MATH 501, Analysis, Homework 4

<u>1.</u> (2 pts) Let (X, \mathcal{M}, μ) be a finite measure space and let $f, f_n \in L^1(X, \mathcal{M}, \mu)$ be functions such that $f_n \to f$ uniformly. Prove that $\int_X f_n \ d\mu \to \int_X f \ d\mu$.

2. (2+2 pts) Compute the following limits.

•
$$\lim_{k \to \infty} \int_{[0,1]} \frac{1 + kx^2}{(1 + x^2)^k} d\mathbf{m}$$

•
$$\lim_{n \to \infty} \int_{(0,\infty)} \frac{n \sin(x/n)}{x(1 + x/n)^n} d\mathbf{m}$$

3. (2+2 pts) Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } x \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$

Let $(r_n)_{n\in\mathbb{N}}$ be an enumeration of \mathbb{Q} and consider the measurable function $g:\mathbb{R}\to\overline{\mathbb{R}}$ given by

$$g(x) = \sum_{n=0}^{\infty} \frac{f(x-r_n)}{2^n}$$

Show that

a. $g \in L^1(\mathbb{R}, \mathfrak{L}, \mathbf{m})$

b. The function g is unbounded on every interval.

Solutions