MATH 501, Analysis, Homework 5

1. (3 pts) Let $\mathcal{C} \subseteq[0,1]$ be the Cantor set and let $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ x & \text { if } x \notin \mathcal{C}\end{cases}
$$

Show that f is Riemann integrable and find $\int_{0}^{1} f(x) d x$.
2. (2 pts) Let $(\mathbf{X}, \mathcal{M}, \mu)$ be a measure space. Let $f, g \in L(\mathbf{X}, \mathcal{M}, \mu)$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(g_{n}\right)_{n \in \mathbb{N}}$ be sequences of functions in $L(\mathbf{X}, \mathcal{M}, \mu)$. Prove that if $f_{n} \longrightarrow f$ in measure and $g_{n} \longrightarrow g$ in measure, then $f_{n}+g_{n} \longrightarrow f+g$ in measure.
3. (2 pts) Consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ where μ is the counting measure. Let $f \in L(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions in $L(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$. Show that if f_{n} 's and f are integer valued and $f_{n} \rightarrow f$ in L^{1}, then there exists $k \in \mathbb{N}$ such that for all $n \geq k$ we have $f_{n}=f$.
4. (3 pts) Let $(\mathbf{X}, \mathcal{M}, \mu)$ be a probability space. Consider the function

$$
\rho: L(\mathbf{X}, \mathcal{M}, \mu) \times L(\mathbf{X}, \mathcal{M}, \mu) \rightarrow[0,1]
$$

given by

$$
\rho(f, g)=\int_{X} \min \{|f-g|, 1\} d \mu
$$

Let $f \in L(\mathbf{X}, \mathcal{M}, \mu)$ and let $\left(f_{n}\right)$ be a sequence of functions in $L(\mathbf{X}, \mathcal{M}, \mu)$. Show that if $f_{n} \rightarrow f$ in measure, then for all $\epsilon \in \mathbb{R}^{+}$there exists $k \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \geq k$, we have that $\rho\left(f_{n}, f\right)<\epsilon$.

