Inflectional Morphology as Syntax

Cem Bozşahin

Computer Eng. & Cognitive Science
Middle East Technical University (METU), Ankara

(currently visiting)

Institute for Communicating & Collaborative Systems
Division of Informatics, University of Edinburgh
Overview

- Examples of bracketing mismatches and phrasal scope of inflections
- Architectures for morphology-syntax-semantics interface
- Morphosyntax: with words or morphemes?
- Morphosyntactic types
- Lexical representation of free/bound morphemes
- Sample derivations of the parser (and performance)
Derivational morphology

- **bracketing mismatches** were first noted in derivational morphology (Williams, 1981)

![Diagram of Gödel number and -ing]

- Gödel number

- Gödel
 - number
 - -ing
Verbal inflection

- The problem arises in inflectional morphology as well

- **West Greenlandic** (Fortescue, 1984)

 Aatsaat tikeraa-nngi-laq
 for.first.time visit-NEG-INDIC/3s
 ‘It is not the first time he has visited.’

- It does not mean ’This is the first time he failed to visit.’
Coordination

- **German** (Müller, 1999)

Wenn *Ihr Lust und noch nichts anderes vor-habt*,
if *you pleasure and yet nothing else intend*

können wir sie ja vom Flughafen abholen
can we them PARTICLE from. the airport pick up

‘If you feel like it and have nothing else planned, we can pick them up at the airport.’

- **semantics:** Ihr Lust habt UND noch nichts anderes vorhabt
Subordination

- **Turkish**

Mehmet Ayşe’nin [duzenli uyu]-ma-ma-sı-na kız-iyor
M.NOM A.-GEN regularly sleep-NEG-INF-AGR-DAT anger-TENSE
’Mehmet is angry with Ayşe for not sleeping regularly.’

not ’Mehmet is constantly angry with Ayşe for not sleeping.’

Mehmet Ayşe’nin kitab-ı oku-ma-sı-nı iste-di
M.NOM A.-GEN book-ACC read-INF-AGR-ACC want-TENSE
’Mehmet wanted Ayşe to read the book.’

- **semantics:** want (read book ayse) mehmet
Relativization

- **Turkish** (Bozsahin, 2002)

- Local and non-local morphosyntactic requirements of rel. noun may be different

Ben Mehmet’ın çocuğ-a/*-u ver-diğ-i kitab-ı oku-du-m
I.NOM M-GEN child-DAT/*ACC give-REL.OP book-ACC read-TENSE-PERS1
’I read the book that Mehmet gave to the child.’

Ben Mehmet’ın kitab-ı ver-diğ-i çocuğ-u/*-a gör-dü-m
I.NOM M-GEN book-ACC give-REL.OP child-ACC/*DAT see-TENSE-PERS1
’I saw the child to whom Mehmet gave the book.’
Lexemic vs. morphemic lexicons

ver-diğ-i :=

\[
\begin{align*}
&\text{LOCAL} \\
&\text{CONTENT} \\
&\text{NONLOCAL} \mid \text{TO-BIND} \mid \text{SLASH}\{\text{II}\} \\
&\text{SUBCAT} \quad <\text{NP[gen]}, 2\text{NP[acc]}, 1\text{NP[dat]} > \\
&\text{MOD} \mid \text{MODSYN} \mid \text{LOCAL} \mid \text{CONT} \mid \text{INDEX} \quad 1 \\
&\text{RELN} \\
&\text{GIVER} \quad 3 \\
&\text{GIVEE} \quad 1 \\
&\text{GIFT} \quad 2 \\
&\text{HEAD} \\
&\text{AGR} \\
&\text{PERSON} \quad 3 \\
&\text{NUMBER} \quad 1 \\
&\text{AGR} \\
&\text{CASE} \\
&\text{third} \\
&\text{sing} \\
&\text{dat} \\
\end{align*}
\]
\[-\ddag \text{-i} := \]
\[
\begin{array}{c}
\text{LOCAL} \\
\text{CAT} \\
\text{CONTENT} \\
\text{NONLOCAL} | \text{INHER} | \text{SLASH} \\
\end{array}
\]

\[
\begin{array}{c}
\text{HEAD} \quad \text{noun}[\text{acc} \text{ or dat}] \\
\leftrightarrow \\
\text{npro} [\text{INDEX} | \Psi] \\
\end{array}
\]
Nominal inflection

- Morphological richness of the language does not seem to be the issue

- English (Carpenter, 1997)

 four **truck-s**

 semantics: four (plu truck)

 alleged thiev-es

 semantics: plu (alleged thief), **not** alleged (plu thief)
Resolving the mismatch

- **semantic combinatorics** may require affixes to have scope larger than the inflected word

- Alternatives for the morphology-syntax-semantics interface
 - Autonomous levels of morphology, syntax, and semantics (e.g. Sadock, 1991)
 - Morphosyntax-driven semantics (Heylen, 1997; Bozsahin, 2002)

- The lexicon can be **morphemic** in either case, but it is a **combinatory morphemic lexicon** in a more lexicalist approach
Inflectional morphology & linguistic theory

- GB (Anderson, 1982) and LFG (Bresnan, 1995) consider inflectional morphology to be part of syntax, (in GB, it is not part of combinatory aspects of grammar)

- MP (Chomsky, 1995) assumes words enter syntax fully inflected (numeration)

- HPSG (Pollard & Sag, 1994) keeps it in the lexicon (lexical rules, or lexical inheritance hierarchy)

- CG work in general (Hoffman, 1995; Heylen, 1997; and others) assumes word-based lexicons, although this is not a theoretical commitment
TLG and inflectional morphology

- Heylen’s (1997, 1999) unary modalities. \(\text{Frau} := \square_{\text{case}} \square_{\text{fem}} \square_{\text{sg}} \square_{\text{3p}} \square_{\text{decl}} \mathcal{N} \)

- Morphosyntactic type assignment is to inflected forms

- Structural rules regulate scope of inflections, e.g. \(\square_{\text{sg}} \square_{\text{case}} \mathcal{N} \) can be turned into \(\square_{\text{case}} \square_{\text{sg}} \mathcal{N} \) by a structural rule

- Some iterative morphological processes challenge the lexical rules for word-based type assignment (e.g. -ki in Turkish)

- A more lexical solution is to have morphemic lexicons and morphosyntactic calculus (i.e. -ki as lexical item)
Syntactic types

• syntactic categories and features

\[N, NP, S \]

feature-decorations, \(NP_{acc}, S_{fin} \)

• But features as such are not part of combinatorics,

unlike e.g. \(NP_{case} \rightarrow \text{Det N Case} \)
Syntactic calculus

Application (<): \[Y : a \quad X \backslash Y : f \quad \Rightarrow \quad X : f \ a \]

Composition (>B): \[X / Y : f \quad Y / Z : g \quad \Rightarrow \quad X / Z : \lambda x . f (g x) \]

Type Raising (>T): \[X : a \quad \Rightarrow \quad T / (T \backslash X) : \lambda f . f [a] \]

Leftward Contraposition (<XP): \[X : a \quad \Rightarrow \quad S_{+t} / (S / X) : \lambda f . f [a] \]
\[S_{+t} / (S_{+t} / X) : \lambda f . f [a] \]

Rightward Contraposition (>XP): \[X : a \quad \Rightarrow \quad S_{-t} \backslash (S \backslash X) : \lambda f . f [a] \]
\[S_{-t} \backslash (S_{-t} \backslash X) : \lambda f . f [a] \]
Morphosyntactic types

- Two kinds of unary modalities on syntactic types

 \(^a \triangleleft X \) (flexible morphosyntactic domain for \(X \) : “up to certain inflectional type”)

 \(^\bowtie X \) (strict domain: “require certain inflectional type”)

- If inflectional paradigm is Stem-Number-Case,

 \(^\bowtie N \) stands for case-marked nouns

 \(^c \triangleleft N \) stands for noun stems, number-marked, and case-marked nouns
• Lattice $L = (\mathcal{D}, \leq, =)$

• The set of basic morphosyntactic types: \mathcal{A}_{ms}

 $\downarrow i X \in \mathcal{A}_{ms}$ and $\diamondsuit X \in \mathcal{A}_{ms}$ if $i \in \mathcal{D}$ and $X \in \mathcal{A}_s$ (\mathcal{A}_s: syntactic types)

• The set of complex morphosyntactic types: \mathcal{B}_{ms}

 $\mathcal{A}_{ms} \subseteq \mathcal{B}_{ms}$

 If $X \in \mathcal{B}_{ms}$ and $Y \in \mathcal{B}_{ms}$, then $X\backslash Y$ and $X/Y \in \mathcal{B}_{ms}$
Lattice of diacritics (inflectional types)

- Inclusion of domains is specified in a language-particular lattice

 This comes in handy for specifying morphotactics as well

- More importantly, it allows morphosyntactic types to pick semantic domains independent of surface attachment

- All of this is specified in the lexical entry

 attachment type, morphosyntactic type, diacritic, semantic type
Morphosyntactc lexicon & grammar

- \(-\text{PLU} := a \circ s - n \triangleleft N \triangleleft b N: \lambda x.\text{plu} x\)

- Forward Application (\(\rightarrow\)):

\[
\begin{align*}
\circ s_1 & \rightarrow X / \alpha_1^i Y: f \\
\circ s_2 & \rightarrow \alpha_2^j Y: a \\
\circ (s_1 \bullet s_2) & \rightarrow X: fa
\end{align*}
\]

if \(\alpha_2 \sqcap_1 \alpha_1\) in lattice \(L\), for:

- \(\sqcap_1, \sqcap_2 \in \{\sqcap, \triangleleft\}\),
- \(\alpha_1, \alpha_2 \in D\) in \(L\),
- \(i, j, k \in \{a, s, c\}\),
- \(\circ_i \circ_j \vdash_a \circ_k\)
four boy -s

\[n \downarrow N / n \uparrow N \]
\[b \downarrow N \]
\[n \downarrow N \backslash b \downarrow N \]

\[n \uparrow N: \text{plu boy} \]

\[n \downarrow N: \text{four(boy)} \]

four boy -s

\[n \downarrow N: \text{four boy} \]

because n-base \(\neq \) n-num

\[n \downarrow N: * \text{plu(four boy)} \]
toy gun -s

\begin{align*}
\triangleright N / \triangleleft N & \quad \triangleright N: \text{plu gun} \\
\end{align*}

\begin{align*}
\triangleright N \text{: *toy(plu gun)} \\
\text{because } n\text{-num} \not\subseteq n\text{-base}
\end{align*}

\begin{align*}
\triangleright N / \triangleleft N & \quad \triangleright N \quad \triangleleft N \quad \triangleleft N \\
\triangleright N: \text{toy gun} \\
\end{align*}

\begin{align*}
\triangleright N \text{: plu(toy gun)}
\end{align*}
'This is not the first time he visited.'
Aatsaat
for.the.first.time
tikeraa
visit
-nngi
-NEG

\((i \triangleright S \triangleright f \triangleright NP)/(i \triangleright S \triangleright f \triangleright NP)\)

\(v \triangleright S \triangleright f \triangleright NP\)

\(\triangleright S \triangleright f \triangleright NP\)

because \(n \not\leq i\)
'The child forgot to give the pen to the girl.'
'Themantowhomthechildgavethebookslept.'
completely destroy -ed

\[(\langle S \langle f \text{ NP}/ \langle S \langle f \text{ NP}/ (\langle S \langle f \text{ NP}/ \langle S \langle f \text{ NP}/ \langle f \text{ NP} \rightarrow B \\
\langle S \langle f \text{ NP}/ \langle f \text{ NP} \leftarrow B \times \\
\langle S \langle f \text{ NP}/ \langle f \text{ NP} \]

*completely did destroy

\[(\langle S \langle f \text{ NP}/ \langle S \langle f \text{ NP}/ \langle f \text{ NP} \rightarrow B \\
\langle S \langle f \text{ NP}/ \langle f \text{ NP} \]

because \(t \nless v \)
did destroy completely

\[
(\overset{t}{S} \overset{f}{NP})/ (\overset{v}{S} \overset{f}{NP}) \rightarrow (\overset{v}{S} \overset{f}{NP})/ \overset{f}{NP} \rightarrow (\overset{v}{S} \overset{f}{NP})/ (\overset{v}{S} \overset{f}{NP})<B_x
\]

\[
(\overset{v}{S} \overset{f}{NP})/ \overset{f}{NP} \rightarrow (\overset{t}{S} \overset{f}{NP})/ \overset{f}{NP} \rightarrow (\overset{v}{S} \overset{f}{NP})/ (\overset{v}{S} \overset{f}{NP})<B_x
\]

\[
(\overset{t}{S} \overset{f}{NP})/ \overset{f}{NP} \rightarrow (\overset{v}{S} \overset{f}{NP})/ (\overset{v}{S} \overset{f}{NP})<B_x
\]
Experiments with the CKY parser

- a 21-morpheme sentence (12 words) parsed in 2.9 seconds

 37-morphemes (20 words) in 40 seconds

- Güngördü & Oflazer’s LFG parser takes 10 seconds/sentence with 24,000 word lexicon

- separate morphological analyzers deliver 2 to 5 analyses/second (Oflazer, 1996; Komagata, 1997)

- 2.8 morphemes/word on the average including derivations (Turkish)

 less than 2 inflections/word (Oflazer et. al, 2001)
<table>
<thead>
<tr>
<th>Sample text type</th>
<th>Number of items in text</th>
<th>Avg. number of parses/gram. input</th>
<th>Avg. CPU time per test (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tests</td>
<td>words</td>
<td>morphs</td>
</tr>
<tr>
<td>Word order & case</td>
<td>58</td>
<td>216</td>
<td>384</td>
</tr>
<tr>
<td>Subordination</td>
<td>14</td>
<td>70</td>
<td>137</td>
</tr>
<tr>
<td>Relativization</td>
<td>23</td>
<td>130</td>
<td>232</td>
</tr>
<tr>
<td>Control verbs</td>
<td>33</td>
<td>147</td>
<td>291</td>
</tr>
<tr>
<td>Possessives & compounds</td>
<td>26</td>
<td>109</td>
<td>200</td>
</tr>
<tr>
<td>Adjuncts</td>
<td>14</td>
<td>57</td>
<td>100</td>
</tr>
<tr>
<td>-ki relatives</td>
<td>24</td>
<td>66</td>
<td>179</td>
</tr>
</tbody>
</table>
Conclusion

- The key to integration of inflectional morphology and syntax is granting representational status to morphemes

- Morphosyntactic mismatches do not necessitate multi-tiered grammars

- Lexical items can be smaller or larger than words, and project their own semantic domains and attachment characteristics

- Loss of efficiency is tolerable up to medium-length sentences

- Modular grammar-lexicon