of the claim. By transfinite recursion, we shall construct a sequence of
sets (Aα)α<in(κ)+ of size in+1(κ) as follows:

• Let A0 ⊆ Λ be an arbitrary set of size in+1(κ).

• Let α < in(κ)
+

and assume that the set Aα has been constructed. We
wish to construct a set Aα+1. Notice that for each subset B ⊆ Aα of size
in(κ), the cardinality of the set

{fb � [B]n+1 : b ∈ Λ−B}
is at most

κin(κ) = 2in(κ) = in+1(κ)

Thus, for each subset B ⊆ Aα of size in(κ), we can choose a set UB ⊆ Λ−B
of size in+1(κ) such that

{fb � [B]n+1 : b ∈ Λ−B} = {fb � [B]n+1 : b ∈ UB}
Set

Aα+1 = Aα ∪
⋃

B⊆Aα, |B|=in(κ)

UB

Since the number of subsets of Aα of size in(κ) is at most

in+1(κ)
in(κ) = 2in(κ) = in+1(κ)

the set Aα+1 has size in+1(κ) provided that Aα has size in+1(κ).

• Let γ < in(κ)
+

be a limit ordinal and assume that the set Aα of size
in+1(κ) has been constructed for each α < γ. Set Aγ =

⋃
α<γ Aα

A straightforward transfinite induction argument shows that Aα is of size in+1(κ)

for all α < in(κ)
+

and hence A =
⋃
α<in(κ)+ Aα is of size in+1(κ). Moreover, the

set A satisfies conditions of the claim since any subset of A of size at most in(κ)
is contained in some Aα. �

Theorem 9 and 10 together show that the partition relation (2κ)+ → (κ+)2κ
is optimal. Erdös and Rado showed that for each n ≥ 1 the partition relation
in(κ)

+ → (κ+)n+1
κ is indeed optimal. However, we shall not include a proof of this

more general fact.
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1.3. A theorem of Sierpiński. In the previous subsection, we learned the rela-
tionship between κ and ν if the partition relation κ → (ω)2ν is to hold. In this
subsection, we shall focus on the relationship between κ and λ if the partition re-
lation κ → (λ)22 is to hold. More specifically, we are aiming to prove a theorem of
Sierpiński stating that 2κ 9 (κ+)22. We shall need the following lemma.

Lemma 11. Let κ be an infinite cardinal and ≺ be the (strict) linear order relation
on κ2 given by

f ≺ g ⇐⇒ f(θ) < g(θ) where θ = min{α ∈ κ : f(α) 6= g(α)}

Then there exists no sequence (fα)α<κ+ of elements of κ2 of length κ+ which is
monotone with respect to ≺.

Proof. We shall prove that there exists no such increasing sequence. Assume to-
wards a contradiction that there exists an increasing sequence of length κ+ in the
linearly ordered set (κ2,≺).

Let γ ≤ κ be the least ordinal such that there exists an increasing sequence of
length κ+ in (γ2,≺) and let (xα)α<κ+ be such a sequence. By definition, for every
α < κ+, we have that xα ≺ xα+1. Hence, for every α < κ+, there exists εα < γ
such that

• xα(εα) = 0
• xα+1(εα) = 1
• xα � εα = xα+1 � εα

Since κ+ =
⋃
ε<γ{α : εα = ε} and κ+ is a regular cardinal, there exists ε < γ such

that X = |{xα : εα = ε}| = κ+.
Let xξ and xη be two distinct elements of this set. If it were the case that

xξ � ε = xη � ε, then, by the definition of ε, we would have xξ(ε) = xη(ε) = 0
and xξ+1(ε) = xη+1(ε) = 1, in which case we have xξ ≺ xη+1 and xη ≺ xξ+1

contradicting that xξ and xη are distinct. Therefore, for every distinct xξ and xη
in the set X , we have that xξ � ε 6= xη � ε. However, this implies that there exists
an increasing sequence of length κ+ in the linearly ordered set (ε2,≺), namely, the
sequence that consists of xη’s in the set X indexed in the obvious manner. This
contradicts the minimality of γ.

Hence there exists no increasing sequence of length κ+ in (κ2,≺). Carrying out
this proof symmetrically, one can show that no decreasing sequence of length κ+

in (κ2,≺). �

We are now ready to prove the main theorem of this subsection.

Theorem 12 (Sierpiński). For every infinite cardinal κ, we have that 2κ 9 (κ+)22.

Proof. As before, it suffices to color [κ2]2 with 2 colors so that there exists no
homogeneous set of size κ+. Let (gα)α<2κ be an enumeration of elements of κ2 and
f : [κ2]2 → 2 be the coloring given by

f({gα, gβ}) = 0⇐⇒ (α < β ⇔ gα ≺ gβ)

where ≺ is the lexicographic order relation defined before. It is easily seen that
any homogeneous subset of κ2 of size θ induces a monotone sequence in (κ2,≺) of
length θ. Thus, there cannot be any homogeneous set of size κ+ by the previous
lemma. �
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Since 2κ ≥ κ+ for every cardinal κ, the following corollary immediately follows
from Sierpiński’s theorem.

Corollary 13. For all infinite cardinals κ, κ+ 9 (κ+)22.

Corollary 13 shows that the partition relation κ → (κ)22, the natural general-
ization of Ramsey’s theorem, does not hold for successor cardinals. Can it hold
for limit cardinals? Does there exist an uncountable limit cardinal κ such that the
partition relation κ→ (κ)22 holds?

1.4. Weakly compact cardinals. Any uncountable cardinal κ such that κ→ (κ)22
is called a weakly compact cardinal5. The following is an important consequence of
Sierpiński’s theorem.

Theorem 14. Weakly compact cardinals are inaccessible.

Proof. Let κ be a weakly compact cardinal. We wish to show that κ is inaccessible,
i.e. κ is uncountable, regular and for all cardinals θ < κ we have 2θ < κ. That κ is
uncountable follows from the definition.

To show that κ is regular, assume towards a contradiction that cf(κ) = γ < κ,
say (δξ)ξ<γ is an increasing sequence of ordinals such that sup{δξ : ξ < γ} = κ.
Consider the coloring f : [κ]2 → 2 given by

f({α, β}) = 1⇐⇒ ∃ξ < γ α, β ∈ [δξ, δξ+1)

It is straightforward to check that any homogeneous set with respect to this coloring
has size < κ which contradicts that κ→ (κ)22. Therefore κ is regular.

To show that κ is strong limit, assume towards a contradiction that there exists
θ < κ such that κ ≤ 2θ. Since θ+ ≤ κ and κ → (κ)22, we have that 2θ → (κ)22
and hence 2θ → (θ+)22 which contradicts Sierpiński’s theorem. Therefore κ is an
inaccessible cardinal. �

Weakly compact cardinals are a special type of large cardinals6. On the one
hand, that there are no weakly compact cardinals is relatively consistent7 with ZFC.
On the other hand, the existence of inaccessible cardinals (and hence, of weakly
compact cardinals) implies that ZFC has a set-model. It follows from Gödel’s com-
pleteness theorem and second incompleteness theorem that this statement cannot
be proven in ZFC and cannot be even shown in ZFC to be relatively consistent with
ZFC, provided that ZFC is consistent. It is widely believed among set theorists that
the existence of weakly compact cardinals is relatively consistent with ZFC.

Before we conclude this section, we would like to mention the following fact
which shows that weakly compact cardinals indeed satisfy all partition relations
they can possibly satisfy.

Fact 15. [7, Theorem 7.8] Let κ be an uncountable cardinal. Then κ is weakly
compact if and only if κ→ (κ)nλ for every n ∈ ω and every cardinal λ < κ.

5The reason for this terminology is that, for any such κ, the infinitary logic Lκ,κ satisfies an

analogue of the famous compactness theorem of first-order logic.
6There are truly marvelous facts about large cardinals, which this margin is too narrow to

contain. We refer the reader to [7], the most comprehensive treatment of the subject.
7A sentence ϕ is said to be relatively consistent with a theory T if the consistency of T implies

the consistency of the theory T + ϕ.
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2. The tree property

In this section, we turn our attention to mathematical objects that are seemingly
unrelated to those we have been dealing with: Trees.

2.1. Set-theoretic trees. In mathematics, there are various different notions of
a tree. For example, from the point of view of graph theory, a tree is a connected
acyclic graph, i.e. a graph whose distinct vertices are connected by a unique path.

From the point of view of set theory, a tree is a partially ordered set (T,<) with
a least element such that the set predT (x) = {y ∈ T : y < x} of predecessors of x
is well-ordered by < for every x ∈ T . Let (T,<) be a tree. Then

• The least element of a tree (T,<) is called its root.
• For each x ∈ T , the height of the element x is the order-type ht(x) of the

well-ordered set predT (x).
• For each ordinal α, the α-th level of the tree (T,<) is the set

Tα = {x ∈ T : ht(x) = α}

• The height of the tree (T,<) is the ordinal ht(T ) = min{α : Tα = ∅}.
• A branch of the tree (T,<) of is a maximally linearly ordered subset of T .
• A branch S ⊆ T of the tree (T,<) is said to be of length α if the order type

of the well-ordered set (S,<) is α.

One can visually represent trees using their Hasse diagrams: We place a vertex for
every point in the tree (T,<) and connect every vertex v to its successor vertex
v+ = min{w ∈ T : v < w}. It is easily seen that no two vertices can be joined via
two distinct paths in the corresponding diagram, which justifies the usage of the
word “tree”.

Exercise. Prove that any graph-theoretic tree with a distinguished vertex naturally
induces a set-theoretic tree of height at most ω; and any set-theoretic tree of height
at most ω naturally induces a graph-theoretic tree.
Exercise. Prove that there exists a tree of height of ω1 and of size 2ℵ0 .

2.2. Aronszajn trees. Let κ be an infinite cardinal. A tree (T,<) is said to be a
κ-Aronszajn tree if

• ht(T ) = κ,
• |Tα| < κ for every ordinal α, and
• (T,<) has no branch of length κ

An ω1-Aronszajn tree is usually called an Aronszajn tree. An infinite cardinal κ is
said to have the tree property if there exist no κ-Aronszajn trees. Notice that we
can restate König’s tree lemma in this terminology as follows.

Theorem 16 (König’s lemma, revisited). ω has the tree property.

The obvious question to ask at this point is the following: Do other cardinals
have the tree property? The following exercise shows that the tree property fails
at singular cardinals.

Exercise. Prove that there exists a κ-Aronszajn tree for every infinite singular
cardinal κ.
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What about regular cardinals? Can the tree property hold at a regular infinite
cardinal other than ω? Nachman Aronszajn proved that the answer to this question
is negative for the first uncountable cardinal ω1.

Theorem 17 (Aronszajn). ω1 does not have the tree property.

Proof. We refer the reader to [8, Theorem III.5.9] or [6, Theorem 9.16] for two
different constructions. �

Whether or not the tree property holds at larger regular cardinals turns out to
be a difficult question whose answer is beyond the limits of ZFC and consequently,
of this course8.

2.3. Tree property vs Weak compactness. In this subsection, we shall focus
on the exact relationship between the tree property and weak compactness.

Theorem 18. Let κ be an uncountable cardinal. Then κ is weakly compact if and
only if it is inaccessible and has the tree property.

Proof. We shall only prove the left-to-right direction of this theorem. The reader
is referred to [6, Lemma 9.26] for the right-to-left direction of this theorem. Let κ
be a weakly compact cardinal. By Theorem 14, κ is inaccessible. Hence we only
need to prove that κ has the tree property.

Let (T,<T ) be a tree with ht(T ) = κ and |Tα| < κ for every α < κ. We wish to
prove that T has a branch of length κ.

Since κ is regular, ht(T ) = κ and |Tα| < κ together imply that |T | = κ and
hence, by relabelling the elements of T , we can assume without loss of generality
that T = κ. Let ≺ be the (strict) linear order relation on T given as follows:

• ξ ≺ ζ whenever ξ <T ζ.
• ξ ≺ ζ whenever ξ and ζ are distinct and incomparable elements of T such

that min(predT (ξ)− predT (ζ)) < min(predT (ζ)− predT (ξ))

We skip the details of checking that ≺ is indeed a linear order relation. Consider
the coloring f : [κ]2 → 2 given by

f({ξ, ζ}) = 1⇐⇒ (ξ < ζ ⇔ ξ ≺ ζ)

It follows from weak compactness of κ that there exists a homogeneous set H ⊆ κ
of size κ. Consider the set

K = {ξ ∈ T : |{ζ ∈ H : ξ <T ζ}| = κ}
Observe that each level of T contains some element of K. Consequently, K is a
branch of length κ if every two elements of K are comparable with respect to <T .

Assume towards a contradiction that there exist <T -incomparable elements ξ
and ζ in K. Without loss of generality, we may assume that ξ ≺ ζ. It is easily
seen that we can find ordinals α < β < γ in H such that ξ <T α, ζ <T β and
ξ <T γ. It follows from the definition of ≺ that α ≺ β and γ ≺ beta. On the other

8For example, it is known that the theory ZFC+“ω2 has the tree property” is consistent if

and only if the theory ZFC+“there exists a weakly compact cardinal” is consistent. Assuming the
existence of appropriate large cardinals, it is relatively consistent with ZFC that the tree property

holds at ωn for each 2 ≤ n < ω and at ωω+1. Since the study of the tree property is an active

research area in set theory, the author, not being an expert in this area, is almost certain that
there have been stronger results in the literature of which he is unaware. The curious reader is

referred to Google for more information.
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hand, f({α, β}) = 0 6= 1 = f({γ, β}), which contradicts the homogeneity of H.
Therefore every two elements of K are comparable with respect to <T and hence
K is a branch of length κ. This completes the proof. �

3. Coda

This one-week course intended to serve as a brief introduction to combinatorial
set theory by providing some key results. The reader who has been seduced by the
intrinsic beauty of the subject and of the results is strongly suggested to read the
relevant parts of the books listed in the references.

Acknowledgements. The author would like to thank the staff of Nesin Math-
ematics Village for their hospitality and Ali Nesin for having built the village. The
author also wishes to express his appreciation for Ludwig van Beethoven who com-
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[1] Paul Erdös, András Hajnal, Attila Máté, and Richard Rado, Combinatorial set theory: par-

tition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106,

North-Holland Publishing Co., Amsterdam, 1984. MR 795592
[2] Paul Erdös and Richard Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62

(1956), 427–489. MR 0081864

[3] Stefan Geschke, Infinite ramsey theory, http://www.math.uni-hamburg.de/home/geschke/

teaching/InfiniteRamseyNotes.pdf, Accessed: 2017-08-25.

[4] Lorenz J. Halbeisen, Combinatorial set theory, Springer Monographs in Mathematics,

Springer, London, 2012, With a gentle introduction to forcing. MR 3025440
[5] Karel Hrbacek and Thomas Jech, Introduction to set theory, third ed., Monographs and Text-

books in Pure and Applied Mathematics, vol. 220, Marcel Dekker, Inc., New York, 1999.

MR 1697766
[6] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003,

The third millennium edition, revised and expanded. MR 1940513
[7] Akihiro Kanamori, The higher infinite, second ed., Springer Monographs in Mathematics,

Springer-Verlag, Berlin, 2009, Large cardinals in set theory from their beginnings, Paperback

reprint of the 2003 edition. MR 2731169
[8] Kenneth Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications, London,

2011. MR 2905394

Middle East Technical University, Ankara, Turkey,

E-mail address: burakk@metu.edu.tr

http://www.math.uni-hamburg.de/home/geschke/teaching/InfiniteRamseyNotes.pdf
http://www.math.uni-hamburg.de/home/geschke/teaching/InfiniteRamseyNotes.pdf

	0. Prelude
	0.1. Strangers at a party.
	0.2. Afterparty at Hilbert's Hotel

	1. Partition Relations for Cardinals
	1.1. The arrow notation and its basic properties
	1.2. The Erdös-Rado theorem
	1.3. A theorem of Sierpinski
	1.4. Weakly compact cardinals

	2. The tree property
	2.1. Set-theoretic trees
	2.2. Aronszajn trees
	2.3. Tree property vs Weak compactness

	3. Coda
	References

