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Abstract: A judicious application of the Berry-Esseen theorem via suitable Augustin information measures is demon-

strated to be sufficient for deriving the sphere packing bound with a prefactor that is Ω
(
n−0.5(1−E′

sp(R))
)

for all codes on

certain families of channels (including the Gaussian channels and the nonstationary Rényi symmetric channels) and for
the constant composition codes on stationary memoryless channels. The resulting nonasymptotic bounds have definite
approximation error terms. As a preliminary result that might be of interest on its own, the trade-off between type I
and type II error probabilities in the hypothesis testing problem with (possibly non-stationary) independent samples
is determined up to some multiplicative constants, assuming that the probabilities of both types of error are decaying
exponentially with the number of samples, using the Berry-Esseen theorem.

Key words: Hypothesis testing, Berry-Esseen theorem, sphere packing bound, Augustin information measures, constant
composition codes, Renyi symmetry, Gaussian channels

1. Introduction
The decay of the optimal error probability with the block length for rates below the channel capacity has been
studied since the early days of the information theory. For certain channels and for certain values of the rate,
sharp bounds were found early on. Elias in [19] for the binary symmetric channel, Shannon ∗ in [43] for the
additive Gaussian noise channel, and Dobrushin in [16] for the strongly symmetric channels (see the original
publication in Russian to avoid typos present in the translation) proved that

P (n)
e = Θ

(
n−

1−E′
sp(R)

2 e−nEsp(R)

)
∀R ∈ [Rcrit,C), (1.1)

where † an = Θ (bn) iff 0 < lim inf
n→∞

∣∣∣an

bn

∣∣∣ ≤ lim sup
n→∞

∣∣∣an

bn

∣∣∣ < ∞ , Esp(·) is the sphere packing exponent of the

channel, E ′
sp(·) is its derivative with respect to the rate, Rcrit is the rate at which the slope of the sphere

packing exponent curve is minus one, i.e., E ′
sp(Rcrit) = −1 , and C is the capacity of the channel. On the other

∗Correspondence: bnakib@metu.edu.tr
2010 AMS Mathematics Subject Classification: 94A02
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∗The equivalence of the bounds in [43] to (1.1) is proved in Appendix C.
†In this section, we suppress the dependence of the sphere packing exponent to the channel in our notation and denote it by

Esp(R) , rather than Esp(R,W ) .
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hand, Elias proved in [19] for the binary erasure channels that

P (n)
e = Θ

(
n− 1

2 e−nEsp(R)
)

∀R ∈ [Rcrit,C). (1.2)

Neither (1.1), nor (1.2), holds for rates below the critical rate. If, however, we replace the equality sign
with the greater than or equal to sign, then both (1.1) and (1.2) hold for all rates below the channel capacity.
These lower bounds are customarily called sphere packing bounds (SPBs) because of the techniques used in
their original derivations.

Derivations of the SPB in [16, 19, 43] relied on the geometric structure of the output space of the channel
and parameters that can be defined only for some models. The resulting bounds were expressed in terms of
these parameters, as well. Thus, it was not even clear that SPBs in[16, 19, 43] can be interpreted as specific
instances of a general bound. The evidence for such an interpretation came not from a breakthrough about the
lower bounds on the error probability but from a breakthrough about the upper bounds. Gallager’s seminal
work [23] unified and generalized the upper bounds on the error probability, at least in terms of the exponent,
in all the previous studies. It is only with Gallager’s formulation in [23] that one can express the bounds in
[16, 19, 43] as (1.1) and (1.2).

The first complete proof of the SPB for arbitrary discrete stationary product channels ∗ (DSPCs) was
presented in [44]. According to [44, Thm. 2]

P (n)
e ≥ e−n[Esp(R−O(n−1/2))+O(n−1/2)] ∀R ∈ (0,C),

where an = O (bn) iff there exists a K ∈ R+ such that |an | ≤ Kbn for all n large enough. In the following
two years, the SPB was proved first for stationary product channels with finite input sets in [26] and then
for (possibly) nonstationary product channels in [5]. Since then, the SPB has been proven for various channel
models in [4, 6, 9, 13–15, 18, 24, 32–34, 38–41, 50], including some quantum information theoretic ones. However,
it is worth noting that a general proof that holds for both Gaussian channels (considered in [18, 41, 43]) and
for arbitrary DSPCs (considered in [44]) was absent until recently, see [33] and [34]. These later works on the
SPB, i.e., [4–6, 9, 13–15, 18, 24, 26, 32–34, 38–41, 44, 50], were primarily interested in establishing the right
exponential decay rate; thus, they were content with prefactors of the form e−o(n) , where an = o (bn) iff for
all ϵ>0 the inequality |an | ≤ ϵbn holds for all n large enough. Some authors did obtain prefactors of the form

e−O(
√
n) or e−O(lnn) , but obtaining the best possible –if not tight– prefactor was not an actual concern.
The quest for deriving SPBs with tight prefactors was put on the map again by Altuğ and Wagner in [1]

and [2]. According to [1, Thm. 1] for any DSPC with a Gallager symmetric † probability transition matrix W

with positive entries and rate R in (0,C) , there exists an A ∈ R+ such that for any ϵ > 0

P (n)
e ≥ An−

1−(1+ϵ)E′
sp(R)

2 e−nEsp(R) ∀n ≥ n0

for some n0 determined by W , R , and ϵ . The corresponding result was established for the constant composition
codes on arbitrary DSPCs in [2, Thm. 1]. These results are generalized to classical-quantum channels in [10,
Thms. 8 and 14], with a slight improvement, allowing ϵ = 0 for the symmetric channels.

∗These channels are customarily called discrete memoryless channels, i.e., DMCs. We call them DSPCs in order to underline
the stationarity of these channels and the absence of any constraints on their input sets. In principle, such constraints might exist
and stationarity might be absent in a discrete channel that is memoryless.

†The condition for Gallager symmetry is described in [24, p. 94]. The binary symmetric channel, the binary erasure channel,
and channels considered in [16] are symmetric according to this definition.
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The primary tool for the derivations in [1, 2, 10] is the Berry-Esseen theorem, albeit through certain
auxiliary results inspired by a theorem of Bahadur and Rao [7], i.e., [1, (74)], [2, Proposition 5], and [10, Thm.
17]. Our main aim in this paper is to demonstrate that the analysis can be simplified and the results can be
strengthened and generalized through a more judicious application of the Berry-Esseen theorem via suitable
Augustin information measures.

[19] and [43] not only established (1.1) and (1.2) but also obtained closed-form expressions for the upper
and lower bounds implicit in (1.1) and (1.2). Dobrushin went one step further and calculated the exact
asymptotic behavior of the SPB and the random coding bound by analyzing asymptotic behavior for the
lattice and nonlattice cases separately for random variables used to derive the SPB and the random coding
bound, see [16, (1.32), (1.33), (1.34)]. Recently, the saddle point approximation is used to derive the SPB with
the same asymptotic prefactor [48, Corollary 2], under weaker symmetry hypothesis, ∗ albeit by assuming a
common support for all output distributions of the channel and a nonlattice structure for the random variables
involved. † The main drawback of the analysis in [48] is the technical conditions that need to be confirmed for
applying the saddle point approximation via [29, Proposition 2.3.1].

Remark 1.1 The proof of [48, Corollary 2] holds only for channels whose Augustin center does not change
with the order, i.e., for W ’s for which ∃q such that qα,W = q for all α ∈ (0, 1) . Note that for the channels
that violate this additional hypothesis, the O

(
n−1/2

)
approximation error terms in [48, (30)] are ρ dependent

because of the implicit Q dependence of the O
(
n−1/2

)
approximation error terms in [48, (12) and (13)]. In

order to recover a result similar to [48, Corollary 2] for a channel whose Augustin center changes with the
order, one needs a saddle point approximation that holds for a parametric family of i.i.d. sequences of random
variables, such as [30, Proposition 1], rather than [48, Lemma 2], which holds for a single i.i.d sequence of
random variables.

Let us finish this section with an overview of the paper. In Section 2, we describe our model and
notation. In Section 3, first, we recall the connection between the hypothesis testing problem and the tilting,
then we derive our primary technical tool using the Berry-Esseen theorem. In Section 4, we review Augustin’s
information measures and the sphere packing exponent. In Section 5, we state and prove refined SPBs for
various models using Lemma 3.4 and the observations recalled in Section 4. We conclude our presentation with
a brief discussion of the results, recent developments, and future work in Section 6.

2. Model and notation
For any set X , we denote the set of all probability mass functions that are nonzero only on finitely many
elements of X by P(X) . For any measurable space (Y,Y) , we denote the set of all probability measures on it
by P(Y) . We denote the expected value of a measurable function f under the probability measure µ by Eµ[f ] .
Similarly, we denote the variance of f under µ , i.e., Eµ

[
(f −Eµ[f ])

2
]
, by Vµ[f ] .

For sets X1, . . . ,Xn we denote their Cartesian product by Xn
1 and for σ -algebras Y1, . . . ,Yn we denote

their product by Yn
1 . We use the symbol ⊗ to denote the product of measures.

∗The binary input Gaussian channel and the binary erasure channel satisfy the symmetry hypothesis of [48], but not that of
[16].

†Neither of these assumptions was needed while deriving this result in [16].
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A channel W is a function from the input set X to the set of all probability measures on the output space
(Y,Y) :

W : X → P(Y).

A channel W is called a discrete channel if both X and Y are finite sets. The product of Wt : Xt → P(Yt)

for t ∈ {1, . . . ,n} is a channel of the form W[1,n] : X
n
1 → P(Yn

1 ) satisfying

W[1,n](x
n
1 ) =

⊗n

t=1
Wt(xt) ∀xn

1 ∈ Xn
1 .

Any channel obtained by curtailing the input set of a length n product channel is called a length n memoryless
channel. A product channel W[1,n] is stationary iff Wt = W for all t ’s for some W . On a stationary channel,
we denote the composition (i.e., the empirical distribution, the type) of each xn

1 by Υ (xn
1 ) ; thus Υ (xn

1 ) ∈ P(X) .
The pair (Ψ,Θ) is an (M,L) channel code on W[1,n] iff

• The encoding function Ψ is a function from the message set M≜ {1, 2, . . . ,M} to the input set Xn
1 .

• The decoding function Θ is a Yn
1 -measurable function from the output set Yn

1 to the set M̂≜ {L : L ⊂
M and |L| ≤ L} .

Given an (M,L) channel code (Ψ,Θ) on W[1,n] , the conditional error probability Pm
e for m ∈ M and the

average error probability Pe are defined as

Pm
e ≜EW[1,n](Ψ(m))

[
1{m /∈Θ(Yn

1 )}
]
,

Pe≜ 1
M

∑
m∈M

Pm
e .

An encoding function Ψ –hence the corresponding code– on a stationary product channel, satisfies an empirical
distribution constraint A ⊂ P(X) iff the composition of all of its codewords are in A , i.e., iff Υ (Ψ(m)) ∈ A for
all m ∈ M . A code is called a constant composition code iff all of its codewords have the same composition,
i.e., there exists a p in P(X) satisfying Υ (Ψ(m)) = p for all m ∈ M .

3. Hypothesis testing problem and Berry-Esseen theorem
Our primary aim in this section is to characterize –up to a multiplicative constant– the asymptotic behavior of
type I error probability with the number of samples for a hypothesis testing problem between product measures,
when type II error probability is decaying exponentially. We use the Berry-Esseen theorem via the concepts
of Rényi divergence and tilted probability measure to do that. First, let us recall the definitions of the Rényi
divergence and the tilted probability measure.

Definition 3.1 For any α ∈ R+ and w , q ∈ P(Y) , the order α Rényi divergence between w and q is

Dα(w∥ q)≜
{

1
α−1 ln

∫
(dwdν )

α(dqdν )
1−αν(dy) α ̸= 1∫

dw
dν

[
ln dw

dν − ln dq
dν

]
ν(dy) α = 1

,

where ν is any measure satisfying w≺ν and q≺ν .
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The order one Rényi divergence is the Kullback-Leibler divergence. For other orders, the Rényi divergence can
be characterized in terms of the Kullback-Leibler divergence too:

(1− α)Dα(w∥ q) = infv∈P(Y) αD1(v∥w) + (1− α)D1(v∥ q) (3.1)

with the convention that αD1(v∥w) + (1− α)D1(v∥ q) = ∞ if it would be otherwise undefined, see [20, Thm.
30]. The characterization given in (3.1) is related to another key concept of our analysis: the tilted probability
measure.

Definition 3.2 For any α ∈ R+ and w , q ∈ P(Y) satisfying Dα(w∥ q) < ∞ , the order α tilted probability
measure wq

α is
dwq

α

dν ≜ e(1−α)Dα(w∥q)(dwdν )
α(dqdν )

1−α.

If either α is in (0, 1) or D1(w
q
α∥w) is finite, then the tilted probability measure is the unique probability

measure achieving the infimum in (3.1) by [20, Thm. 30], i.e.,

(1− α)Dα(w∥ q) = αD1(w
q
α∥w) + (1− α)D1(w

q
α∥ q) . (3.2)

Furthermore, under the same hypothesis the identities

ln
dwq

α

dq −D1(w
q
α∥ q) = α

(
ln dwac

dq −Ewq
α

[
ln dwac

dq

])
, (3.3)

ln
dwq

α

dw −D1(w
q
α∥w) = (α− 1)

(
ln dwac

dq −Ewq
α

[
ln dwac

dq

])
, (3.4)

hold wq
α -a.s., where wac is the component of w that is absolutely continuous in q .
Let us proceed with recalling the Berry-Esseen theorem.

Lemma 3.3 ([8, 21, 45]) Let {ξt}t∈Z+ be independent zero mean random variables satisfying
∑n

t=1 E
[
ξt

2
]
<

∞ . Then there exists an absolute constant ω ≤ 0.5600 satisfying∣∣∣P[∑n

t=1
ξt < τ

]
− Φ

(
τ√
a2n

)∣∣∣ ≤ ω a3

a2
√
a2n

∀τ ∈ R ,

where aκ = 1
n

∑n
t=1 E[|ξt |

κ
] and Φ (s) = 1√

2π

∫ s

−∞ e−z2/2dz .

Lemma 3.4, in the following, characterizes the trade-off between type I and type II error probabilities for
a hypothesis testing problem with independent samples, assuming that both error probabilities are decaying at
least exponentially with the number of samples. Lemma 3.4, which is derived using the Berry-Esseen theorem,
can be interpreted as a refinement of [44, Thm. 5], which is derived using Chebyshev’s inequality.

Lemma 3.4 For any α ∈ (0, 1) , n ∈ Z+ , wt , qt ∈ P(Yt) , let wt,ac be the component of wt that is absolutely
continuous in qt and let a2 , a3 , and ∆ be

a2≜ 1
n

∑n

t=1
Ewq

α

[(
ln

dwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

])2
]
,

a3≜ 1
n

∑n

t=1
Ewq

α

[∣∣∣ln dwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

]∣∣∣3] ,
∆≜ exp

(
2
√
2πe

(
0.56a3

a2
+

√
a2

))
,
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where w = ⊗n
t=1wt and q = ⊗n

t=1qt . Then for any E ∈ Yn
1 and β ≥ n−1/2e−α

√
a2n , satisfying q(E) ≤

βe−D1(w
q
α∥q) , we have

w(Yn
1 \ E) ≥ ∆α−1β

α−1
α n− 1

2α e−D1(w
q
α∥w) (3.5)

provided that β ≤ ∆−αn−1/2eα
√
a2n . Furthermore, for any α ∈ (0, 1) and β ∈ R+ , there exists an event E ∈ Yn

1

such that
q(E) ≤ βe−D1(w

q
α∥q), (3.6)

w(Yn
1 \ E) ≤

[
1∨

√
8πa2

4πa2
ln∆

] 1
α (αβ)

α−1
α

1−α n− 1
2α e−D1(w

q
α∥w). (3.7)

Proof [Proof of Lemma 3.4] Let the random variables ξt and ξ and the event B be

ξt≜ ln
dwt,ac

dqt
, ξ≜

∑n

t=1
ξt , B≜

{
yn
1 : τ0 ≤ ξ −Ewq

α
[ξ] ≤ τ1

}
.

Thus ξ = ln dwac

dq holds q -a.s. by the definitions of ξt and ξ . Hence (3.3), (3.4), and the definition of B imply
that

B =
{
yn
1 : ατ0 ≤ ln

dwq
α

dq −D1(w
q
α∥ q) ≤ ατ1

}
,

=
{
yn
1 : (1− α)τ0 ≤ D1(w

q
α∥w)− ln

dwq
α

dw ≤ (1− α)τ1

}
.

Thus for any E ∈ Yn
1 , we have

wq
α(E ∩B) ≤ q(E)eD1(w

q
α∥q)+ατ1 , (3.8)

w(Yn
1 \ E) ≥ wq

α(B \ E)e−D1(w
q
α∥w)+(1−α)τ0 . (3.9)

On the other hand, ξt ’s are jointly independent under the tilted probability measure wq
α . Thus the

Berry-Esseen theorem, given in Lemma 3.3, implies

wq
α(B) ≥ Φ

(
τ1√
a2n

)
− Φ

(
τ0√
a2n

)
− 2 0.56√

n
a3

a2
√
a2

= 1√
2π

∫ τ1√
a2n

τ0√
a2n

e−z2/2dz − 2 0.56√
n

a3

a2
√
a2

≥ 1√
2π

e−
(|τ0|∨|τ1|)2

2na2
τ1−τ0√

a2n
− 2 0.56√

n
a3

a2
√
a2
.

If we set τ0 = − 2 ln β+lnn
2α − ln∆ and τ1 = − 2 ln β+lnn

2α , then −√
a2n ≤ τ0 ≤ τ1 ≤ √

a2n by the hypothesis and

wq
α(B) ≥ 2√

n
.

Furthermore, wq
α(E∩B) ≤ 1√

n
as a result of (3.8), eατ1 = 1

β
√
n

, and the hypothesis q(E) ≤ βe−D1(w
q
α∥q) . Thus

wq
α(B \ E) ≥ 1√

n
. Then using (3.9) and e(1−α)τ0 = β

α−1
α n

α−1
2α ∆α−1 we get

w(Yn
1 \ E) ≥ 1√

n
e−D1(w

q
α∥w)+(1−α)τ0

= ∆α−1β
α−1
α n− 1

2α e−D1(w
q
α∥w).
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Remark 3.5 While deriving bounds similar to (3.5), the constants τ0 and τ1 are usually assumed to satisfy
τ0 = −τ1 , see for example [44, Thm. 5] or [10, Thm. 11]. Such a choice, however, does not lead to tight bounds
in our case.

To establish the existence of an event satisfying both (3.6) and (3.7), let us consider the event E given
in the following

E≜
{
yn
1 : ξ ≥ Ewq

α
[ξ] + γ

}
∪
{
yn
1 : dq

dν = 0 & dw
dν > 0

}
, (3.10)

where γ is a real number to be determined later and ν is any measure satisfying both w≺ν and q≺ν .

Remark 3.6 The random variable ξ is defined only for yn
1 ’s with a positive dq

dν . Thus one can define ξ to be

infinite for yn
1 ’s satisfying both dq

dν = 0 and dw
dν > 0 , and define the event E to be the event that ξ is greater

than or equal to Ewq
α
[ξ] + γ .

For the event E defined in (3.10), as a result of (3.3) we have

q(E) = Eq

[
1{ξ≥Ew

q
α
[ξ]+γ}

]
= e−D1(w

q
α∥q)Ewq

α

[
1{ξ≥Ew

q
α
[ξ]+γ}e

−α(ξ−Ew
q
α
[ξ])

]
≤ e−D1(w

q
α∥q)−αγ

∑∞

κ=0
wq
α(Eκ)e

−ακ, (3.11)

where the event Eκ is defined for each κ ∈ Z to be

Eκ≜ {yn
1 : γ + κ ≤ ξ −Ewq

α
[ξ] < γ + κ+ 1}.

On the other hand, we can bound wq
α(Eκ) uniformly for all integers κ using the Berry-Esseen theorem, i.e.,

Lemma 3.3, as follows

wq
α(Eκ) ≤ Φ

(
γ+κ+1√

a2n

)
− Φ

(
γ+κ√
a2n

)
+ 2 0.56√

n
a3

a2
√
a2

≤ 1√
n

(
1√
2πa2

+ 2 0.56a3

a2
√
a2

)
. (3.12)

For γ = 1
α ln

[
1√
n

(
1√
2πa2

+ 2 0.56a3

a2
√
a2

)
β−1

1−e−α

]
, (3.6) follows from (3.11), (3.12), and

∑∞
κ=0 e

−ακ = 1
1−e−α .

w(Yn
1 \ E) is bounded following a similar analysis, by invoking (3.4), instead of (3.3):

w(Yn
1 \ E) = Ew

[
1{ξ<Ew

q
α
[ξ]+γ}

]
= e−D1(w

q
α∥w)Ewq

α

[
1{ξ<Ew

q
α
[ξ]+γ}e

(1−α)(ξ−Ew
q
α
[ξ])

]
≤ e−D1(w

q
α∥w)+(1−α)γ

∑−∞

κ=−1
wq
α(Eκ)e

(κ+1)(1−α)

≤ e−D1(w
q
α∥w)+(1−α)γ 1

1−eα−1 supκ∈Z− wq
α(Eκ).
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Invoking first (3.12) and then 1
1−eα−1 (1− e−α)

α−1
α ≤ 1

1−αα
α−1
α e

1
2α we get,

w(Yn
1 \ E) ≤ e−D1(w

q
α∥w)β

α−1
α 1

1−eα−1 (1− e−α)
α−1
α

[
1√
n

(
1√
2πa2

+ 2 0.56a3

a2
√
a2

)] 1
α

≤ e−D1(w
q
α∥w) 1

1−α (βα)
α−1
α

[
2
√
e√

na2

(
1√
8π

+ 0.56a3

a2

)] 1
α

.

Then (3.7) follows from
(

1√
8π

+ 0.56a3

a2

)
≤ 1∨

√
8πa2

8π
√
a2e

ln∆ . 2

Lemma 3.4 characterizes the asymptotic behavior of the trade-off between the optimal type I and type II

error probabilities for a hypothesis testing problem with independent samples: Pe
(n)
II is Θ

(
n− 1

2α e−D1(w
q
α∥w)

)
whenever Pe

(n)
I is Θ

(
e−D1(w

q
α∥q)) . For the stationary case, i.e., when wt = w1 , qt = q1 for all t , Csiszár and

Longo [12] described how (3.3) and (3.4) can be used together with an earlier result by Strassen, [46, Thm.

1.1], to characterize the exact asymptotic behavior of Pe
(n)
II for the case when Pe

(n)
I = e−D1(w

q
α∥q) , i.e.,

Pe
(n)
II = (K + o (1))n− 1

2α e−D1(w
q
α∥w) , with some minor inaccuracies discussed in Remark 3.7. One does not need

to rely on [46, Thm. 1.1] of Strassen to characterize this exact asymptotic behavior. The Berry-Esseen theorem,
however, is not sufficient for determining the value of the constant K . In order to determine the constant K ,
one needs to invoke either finer characterizations of the asymptotic behavior of sums of independent random
variables (such as the ones in [22, §IV.2,§IV.3], [25, §42,§43]) or apply other techniques (such as the saddle
point approximation described in [29, Prop. 2.3.1]). It is worth noting that both of these approaches require
hypotheses stronger than that of the Berry-Esseen theorem. The situation is similar for other values of α , but
of no interest for our discussion of the sphere packing bound.

Remark 3.7 We believe the approach of [12] is sound. Its calculations, however, seem to have some mistakes.

Repeating the calculations as described in [12], we recover the second line of [12, (33)] as ln α∗

1−α∗ −
lnS1

√
2π

α∗ +o (1) .
With this modification [12, Thm. 2] is consistent with the intimately related results about the SPB proved earlier
[16, (1.32), (1.33)] and since then [48, (38)].

4. Augustin’s information measure and the sphere packing exponent

The ultimate aim of this section is to define the sphere packing exponent and review the properties of it that
will be useful in our analysis. For that, we first recall the definitions of Augustin’s information measures and
review their elementary properties.

4.1. Augustin’s information measures

Let us start by recalling the definition of the conditional Rényi divergence.

Definition 4.1 For any α ∈ R+ , W : X → P(Y) , q ∈ P(Y) , and p ∈ P(X) the order α conditional Rényi
divergence for the input distribution p is

Dα(W ∥ q | p)≜
∑

x∈X
p(x )Dα(W (x )∥ q) .
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Definition 4.2 For any α ∈ R+ , W : X → P(Y) , and p ∈ P(X) the order α Augustin information for the
input distribution p is

Iα(p;W)≜ infq∈P(Y) Dα(W ∥ q | p) .

The infimum is achieved by a unique probability measure ∗ qα,p , called the order α Augustin mean for the
input distribution p , by [35, Lemma 13]. Furthermore,

D1∨α(qα,p∥ q) ≥ Dα(W ∥ q | p)− Iα(p;W) ≥ D1∧α(qα,p∥ q)

for all q ∈ P(Y) by [35, Lemma 13], as well.
The Augustin information is continuously differentiable in its order on R+ , and its derivative is given by

∂
∂α Iα(p;W) =

{
1

(α−1)2D1

(
W

qα,p
α

∥∥W ∣∣ p) α ̸= 1∑
x

p(x)
2 VW (x)

[
ln dW (x)

dq1,p

]
α = 1

(4.1)

by [35, Lemma 17-(e)], where W
qα,p
α is the tilted channel defined as follows.

Definition 4.3 For any α ∈ R+ , W : X → P(Y) and q ∈ P(Y) , the order α tilted channel W q
α is a function

from {x : Dα(W (x )∥ q) < ∞} to P(Y) given by

dW q
α(x)
dν ≜ e(1−α)Dα(W (x)∥q)

(
dW (x)

dν

)α (
dq
dν

)1−α

. (4.2)

The tilted channel can be used to express Iα(p;W) in terms of the Kullback-Leibler divergences using † [35,
Lemma 13-(e)]:

Iα(p;W) = α
1−αD1(W

qα,p
α ∥W | p) +D1(W

qα,p
α ∥ qα,p | p) . (4.3)

Furthermore, the Augustin mean satisfies ∑
x
p(x )W qα,p

α (x ) = qα,p (4.4)

and Augustin mean is the only probability measure satisfying both q1,p≺q and
∑

x p(x )W
q
α (x ) = q by [35,

Lemma 13], where q1,p =
∑

x p(x )W (x ) . Thus for all α ∈ R+ we have

D1(W
qα,p
α ∥ qα,p | p) = I1(p;W

qα,p
α ) . (4.5)

Definition 4.4 For any α ∈ R+ , W : X → P(Y) , and A ⊂ P(X) , the order α Augustin capacity of W for
the constraint set A is

Cα,W ,A≜ supp∈A Iα(p;W) . (4.6)

When the constraint set A is the whole P(X) , we denote the order α Augustin capacity by Cα,W , i.e.,
Cα,W≜Cα,W ,P(X) .

∗We refrain from including the channel symbol W in the symbol for the Augustin mean because the channel will be clear from
the context.

†It is worth noting that (4.3) follows from (3.2) and Iα(p;W) = Dα(W ∥ qα,p | p) for α values in (0, 1) .
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Using the definitions of the Augustin information and capacity, we obtain the following expression for the latter

Cα,W ,A = supp∈A infq∈P(Y) Dα(W ∥ q | p) . (4.7)

If A is convex, then the order of the supremum and the infimum can be changed as a result of [35, Thm. 1]:

supp∈A infq∈P(Y) Dα(W ∥ q | p) = infq∈P(Y) supp∈A Dα(W ∥ q | p) . (4.8)

If in addition Cα,W ,A is finite, then there exists a unique probability measure qα,W ,A , called the order α

Augustin center of W for the constraint set A , satisfying

Cα,W ,A = supp∈A Dα(W ∥ qα,W ,A| p) (4.9)

by [35, Thm. 1].
We denote the set of all probability mass functions satisfying a cost constraint ϱ by A(ϱ) , i.e.

A(ϱ)≜ {p ∈ P(X) : Ep [ρ] ≤ ϱ}. (4.10)

With a slight abuse of notation, we denote the cost-constrained Augustin capacity Cα,W ,A(ϱ) by Cα,W ,ϱ , as
well. A more detailed discussion of Augustin’s information measures can be found in [35].

4.2. The sphere packing exponent

Definition 4.5 For any W : X → P(Y) , A ⊂ P(X) , and R ∈ R+ , the sphere packing exponent (SPE) is

Esp(R,W ,A)≜ supα∈(0,1)
1−α
α (Cα,W ,A − R) . (4.11)

When the constraint set A is the whole P(X) , we denote SPE by Esp(R,W ) , i.e. Esp(R,W )≜Esp(R,W ,P(X)) .

With a slight abuse of notation, we denote SPE for A(ϱ) by Esp(R,W , ϱ) and SPE for A = {p} case
by Esp(R,W , p) . Note that as a result of definitions of Augustin capacity and the SPE we have

Esp(R,W ,A) = supp∈A Esp(R,W , p) . (4.12)

Furthermore, since Iα(p;W) is continuously differentiable in α by [35, Lemma 17-(e)], we can apply the
derivative test to find the optimal α in (4.11) for A = {p} case: using (4.1) and (4.3) we get

∂
∂α

1−α
α (Iα(p;W)− R) = 1

α2 (R −D1(W
qα,p
α ∥ qα,p | p)) . (4.13)

On the other hand, either D1

(
W

qα,p
α

∥∥ qα,p∣∣ p) = I1(p;W) for all positive orders α , or D1

(
W

qα,p
α

∥∥ qα,p∣∣ p) is
increasing and continuous in the order α on R+ by [35, Lemma 17-(f)]. Furthermore, D1

(
W

q1,p
1

∥∥ q1,p∣∣ p)
is equal to I1(p;W) by definition and limα↓0 D1

(
W

qα,p
α

∥∥ qα,p∣∣ p) is equal to limα↓0 Iα(p;W) by (4.5) and [35,
Lemma 17-(g)]. Thus for any rate R in (limα↓0 Iα(p;W) , I1(p;W)) there exists an order α∗ ∈ (0, 1) satisfying

R = D1

(
W

qα∗,p

α∗

∥∥ qα∗,p∣∣ p) (4.14)

by the intermediate value theorem [42, 4.23]. The order α∗ satisfying (4.14) is unique because D1

(
W

qα,p
α

∥∥ qα,p∣∣ p)
is increasing in α . The monotonicity of D1

(
W

qα,p
α

∥∥ qα,p∣∣ p) in α and (4.13) also imply Esp(R,W , p) =

1−α∗

α∗ (Iα∗(p;W)− R) . Thus as a result of (4.3), the unique α∗ satisfying (4.14) also satisfies

Esp(R,W , p) = D1

(
W

qα∗,p

α∗

∥∥W ∣∣ p) . (4.15)
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Since D1

(
W

qα,p
α

∥∥ qα,p∣∣ p) is continuous and increasing in α , its inverse is increasing and continuous, as well.
Thus the definition of SPE given in (4.11) and the definition of derivative as a limit imply that for any R in
(limα↓0 Iα(p;W) , I1(p;W)) the unique order α∗ satisfying (4.14) also satisfies

∂
∂REsp(R,W , p) = α∗−1

α∗ , (4.16)

as was established in [34, Lemma 2].

5. The refined sphere packing bound
In this section, we consider the channel coding problem for various channel models and derive lower bounds to
the error probability of the following form

P (n)
e ≥ An

E′
sp(R)−1

2 e−nEsp(R) ∀n ≥ n0. (5.1)

for constants A and n0 determined by the rate, the channel, and the constraints on the codes, if there exist
any. Following [1, 2, 10], we call these bounds refined sphere packing bounds (refined SPBs) because of their
resemblance to the standard SPBs, e.g. [4–6, 9, 13–15, 18, 24, 26, 32–34, 38–41, 44, 50], establishing ∗

P (n)
e ≥ e−nEsp(R)−o(n) ∀n ≥ n0. (5.2)

The refined SPBs that we state and prove in this section are not formally particular cases of a general proposition.
Nevertheless, they are all consequences of Lemma 3.4 and the properties of Augustin’s information measures.

We establish a refined SPB for the constant composition codes in Subsection 5.1, for codes on (possibly)
nonstationary Rényi symmetric channels in Subsection 5.2, and for codes on additive white Gaussian noise
channels with quadratic cost functions in Subsection 5.3.

5.1. Constant composition codes

Theorem 5.1 For any W : X → P(Y) , M,L,n ∈ Z+ , p ∈ P(X) satisfying limα↓0 Iα(p;W) < 1
n ln M

L <

I1(p;W) and np(x ) ∈ Z≥0 for all x ∈ X , the order α∗≜ 1

1−E ′
sp( 1

n ln M
L ,W ,p)

satisfies

D1

(
W

qα∗,p

α∗

∥∥ qα∗,p∣∣ p) = 1
n ln M

L . (5.3)

Furthermore, any (M,L) channel code of length n whose codewords all have the same composition p satisfies

P (n)
e ≥ ∆α∗−1(4n)−

1
2α∗ e−nEsp( 1

n ln M
L ,W ,p) (5.4)

provided that √
a2n − ln 4n

2α∗ ≥ ln∆ where

a2≜E
p⊛W

qα∗,p
α∗

[∣∣∣ln dW
dqα∗,p

−E
W

qα∗,p
α∗

[
ln dW

dqα∗,p

]∣∣∣2] ,
a3≜E

p⊛W
qα∗,p
α∗

[∣∣∣ln dW
dqα∗,p

−E
W

qα∗,p
α∗

[
ln dW

dqα∗,p

]∣∣∣3] ,
∆≜ exp

(
2
√
2πe

(
0.56a3

a2
+

√
a2

))
.

∗The approximation error terms in standard SPBs are usually O
(√

n
)

or O (lnn) , rather than just o (n) .
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Although Theorem 5.1 itself is composition-dependent, it implies (via appropriate worst-case assumptions)
composition-independent bounds, such as [2, Thm 1]. Similar composition-dependent [10, Proposition 13] and
composition independent [10, Thm 8] bounds have, recently, been derived for classical-quantum channels using
an approach similar to that of [2]. The primary advantages of Theorem 5.1 over the previous results are the
conceptual simplicity and brevity of its proof and its definite approximation error terms.

Proof [Proof of Theorem 5.1] The existence of a unique order α∗ satisfying (5.3) was proved, and its value
was determined in Section 4, see (4.14), (4.15), and (4.16).

Let probability measures wm , q , and vm in P(Yn
1 ) be

wm≜
⊗n

t=1
W (Ψt(m)), q≜

⊗n

t=1
qα∗,p , vm≜

⊗n

t=1
W

qα∗,p

α∗ (Ψt(m)).

Then vm is equal to the order α∗ tilted probability measure between wm and q . Furthermore, the empirical
distribution of the all of the codewords, i.e., all Ψ(m) ’s, are equal to p by the hypothesis; thus we have

D1(vm∥ q) = nD1

(
W

qα∗,p

α∗

∥∥ qα∗,p∣∣ p) m ∈ M,

D1(vm∥wm) = nD1

(
W

qα∗,p

α∗

∥∥W ∣∣ p) m ∈ M.

On the other hand,
∑

m∈M q(m ∈ Θ) ≤ L by the definition of list decoding. Thus, at least half of the

messages in M (at least ⌊M+1
2 ⌋ of the messages in M to be precise) will satisfy q(m ∈ Θ) ≤ 2L

M as a result of
Markov’s inequality. Applying Lemma 3.4 with E = {yn

1 : m ∈ Θ(yn
1 )} and β = 2 for the messages satisfying

q(m ∈ Θ) ≤ 2L
M , we get

Pm
e ≥ ∆α∗−12

α∗−1
α∗ n− 1

2α∗ e
−nD1

(
W

qα∗,p
α∗

∥∥∥W ∣∣∣p)

as long as √
a2n− ln 4n

2α∗ ≥ ln∆ . Then (5.4) follows from (4.14), (4.15), (5.3), and the definition error probability
as the average of the conditional error probabilities of the messages. 2

5.2. Codes on Rényi symmetric channels

Definition 5.2 A channel W : X → P(Y) satisfying W≺ν for some ν ∈ P(Y) is Rényi symmetric iff for
each α ∈ R+ with finite Cα,W there exists a function GW

α (·) : R → [0, 1] satisfying

W
({

dW (x)
dν ≤ es

dqα,W

dν

}∣∣∣ x) = GW
α (s) ∀x ∈ X, s ∈ R . (5.5)

Remark 5.3 If W is Rényi symmetric, then the identity lims↓−∞ GW
α (s) = 0 holds whenever Cα,W is finite.

On the other hand, the identity lims↑∞ GW
α (s) = 1 is violated whenever W (x )⊀qα,W , which can only happen

for α ’s in (0, 1) . Such a Rényi symmetric W is obtained by removing w ı,ı from Wı described in [36, Example
2] and the resulting GW

α is given by GW
α (s) = (1/2)1{s≥ln1/2} .

The Rényi symmetry holds for all input symmetric channels described in [49, Definition 3.2] and for all the
Gallager symmetric channels described in [24, p. 94], see Appendix A. Recall that the Gallager symmetry holds
for all strongly symmetric (Dobrushin symmetric) channels, which is described in [16]. The binary symmetric
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channel is strongly symmetric. The binary erasure channel is Gallager symmetric but not strongly symmetric.
The binary input Gaussian channel is input symmetric according but not Gallager symmetric. The Rayleigh
fading channel with per coherence interval power constraint analyzed in [31, (3)] is Rényi symmetric, by [31,
(7) and (10)], but not input symmetric, see [31, (5)].

Remark 5.4 The input symmetry described in [49, Definition 3.2] can be generalized by relying on a compact
group with the associated Haar measure, rather than a finite additive group with the uniform distribution. The
Rayleigh fading channel with per coherence interval power constraint analyzed in [31] is input symmetric for
this more general definition. The covariant channels analyzed by Holevo in [28], can be seen as the counterparts
of [49, Definition 3.2] and its generalization in the framework of Quantum Information Theory.

The derivation of the refined SPB for the Rényi symmetric channels is analogous to the derivation of the
refined SPB for the constant composition codes. Lemma 5.5, given in the following, is used in lieu of (4.14),
(4.15), (4.16) in the latter derivation.

Lemma 5.5 For any Rényi symmetric channel W : X → P(Y) with finite C1,W and rate R in (limα↓0 Cα,W ,C1,W )

there exists an order α∗ ∈ (0, 1) such that

R = D1

(
W

qα∗,W

α∗ (x )
∥∥ qα∗,W )

∀x ∈ X, (5.6)

Esp(R,W ) = D1

(
W

qα∗,W

α∗ (x )
∥∥W (x )

)
∀x ∈ X. (5.7)

Furthermore, if either W
qα∗,W

α∗

({
dW (x)

dν = γ
dqα∗,W

dν

}∣∣∣ x) < 1 for all γ ∈ R+ or qα,W = q for all α ∈ (0, 1] ,

then

∂
∂REsp(R,W ) = α∗−1

α∗ . (5.8)

Lemma 5.5 is proved in Appendix B. Proving the essential assertions of Lemma 5.5 for input symmetric
channels, however, is considerably easier: for any input symmetric channel W and the uniform probability mass
function u on its input set, Cα,W = Iα(u;W) and qα,W = qα,u for all α ∈ R+ . Consequently, the identities
given in (5.6), (5.7), and (5.8) are nothing but the identities given in (4.14), (4.15), and (4.16) for p = u case
because the Kullback-Leibler divergences on the right-hand-sides of (5.6) and (5.7) have the same value for all
x by the symmetry. Hence, (5.8) holds for any input symmetric channels satisfying limα↓0 Cα,W < C1,W by
(4.16), as well.

Remark 5.6 If dW (x)
dqα,u

= γ holds W (x )-a.s. for all x for a (γ, α) pair for an input symmetric W , then

qα,u =
∑

x u(x )W
qα,u
η (x ) for all η . Thus qη,u = qα,u and Iη(u;W) = ln γ for all η ∈ R+ by [35, Lemma 13].

Thus such a (γ, α) pair does not exists for input symmetric W ’s satisfying limα↓0 Cα,W ̸= C1,W .

Remark 5.7 Lemma 5.5 is stated under the finite C1,W hypothesis, yet it holds under the weaker hypothesis
limα↑

1−α
α Cα,W , as well. However, establishing Lemma 5.5 under this weaker hypothesis would require us to

introduce the concepts of power mean, Rényi information, and compactness in the topology of setwise convergence,
see [36, Lemma 24-(d)].
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Theorem 5.8 Let Wt : Xt → P(Yt) be a Rényi symmetric channel with finite C1,Wt for all t ∈ Z+ and
n,M,L ∈ Z+ satisfy limα↓0 Cα,W[1,n]

< ln M
L < C1,W[1,n]

. Then there exists an order α∗ ∈ (0, 1) satisfying

D1

(
Uα∗(x

n
1 )∥ qα∗,W[1,n]

)
= ln M

L ∀xn
1 ∈ Xn

1 (5.9)

where Uα≜ {W[1,n]}
qα,W[1,n]
α for all α ∈ (0, 1) . Furthermore any (M,L) channel code on W[1,n] satisfies

P (n)
e ≥ ∆α∗−1(4n)−

1
2α∗ e−Esp(ln M

L ,W[1,n]) (5.10)

provided that √
a2n − ln 4n

2α∗ ≥ ln∆ where

a2≜ 1
n

∑n

t=1
EUα∗ (x

n
1 )

[(
ξtα∗(xt)−EUα∗ (x

n
1 )

[
ξtα∗(xt)

])2]
,

a3≜ 1
n

∑n

t=1
EUα∗ (x

n
1 )

[∣∣ξtα∗(xt)−EUα∗ (x
n
1 )

[
ξtα∗(xt)

]∣∣3] ,
∆≜ exp

(
2
√
2πe

(
0.56a3

a2
+
√
a2

))
,

and ξtα(xt) = ln dWt (xt )
dνt

− ln
dqα,Wt

dνt
for all α ∈ (0, 1) .

Furthermore, if {Wt}
qα∗,Wt
α∗

({
dWt (xt )

dνt
= γ

dqα∗,Wt

dνt

}∣∣∣ xt) < 1 for all γ ∈ R+ for some t or qα,W[1,n]
= q

for all α ∈ (0, 1] , then α∗ = 1

1−E ′
sp(ln M

L ,W[1,n])
.

Note that if any of the component channels, i.e., any of the Wt ’s, is an input symmetric channel satisfying
limα↓0 Cα,Wt

< C1,Wt
, then α∗ = 1

1−E ′
sp(ln M

L ,W[1,n])
holds as a result of Remark 5.6.

Theorem 5.8 does not assume the channel to be stationary, i.e., it holds even when Wt ’s are not identical.
To the best of our knowledge, refined sphere packing bounds have only been reported for stationary channels
before, even in the case of symmetric channels considered in [16, (1.28)], [1, Thm. 1], [10, Thm. 14], [48,
Corollary 2], [30, Thm. 4], [31, (36), (37b)], [3, Thm. 1].

For the stationary input symmetric channels Theorem 5.8 is tight both in terms of exponent and prefactor
for rates above the critical rate, provided that channel is not singular. For the case of the singular stationary
input symmetric channels, Altuğ and Wagner [3] have recently reported a sharper result, which generalizes
Elias’s result in [19] for the binary erasure channels. In order to obtain such results, however, merely plugging
in bounds on binary hypothesis testing is not enough, see Section 6 for a more detailed discussion.

Remark 5.9 Theorem 5.8 is derived using Lemma 3.4, which is stated for the product measures. Lemma 3.4,
however, holds for any w and q for which ξt ’s are independent random variables under wq

α . This condition
is satisfied by the output distributions and the Augustin centers on the product channels with feedback, i.e., by
W−−→

[1,n]
(x ) and qα,W−−→

[1,n]
, provided that the component channels are Rényi symmetric. Thus Theorem 5.8 holds

not just for codes on the product channel W[1,n] but also for codes on the product channels with feedback W−−→
[1,n]

.

Similar observations have been used to establish the SPB on product channels with feedback in [3, 6, 17, 27, 39].
The formal definition of the product channels with feedback and the proof of the SPB on these channels without
the symmetry assumptions can be found in [6, 38, 39].
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Proof [Proof of Theorem 5.8] The Rényi symmetry and (4.9) imply

Cα,Wt
= Dα(Wt(xt)∥ qα,Wt

) ∀xt ∈ Xt , t ∈ Z+ . (5.11)

On the other hand, [35, Lemma 26] implies

Cα,W[1,n]
=

∑n

t=1
Cα,Wt

, (5.12)

qα,W[1,n]
=

⊗n

t=1
qα,Wt . (5.13)

Then, the product structure W[1,n](x
n
1 ) = ⊗n

t=1Wt(xt) and the Rényi symmetry of Wt ’s imply the Rényi
symmetry of W[1,n] . In particular

g
W[1,n]
α = gW1

α ⊛gW2
α ⊛ · · ·⊛gWn

α (5.14)

where ⊛ denotes the convolution and g ’s are the density functions of the corresponding G ’s, i.e., g ’s and G ’s
are uniquely determined by each other via the following relation

GW
α (s) =

∫ s

−∞
gWα (z )dz .

Since W[1,n] is Rényi symmetric the existence of an order α∗ ∈ (0, 1) satisfying (5.9) follows from (5.6) of
Lemma 5.5.

Let probability measures wm , q , and vm in P(Yn
1 ) be

wm≜
⊗n

t=1
Wt(Ψt(m)), q≜

⊗n

t=1
qα∗,Wt

, vm≜
⊗n

t=1
{Wt}

qα∗,Wt
α∗ (Ψt(m)).

Note that wm = W[1,n](Ψ(m)) by definition, q = qα∗,W[1,n]
by (5.13), and vm is equal to the order α∗ tilted

probability measure between wm and q , which is equal to Uα∗(Ψ(m)) , by construction. Then Lemma 5.5
implies

D1(vm∥ q) = ln M
L m ∈ M,

D1(vm∥wm) = Esp

(
ln M

L ,W[1,n]

)
m ∈ M.

On the other hand,
∑

m∈M q(m ∈ Θ) ≤ L by the definition of list decoding. Thus, at least half of the

messages in M (at least ⌊M+1
2 ⌋ of the messages in M to be precise) will satisfy q(m ∈ Θ) ≤ 2L

M as a result of
Markov’s inequality. Applying Lemma 3.4 with E = {yn

1 : m ∈ Θ(yn
1 )} and β = 2 for the messages satisfying

q(m ∈ Θ) ≤ 2L
M , we get

Pm
e ≥ ∆α∗−12

α∗−1
α∗ n− 1

2α∗ e−Esp(ln M
L ,W[1,n])

provided that √
a2n − ln 4n

2α∗ ≥ ln∆ . Then (5.10) follows from the definition Pe as the average of Pm
e .

Note that as a result of (5.14), gW[1,n]

α∗ is a Dirac delta function iff all gWt
α∗ ’s are. This observation together

with Lemma 5.5 implies the sufficient condition for α∗ to be 1

1−E ′
sp(ln M

L ,W[1,n])
. 2
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5.3. Codes on additive white Gaussian noise channels
The additive white Gaussian noise channel with noise variance σ2 is described via the following transition
probability

W (E|x ) =
∫
E

φσ2(y − x )dy ∀E ∈ B(R) (5.15)

where φσ2 is the zero mean Gaussian probability density function of variance σ2 , i.e.,

φσ2(z ) = 1√
2πσ

e−
z2

2σ2 ∀z ∈ R .

With a slight abuse of notation, we denote the corresponding probability measure, i.e., zero mean Gaussian
probability measure of variance σ2 , by φσ2 , as well.

If the cost function is the quadratic one, then the zero mean Gaussian distribution is the maximizer for
the Augustin information among all input distributions satisfying the cost constraint (for any positive order)
see [35, Example 4], i.e.

Cα,W ,ϱ = Iα(φϱ;W)

= supp:Ep[x2]≤ϱ Iα(p;W) ∀α ∈ R+ .

Furthermore, the order α Augustin center of this channel is a zero-mean Gaussian probability measure. The
closed-form expression for the Augustin capacity and Augustin center are derived in [35, (126), (127), (128)]:

Cα,W ,ϱ =


αϱ

2(αθα+(1−α)σ2) +
1

α−1 ln
θα/2
α σ1−α

√
αθα+(1−α)σ2

α ̸= 1

1
2 ln

(
1 + ϱ

σ2

)
α = 1

, (5.16)

qα,W ,ϱ = φθα , (5.17)

θα≜σ2 + ϱ
2 − σ2

2α +

√
(ϱ2 − σ2

2α )
2 + ϱσ2. (5.18)

One can confirm the following identity by substitution

αϱθα = α(θα)
2 − (2α− 1) θασ

2 + (α− 1)σ4

=
(
θα − σ2

) (
αθα + (1− α)σ2

)
. (5.19)

In fact, θα is a root of the equality given above because of a fixed point property similar to the one described
in (4.4), see [35, (132), (133)] and the ensuing discussion.

The sphere packing exponent expression resulting from (5.16), (5.17), (5.18), and (5.19), is derived in
[34, Example 1]. It is given by the following parametric form in [34, (68), (69)]:

R = 1
2 ln

αθα+(1−α)σ2

σ2 , (5.20)

Esp(R,W , ϱ) = (1−α)ϱ
2(αθα+(1−α)σ2) +

1
2 ln

αθα+(1−α)σ2

θα
. (5.21)

Using (5.18) and (5.20), one can express the unique α∗ whose rate is R as a function of R , as well:

α∗≜ e2R−1
2

(√
1 + 4σ2

ϱ
e2R

e2R−1 − 1

)
. (5.22)
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The equivalence of the parametric form given in (5.20) and (5.21) to the expression given by Gallager [24,
(7.4.33)] can be confirmed by substitution using (5.22). One can also confirm using (5.18) and (5.19) in (5.20)
and (5.21) that

∂
∂REsp(R,W , ϱ) = α∗−1

α∗ . (5.23)

Furthermore, codes on additive white Gaussian noise channels satisfy both (1.1) and (5.1) as a result of Shannon’s
[43, (3)]; this is established in Appendix C, for completeness. Theorem 5.10, which is establishing the refined
SPB given in (5.1), is proved using principles and analysis similar to those used in the proofs of Theorems 5.1
and 5.8, which are quite different from the ones employed in [43].

Theorem 5.10 Let σ and ϱ be positive reals, n , M , and L be positive integers satisfying R ∈
(
0, 1

2 ln
σ2+ϱ
σ2

)
for R = 1

n ln M
L , and Wt be an additive white Gaussian noise channel with noise variance σ2 , say W , for all

t . Then any (M,L) channel code (Ψ,Θ) on W[1,n] satisfying
∑n

t=1(Ψt(m))2 = nϱ for all messages m in the
message set M satisfies

P (n)
e ≥ ∆α∗−1(4n)−

1
2α∗ e−nEsp(R,W ,ϱ) (5.24)

for α∗ given in (5.22) provided that √
a2n − lnn

2α∗ ≥ ∆ , where

a2≜ (θα∗−σ2)2

2(α∗θα∗+(1−α∗)σ2)2 + σ2θα∗ϱ
(α∗θα∗+(1−α∗)σ2)3 ,

a3≜ 18(θα∗−σ2)3

(α∗θα∗+(1−α∗)σ2)3 +
18(

√
2/π)σ3θ

3/2

α∗ ϱ3/2

(α∗θα∗+(1−α∗)σ2)4.5 ,

∆≜ exp
(
2
√
2πe

(
0.56a3

a2
+
√
a2

))
.

Before proving of Theorem 5.10, let us briefly discuss its implications. Theorem 5.10 bounds the performance of
codes satisfying an equality cost constraint, but it can also be used to bound the performance of codes satisfying
an inequality cost constraint. In particular, Shannon has observed in [43, (83)] that

P̃e(n, ϱ) ≥ Pe(n, ϱ) ≥ P̃e(n + 1, ϱ), (5.25)

where Pe(n, ϱ) is the infimum of error probabilities of (M,L) channel codes satisfying
∑n

t=1(Ψt(m))2 ≤ nϱ

and P̃e(n, ϱ) is the analogous quantity for the constraint
∑n

t=1(Ψt(m))2 = nϱ . The first inequality of (5.25)
holds because any code satisfying the equality constraint also satisfies the inequality constraint. The second
inequality of (5.25) is confirmed by considering an extension of codewords by one additional symbol, Ψn+1(m) ,
so as to satisfy

∑n+1
t=1 (Ψt(m))2 = (n + 1)ϱ . Recently, Vazquez-Vilar have improved (5.25) in [47, Proposition

1] by observing that the same extension can be constructed for the constraint
∑n+1

t=1 (Ψt(m))2 = nϱ , as well.
Thus, we have

P̃e(n, ϱ) ≥ Pe(n, ϱ) ≥ P̃e

(
n + 1, n

n+1ϱ
)
. (5.26)

One can use Theorem 5.10 together with either (5.25) or (5.26) to determine prefactor for codes satisfying the
cost constraint with an inequality. For that let us first note that Esp(R,W , ϱ) is convex in the rate R as a
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result of (5.22) and (5.23) because α∗ is increasing monotonically with R on [0,C1,W ,ϱ] . Then Esp(R,W , ϱ)

lies above its tangent at any point and (5.23) implies

Esp(R1,W , ϱ) ≥ Esp(R0,W , ϱ) + α∗(R0)−1
α∗(R0)

(R1 − R0). (5.27)

Applying Theorem 5.10 at (n+1) –rather than n – together with (5.25) and invoking (5.27) for R0 = 1
n+1 ln

M
L

and R1 = R , we get the following bound for (M,L) channel codes (Ψ,Θ) satisfying
∑n

t=1(Ψt(m))2 ≤ nϱ

P (n)
e ≥ ∆α∗0−1

(4(n+1))1/2α
∗
0
e−(n+1)Esp(R0,W ,ϱ)

≥ ∆α∗0−1e−Esp(R,W ,ϱ)

(8n)1/2α
∗
0

e−nEsp(R,W ,ϱ)e
α∗0−1

α∗0
nR
n+1

= ∆α∗0−1e
Cα∗0,W ,ϱ(1 − α∗0)/α

∗
0

81/2α
∗
0n(α∗ − α∗0)/2α

∗α∗0
n− 1

2α∗ e−nEsp(R,W ,ϱ)

where α∗0 = α∗(R0) and a2 , a3 , and ∆ are calculated at α∗0 , rather than α∗ , provided that
√
a2(n + 1) −

ln(n+1)
2α∗0

≥ ∆ . Note that |R − R0| = R
n+1 and the function α∗ given in (5.22) is analytical in the rate R ; hence

|α∗0 − α∗| is O
(
n−1

)
. Thus

∆α∗0−1e
Cα∗0,W ,ϱ(1 − α∗0)/α

∗
0

81/2α
∗
0n(α∗ − α∗0)/2α

∗α∗0
∼ A

for some constant A ∈ R+ and (5.1), holds not only for codes satisfying
∑n

t=1(Ψt(m))2 = nϱ but also for codes
satisfying

∑n
t=1(Ψt(m))2 ≤ nϱ , for the order α∗ given in (5.22), for some constant A ∈ R+ for n large enough.

Proof [Proof of Theorem 5.10] The following expressions for the order one Rényi divergence and the order α

tilted channel for the zero mean Gaussian distribution of variance θ can be confirmed by substitution

D1(W (x )∥φθ) =
σ2+x2−θ

2θ + 1
2 ln

θ
σ2 (5.28)

W φθ
α (E|x ) =

∫
E

φ σ2θ
αθ+(1−α)σ2

(y − αθ
αθ+(1−α)σ2 x )dy (5.29)

for all x ∈ R , θ ∈ R+ , and E ∈ B(R) . Then as a result of (5.19), (5.20), (5.21), and (5.22), we have

D1

(
W

φθα∗
α∗

∥∥∥φθα∗

∣∣∣ p) =
α∗2θα∗ (Ep[x2]−ϱ)

2(α∗θα∗+(1−α∗)σ2)2 + R, (5.30)

D1

(
W

φθα∗
α∗

∥∥∥W ∣∣∣ p) =
(1−α∗)2σ2(Ep[x2]−ϱ)

2(α∗θα∗+(1−α∗)σ2)2 + Esp(R,W , ϱ) , (5.31)

where R = 1
n ln M

L .
Let probability measures wm , q , and vm in P(Yn

1 ) be

wm≜
⊗n

t=1
W (Ψt(m)), q≜

⊗n

t=1
φθα∗ , vm≜

⊗n

t=1
W

φθα∗
α∗ (Ψt(m)).

Then vm is the order α∗ tilted probability measure between wm and q ; using the hypothesis
∑n

t=1(Ψt(m))2 =

nϱ together with (5.30) and (5.31), we get

D1(vm∥ q) = ln M
L m ∈ M, (5.32)

D1(vm∥wm) = nEsp

(
1
n ln M

L ,W , ϱ
)

m ∈ M. (5.33)

936



NAKİBOĞLU/Turk J Math

In order to obtain (5.24), we will apply Lemma 3.4 to the probability measure pairs (wm , q) satisfying q(m ∈
Θ) ≤ 2L

M for β = 2 together with a rotation on Rn that minimizes the approximation error terms arising from
the absolute third order moments.

For any x ∈ R , let the random variable ξx be

ξx≜ ln dW (x)
dφθα∗

−E
W

φθα∗
α∗ (x)

[
ln dW (x)

dφθα∗

]
.

Then using (5.29), we get

ξx = 1
2

y2

θα∗
− (y−x)2

2σ2 + 1
2 ln

θα∗
σ2 − 1

2EW
φθα∗
α∗ (x)

[
y2

θα∗
− (y−x)2

σ2

]
− 1

2 ln
θα∗
σ2

= σ2−θα∗
2σ2θα∗

[
(y − α∗θα∗x

α∗θα∗+(1−α∗)σ2 )
2 − σ2θα∗

α∗θα∗+(1−α∗)σ2

]
+ x

α∗θα∗+(1−α∗)σ2 (y − α∗θα∗x
α∗θα∗+(1−α∗)σ2 ). (5.34)

On the other hand, moments and absolute moments of a zero mean Gaussian random variable Z with variance
σ2 satisfy the following identities

E[Zκ] = 1{κ
2 ∈Z+}σ

κ(κ− 1)!!,

E[|Z|κ] =
[
1{κ

2 /∈Z+}

√
2
π + 1{κ

2 ∈Z+}

]
σκ(κ− 1)!!,

where κ!! =
∏⌈κ

2 ⌉−1
ı=0 (κ− 2ı) . Furthermore, for any three random variables Z1 , Z2 , and Z3 , we have ∗

E
[
|Z1 + Z2 + Z3|3

]
≤ 9

(
E
[
|Z1|3

]
+E

[
|Z2|3

]
+E

[
|Z3|3

])
. (5.35)

Then using (5.34), one can confirm by substitution that

E
W

φθα∗
α∗ (x)

[
(ξx )

2
]
= (θα∗−σ2)2

2(α∗θα∗+(1−α∗)σ2)2 + σ2θα∗x
2

(α∗θα∗+(1−α∗)σ2)3 , (5.36)

E
W

φθα∗
α∗ (x)

[
|ξx |3

]
≤ 18(θα∗−σ2)3

(α∗θα∗+(1−α∗)σ2)3 +
18(

√
2/π)σ3θ

3/2

α∗ x3

(α∗θα∗+(1−α∗)σ2)4.5 . (5.37)

The hypothesis
∑n

t=1(Ψt(m))2 = nϱ implies the a2 of Lemma 3.4 to be equal to the a2 of Theorem 5.10. One,
however, cannot assert the analogous relation for a3 ’s. Nevertheless, there exists a rotation in Rn , say Sm such
that SmΨ(m) is equal to vector whose all entries are √

ϱ , i.e.

Sm(Ψ1(m), . . . , Ψn(m)) = (
√
ϱ, . . . ,

√
ϱ).

Note that for w∗≜
⊗n

t=1 W (
√
ϱ) , we have

wm(m /∈ Θ) = w∗(m /∈ SmΘ),

q(m ∈ Θ) = q(m ∈ SmΘ).

Thus one can apply Lemma 3.4 to the pair (w∗, q) in order to bound Pm
e . For the pair (w∗, q) , however, a3 of

Lemma 3.4 is equal to the a3 of of Theorem 5.10.
∗The inequality given in (5.35) follows from the inequality via the observation that the geometric mean is less than the arithmetic

mean. A proof is presented in Appendix D for completeness.
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As it was the case for the proofs of Theorems 5.1 and 5.8,
∑

m∈M q(m ∈ Θ) ≤ L by the definition of list

decoding. Thus, at least half of the messages in M will satisfy q(m ∈ Θ) ≤ 2L
M as a result of Markov’s inequality.

Applying Lemma 3.4 with E = {yn
1 : m ∈ Θ(yn

1 )} and β = 2 for the messages satisfying q(m ∈ Θ) ≤ 2L
M and

using (5.32) and (5.33), we get

Pm
e ≥ ∆α∗−12

α∗−1
α∗ n− 1

2α∗ e−nEsp( 1
n ln M

L ,W ,ϱ)

as long as √
a2n − ln 4n

2α∗ ≥ ln∆ . Then (5.24) follows from the definition of Pe as the average of the conditional
error probabilities. 2

6. Discussion
Theorems 5.1, 5.8, 5.10 establish refined sphere packing bounds, i.e., bounds of the form (5.1), for fixed
composition codes on stationary memoryless channels, codes on (possibly) nonstationary Rényi symmetric
channels, and cost-constrained codes on additive white Gaussian noise channels with the quadratic cost function.
Derivations of Theorems 5.1, 5.8, 5.10 rely on the properties of Augustin’s information measures and the
application of Berry-Esseen theorem to the hypothesis testing problem summarized in Lemma 3.4. For certain
cases including the additive white Gaussian channels [43] and the strongly symmetric channels [16], these bounds
are known to be tight in the sense that they can be matched by achievability results asserting the existence of
codes satisfying

P (n)
e ≤ Ãn

E′
sp(R)−1

2 e−nEsp(R) ∀n ≥ n0 (6.1)

for rates between the critical rate and the capacity of the channel. Recently, Altuğ and Wagner [3, Theorem
1] have generalized the results of [19] and [16] and established (5.1) and (6.1) for all nonsingular Gallager
symmetric channels.

At least since [19], it is also known that for the binary erasure channel the polynomial prefactor of (5.1)
can be improved from n(E′

sp(R) − 1)/2 to n
− 1/2 . Recently, Altuğ and Wagner proved this result for all singular

Gallager symmetric channels, [3, Theorem 2]. Both [19] and [3], however, have refrained from relying on bounds
on the performance of the binary hypothesis testing problem with independent samples. This is not surprising
because Lemma 3.4 characterizes the prefactor for the binary hypothesis testing problem with independent
samples, exactly. Thus the refined SPBs of the form (5.1) are the best possible bounds for derivations of
the SPB relying on the asymptotic behavior of sums of independent random variables, notwithstanding their
suboptimality for singular Gallager symmetric channels.

As pointed out in Section 3, one can improve Lemma 3.4 and determine not only the prefactor but also
the asymptotic constant in the tradeoff between the probabilities of type I and type II errors, either by invoking
finer characterizations of the asymptotic behavior of sums of independent random variables or by applying a
saddle point approximation. Although such results, e.g. [12, 48], require stronger hypothesis and are more
nuanced, ∗ they are important in the context of binary hypothesis testing. From the standpoint of the channel
coding problem, however, it is rather hard to justify the extra effort such an analysis requires. First of all, the
corresponding achievability results will have different constants, even when the prefactors match, as observed

∗Even the statement of these results are more nuanced because they need to distinguish the lattice and nonlattice cases for the
random variables involved in the analysis.
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in [16, 19, 43]. More importantly, such refined results on binary hypothesis testing will also suffer from the
subtlety discussed in the previous paragraph for the case of the singular channels, i.e., their prefactor will be
suboptimal for the singular channels, such as the binary erasure channel.

The principal novelty of this manuscript is the use of the Berry-Essen theorem via suitable Augustin
information measures to bound the optimal error probability in the channel coding problem. In this manuscript,
our primary focus was the rates below the channel capacity; thus, we have derived refined sphere packing bounds.
The same idea can be used to strengthen the strong converse bounds under similar symmetry hypothesis, as it
has recently been demonstrated in [11]. The essential technical challenge in this line of work is the derivation
of the refined SPBs and the refined strong converses without any symmetry assumptions on the channel or on
the codes.

A. Rényi symmetry is implied by input symmetry and Gallager symmetry
In the following, we will explain briefly why the Rényi symmetry holds both for all input symmetric channels
described in [49, Definition 3.2] and for all Gallager symmetric channels described in [24, p. 94]. Let us start
with the input symmetric channels. Let u be the uniform distribution on the input set of the input symmetric
W and let qα be

qα≜ µα

∥µα∥ where dµα

dν ≜
[∑

x
u(x )

(
dW (x)

dν

)α] 1
α

. (A.1)

Then the using the input symmetry one can confirm that

Dα(W (x )∥ qα) = α
α−1 ln ∥µα∥ ∀x ∈ X. (A.2)

The definitions of the tilted channel, (A.1), and (A.2) imply qα =
∑

x u(x )W
qα
α (x ) and q1,u≺qα . Thus qα is

the order α Augustin mean for the uniform input distribution and Iα(u;W) = Dα(W ∥ qα| u) by [35, Lemma
13]. Hence

Iα(u;W) = α
α−1 ln ∥µα∥. (A.3)

Since Dα(W ∥ qα| p) = Iα(u;W) for all p ∈ P(X) by (A.2) and (A.3), the probability measure qα is not only the
order α Augustin mean for the input distribution u but also the order α Augustin center of W by [35, Thm.
1]. Then the constraint for the Rényi symmetry follows from the definition of qα and the input symmetry. Thus
every input symmetric channel W is also a Rényi symmetric channel.

Now let us considers a Gallager symmetric channel W . Let S1, . . . , Sm be the partition of the output
set Y assumed in the definition of Gallager symmetry, e.g., [24, p. 94], u be the uniform distribution on the
input set X of W , and µα and qα be the measures defined in (A.1). Gallager symmetry implies not only that
µα and qα are probability mass functions but also that they satisfy the following identities:

µα(y) =
∑

ı
1{y∈Sı}|Sı|

− 1
α

(∑
s∈Sı

[W (s|x )]α
) 1

α ∀x ∈ X, y ∈ Y. (A.4)

Note that µα(y) = µα(z ) , and hence qα(y) = qα(z ) , whenever y and z are in the same Sı as a result of (A.4).
Using this fact together with the Gallager symmetry, one can confirm both (A.2) and qα =

∑
x u(x )W

qα
α (x ) .

On the other hand, q1,u≺qα . Thus qα is the order α Augustin mean for the uniform input distribution and
Iα(u;W) = Dα(W ∥ qα| u) by [35, Lemma 13]. Hence (A.3) holds for Gallager symmetric W , as well. Thus
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Dα(W ∥ qα| p) = Iα(u;W) for all p ∈ P(X) and qα is not only the order α Augustin mean for the input
distribution u but also the order α Augustin center of W by [35, Thm. 1]. Then the constraint for the
Rényi symmetry follows from the definition of qα given in (A.1), the Gallager symmetry and (A.4). Thus every
Gallager symmetric channel W is also a Rényi symmetric channel.

B. Proof of Lemma 5.5
We first prove the existence of an order α∗ in (0, 1) satisfying (5.6) using the intermediate value theorem. The
Rényi symmetry of W implies

Dα(W (x )∥ qη,W ) = supz∈X Dα(W (z )∥ qη,W ) .

for all x ∈ X , η ∈ (0, 1] , and α ∈ R+ . Then (4.7), (4.8), and (4.9) imply

Cα,W = infη∈(0,1] Dα(W (x )∥ qη,W ) (B.1)

= Dα(W (x )∥ qα,W ) (B.2)

for all x ∈ X and α ∈ (0, 1] . Thus the nonnegativity of the Rényi divergence and (3.2) imply

D1(W
qα,W
α (x )∥ qα,W ) ≤ Cα,W (B.3)

D1(W
qα,W
α (x )∥W (x )) ≤ 1−α

α Cα,W (B.4)

for all x ∈ X and α ∈ (0, 1) . On the other hand the Pinsker’s inequality imply for all x ∈ X and α ∈ (0, 1)

∥W qα,W
α (x )−W (x )∥ ≤

√
2D1

(
W

qα,W
α (x )

∥∥W (x )
)
.

Thus limα↑1
∥∥W qα,W

α (x )−W (x )
∥∥ = 0 for all x ∈ X as a result of (B.4). On the other hand, the Augustin center

qα,W is continuous in α on (0, 1] for the total variation topology on P(Y) by [35, Lemmas 23-(d) and 24].
Then the lower semicontinuity of the Rényi divergence in its arguments for the topology of setwise convergence,
i.e., [20, Thm. 15], implies

lim infα↑1 D1(W
qα,W
α (x )∥ qα,W ) ≥ D1(W (x )∥ q1,W ) .

Then using (B.2) we get

lim infα↑1 D1(W
qα,W
α (x )∥ qα,W ) ≥ C1,W . (B.5)

Furthermore, D1

(
W

qα,W
α (x )

∥∥ qα,W )
is continuous in α on (0, 1) by [39, Lemma 16] because qα,W is continuous

in α on (0, 1] for the total variation topology. Then (B.3) implies

lim supα↓0 D1(W
qα,W
α (x )∥ qα,W ) ≤ limα↓0 Cα,W . (B.6)

The existence of an α∗ ∈ (0, 1) satisfying (5.6) follows from (B.5), (B.6), and the continuity of D1

(
W

qα,W
α (x )

∥∥ qα,W )
in α on (0, 1) by the intermediate value theorem [42, 4.23].

We proceed with showing that any order α∗ satisfying (5.6) also satisfies (5.7). The definition of the SPE
given in (4.11) and the consequence of the Rényi symmetry given in (B.1), imply that

Esp(R,W ) = supα∈(0,1) infη∈(0,1]
1−α
α [Dα(W (x )∥ qη,W )− R]

≤ supα∈(0,1) f (α,R), (B.7)
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where f (α, τ)≜ (1−α)
α [Dα(W (x )∥ qα∗,W )− τ ] . We show in the following that

supα∈(0,1) f (α,R) = D1

(
W

qα∗,W

α∗ (x )
∥∥W (x )

)
. (B.8)

Then for any order α∗ satisfying (5.6), equations (3.2), (B.2) and the definition of SPE given in (4.11) imply

supα∈(0,1) f (α,R) = (1−α∗)
α∗ [Cα∗,W − R]

≤ Esp(R,W ) . (B.9)

Thus the inequalities given in (B.7) and (B.9) hold as equalities and α∗ satisfying (5.6) also satisfies (5.7) by
(B.8).

Now we prove the identity given in (B.8), which we have assumed in the preceding. The Rényi divergence
is nondecreasing in its order by [20, Thm. 3] and Dα(W (x )∥ qα∗,W ) = α

1−αD1−α(qα∗,W ∥W (x )) for all α in
(0, 1) by definition. Then Dα(W (x )∥ qα∗,W ) is finite for all α in (0, 1) . Thus both Dα(W (x )∥ qα∗,W ) and
D1

(
W

qα∗,W
α (x )

∥∥ qα∗,W )
are continuously differentiable in α on (0, 1) by [35, Lemma 11] and their derivatives

on (0, 1) are

d
dαDα(W (x )∥ qα∗,W ) = 1

(α−1)2D1

(
W

qα∗,W
α (x )

∥∥W (x )
)
, (B.10)

d
dαD1

(
W

qα∗,W
α (x )

∥∥ qα∗,W )
= αV

W
qα∗,W
α (x)

[ξx ] , (B.11)

where ξx = ln dW (x)
dν − ln

dqα∗,W

dν . Then

∂
∂α f (α, τ) =

1
α2

(
τ −D1

(
W

qα∗,W
α (x )

∥∥ qα∗,W ))
. (B.12)

Consequently, (5.6) implies (B.8) by the derivative test provided that ξx = γ does not hold W
qα∗,W
α (x ) -a.s. for

any γ ∈ R+ and α ∈ (0, 1) . If W
qα∗,W
α ({ξx = γ}|x ) = 1 for some γ ∈ R+ and α ∈ (0, 1) , on the other hand,

then the identities (B.13), (B.14), and (B.15) hold for all α ∈ (0, 1) and one can confirm (B.8) by substitution.

Dα(W (x )∥ qα∗,W ) = γ + 1
1−α ln 1

W ({ξx=ln γ}|x) , (B.13)

D1

(
W

qα∗,W
α (x )

∥∥ qα∗,W )
= γ + ln 1

W ({ξx=ln γ}|x) , (B.14)

D1

(
W

qα∗,W
α (x )

∥∥W (x )
)
= ln 1

W ({ξx=ln γ}|x) . (B.15)

Now we are left with establishing (5.8) with either of the additional hypotheses. Let us first assume that

there does not exist a γ satisfying W
qα∗,W

α∗

({
dW (x)

dν = γ
dqα∗,W

dν

}∣∣∣ x) = 1 . Then V
W

qα∗,W
α (x)

[ξx ] > 0 for all

α in (0, 1) and thus D1

(
W

qα∗,W
α (x )

∥∥ qα∗,W )
is increasing in α on (0, 1) . Since D1

(
W

qα∗,W
α (x )

∥∥ qα∗,W )
is also

continuous in α on (0, 1) , it has a continuous and increasing inverse function. Then as a result of (B.12) there
exists an ϵ > 0 and an increasing continuous function h : (R − ϵ,R + ϵ) → (0, 1) satisfying

supα∈(0,1) f (α, τ) = f (h(τ), τ) ∀τ ∈ (R − ϵ,R + ϵ).

Then (B.7) implies

Esp(τ,W ) ≤ f (h(τ), τ) ∀τ ∈ (R − ϵ,R + ϵ). (B.16)
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On the other hand, (4.11) and (B.2) imply

Esp(τ,W ) ≥ f (α∗, τ) ∀τ ∈ R+ . (B.17)

Furthermore, (B.9) implies

Esp(R,W ) ≥ f (α,R) ∀α ∈ (0, 1). (B.18)

Then (5.8) follows from (B.16), (B.17), (B.18), the identity h(R) = α∗ , the definition of the derivative as a limit,
and the continuity of h(·) , which is defined as the inverse function of D1

(
W

qα∗,W
α (x )

∥∥ qα∗,W )
as a function of

α .
Now we establish (5.8) assuming the existence of a q satisfying qα,W = q for all α in (0, 1) . If there

does not exist a γ satisfying W q
α∗

({
dW (x)

dν = γ dq
dν

}∣∣∣ x) = 1 , then (5.8) holds by the preceding discussion. If

there exists such a γ , then as a result of (B.2) and (B.13) we have

Cα,W = γ + 1
1−α ln 1

W ({ξx=ln γ}|x) ∀α ∈ (0, 1) (B.19)

Then such a γ does not exist by the hypotheses of the lemma because (B.19) and C1,W = limα↑1 Cα,W imply
C1,W = ∞ for W ({ξx = ln γ}|x ) < 1 case and limα↓0 Cα,W = C1,W for W ({ξx = ln γ}|x ) = 1 case.

C. Shannon’s bounds for AWGN channels and the sphere packing exponent

Shannon, [43, (3)], bounded the error probability of length n block codes described in Theorem 5.10 as

Q(θ) ≤ P (n)
e ≤ Q(θ)−

∫ θ

0

Ω(ξ)
Ω(θ)dQ(ξ) (C.1)

where Ω(·) : [0, π] → [0, 2πn/2

Γ(n/2) ] is the function mapping the cone angle to the corresponding solid angle in Rn ,

θ is the cone angle satisfying Ω(θ) = Ω(π)
M , and Q(ξ) is the probability that a point X in Rn at a distance

√
nϱ from the origin O being moved outside a circular cone of half-angle ξ with the vertex at the origin O and

the axis at OX by a Gaussian noise of variance σ2 .
Shannon, [43, (4) and (5)], derived the exact asymptotic expressions for both the upper bound and the

lower bound given in (C.1) in terms of functions f(·) and g(·) that do not depend on the block length n :

Q(θ) ∼ f(θ)√
n
e−nEL(θ) ∀θ > θc, (C.2)

Q(θ)−
∫ θ

0

Ω(ξ)
Ω(θ)dQ(ξ) ∼ g(θ)√

n
e−nEL(θ) ∀θ ∈ (θc, θcr), (C.3)

where θc and θcr , the cone angles corresponding to the channel capacity and the critical rate, are given by

θc≜ arcsin
[(
1 + ϱ

σ2

)−1/2
]
, (C.4)

θcr≜ arcsin

[(
1
2 + ϱ

4σ2 +
√

1
4 + ( ϱ

4σ2 )2
)−1/2

]
, (C.5)
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and EL(·) (the fixed cone angle exponent) is defined via the function G(·) as follows

EL(θ)≜ ϱ
2σ2 −

√
ϱ

2σ G(θ) cos θ − ln (G(θ) sin θ) , (C.6)

G(θ)≜ 1
2

(√
ϱ

σ cos θ +
√

ϱ
σ2 cos2 θ + 4

)
. (C.7)

Remark C.1 Shannon’s notation in [43] is slightly different from ours; Shannon works with the signal to

noise “amplitude” ratio A≜
√
ϱ

σ , rather than cost constraint ϱ and the noise power σ2 . Furthermore, Shannon
specifies the critical cone angle θcr as the solution of the equation given in (C.8). Nevertheless, one obtains
the closed-form expression given in (C.5), by plugging in the definition of G(·) –given in (C.7)– in (C.8) and
solving the resulting quadratic equation for sin2 θcr .

2 cos θcr −
√
ϱ

σ G(θcr) sin
2 θcr = 0. (C.8)

Shannon presented the exact asymptotic expression for the rate R in terms of the cone angle θ in [43, (11)], as
well:

enR ∼
√
2πn cos θ
sinn−1 θ

. (C.9)

We obtain the fixed-rate asymptotic expression corresponding to the fixed cone angle asymptotic expressions
(C.2), (C.3), and (C.6), by first deriving the asymptotic expression for the cone angle θ for a fixed-rate R using
(C.9). If |δn | ≪ 1 and

θn = ξ + δn , (C.10)

then using the small angle approximation for the trigonometric functions we get

√
2πn cos θn
sinn−1 θn

=
√
2πn cos ξ
sinn−1 ξ

1−δn tan ξ+O(δ2n)
(1+δn cot ξ+O(δ2n))

n−1 .

Invoking ln(1 + ϵ) = ϵ+O
(
ϵ2
)
, we get

ln
√
2πn cos θn
sinn−1 θn

= n ln 1
sin ξ + ln

(√
πn
2 sin 2ξ

)
− [(n − 1) cot ξ + tan ξ] δn + nO

(
δ2n

)
Consequently, if

ξ = arcsin(e−R), (C.11)

δn = 1
n cot ξ ln

(√
πn
2 sin 2ξ

)
, (C.12)

then the rate corresponding to the cone angle θn at the block length n is R + O
(

ln2 n
n2

)
. In other words, we

get a fixed-rate by changing the cone angle by an additive factor proportional to lnn
n . In order to obtain the

exact asymptotic expressions for the upper and lower bounds to the error probability given in (C.1) via (C.2)
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and (C.3) at a fixed-rate R , we will apply Taylor’s expansion. To that end, we first calculate the derivatives of
G and EL . As a result of (C.7), we have

d
dθG = 1

2

(
−

√
ϱ

σ sin θ − (ϱ/σ2) sin θ cos θ√
(ϱ/σ2) cos2 θ+4

)
= − (

√
ϱ/σ) sin θ√

(ϱ/σ2) cos2 θ+4
G .

Then using (C.6), we get

d
dθEL =

√
ϱ

2σ

[
− cos θ d

dθG + sin θG
]
− 1

G
d
dθG − cot θ

= (
√

ϱ/σ) sin θ√
(ϱ/σ2) cos2 θ+4

G2 + (
√

ϱ/σ) sin θ√
(ϱ/σ2) cos2 θ+4

− cot θ

=
√
ϱ

σ sin θG − cot θ.

Thus (C.10) and the Taylor’s expansion imply

EL(θn) = EL(ξ) +
(√

ϱ

σ sin ξG(ξ)− cot ξ
)
δn +O

(
δ2n

)
.

Invoking (C.12), we get the following asymptotic expression

e−nEL(θn )
√
n

∼ e−nEL(ξ)
√
n

(√
π
2n sin 2ξ

)1−
√

ϱ

σ
sin ξG(ξ)

cot ξ

. (C.13)

On the other hand, invoking (C.7) in (C.6), we get

EL(ξ) =
ϱ

4σ2

[
2− cos2 ξ + cos2 ξ

√
1 + 4σ2

ϱ
1

cos2 ξ

]
− ln sin ξ

√
ϱ

2σ

(
cos ξ +

√
cos2 ξ + 4σ2

ϱ

)
= ϱ

4σ2

[
1 + sin2 ξ + (1− sin2 ξ)

√
1 + 4σ2

ϱ
1

1−sin2 ξ

]
+ ln 1

sin ξ

√
ϱ

2σ

(√
cos2 ξ + 4σ2

ϱ − cos ξ

)
= ϱ

4σ2

[
1 + sin2 ξ + (1− sin2 ξ)

√
1 + 4σ2

ϱ
1

1−sin2 ξ

]
+ 1

2 ln
1

sin2 ξ

(
1 + ϱ cos2 ξ

2σ2 − ϱ cos2 ξ
2σ2

√
1 + 4σ2

ϱ cos2 ξ

)
.

Then using (C.11), we get the closed-form expression for the sphere packing exponent given in [34, (74)]:

EL(ξ) =
ϱ

4σ2

[
1 + 1

e2R + (1− 1
e2R )

√
1 + 4σ2

ϱ
e2R

e2R−1

]
+ 1

2 ln

[
e2R − ϱ(e2R−1)

2σ2

(√
1 + 4σ2e2R

ϱ(e2R−1) − 1

)]
= Esp(R,W , ϱ) . (C.14)

On the other hand, (C.7) implies

√
ϱ

σ
sin ξG(ξ)

cot ξ = ϱ sin2 ξ
2σ2

(
1 +

√
1 + 4σ2

ϱ
1

1−sin2 ξ

)

= 2 sin2 ξ
1−sin2 ξ

(√
1 + 4σ2

ϱ
1

1−sin2 ξ
− 1

)−1

.
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Invoking first (C.11), then (5.22), and finally (5.23), we get

√
ϱ

σ
sin ξG(ξ)

cot ξ = 2
e2R−1

(√
1 + 4σ2

ϱ
e2R

e2R−1 − 1

)−1

= 1
α∗

= 1− ∂
∂sEsp(s,W , ϱ)

∣∣
s=R

.

Then (C.13) and (C.14) imply

e−nEL(θn )
√
n

∼
(√

π
2 sin 2ξ

)E ′
sp(R)

n
E′
sp(R)−1

2 e−nEsp(R,W ,ϱ)

where E ′
sp(R) = ∂

∂sEsp(s,W , ϱ)
∣∣
s=R

. Then [43, (3)], i.e., (C.1), imply both (1.1) and (5.1), because (C.1) is
nothing but (1.1) and (5.1) for certain multiplicative constants.

D. Proof of (5.35)

Note that for any three random variables Z1 , Z2 , and Z3 ,

E

[∣∣∣∣∑3

ı=1
Zı

∣∣∣∣3
]
≤

∑3

ı=1
E
[
|Zı|3

]
+ 6E[|Z1Z2Z3|] + 3

∑
ı,ȷ:ı ̸=ȷ

E
[∣∣ZıZ

2
ȷ

∣∣] .
On the other hand, as a result of Hölder’s inequality we have

E[|Z1Z2Z3|] ≤ E
[
|Z1|3

] 1
3

E
[
|Z2|3

] 1
3

E
[
|Z3|3

] 1
3

,

E
[∣∣ZıZ

2
ȷ

∣∣] ≤ E
[
|Zı|3

] 1
3

E
[
|Zȷ|3

] 2
3

.

Furthermore, since the geometric mean is upper bounded by the arithmetic mean, we also have

E
[
|Z1|3

] 1
3

E
[
|Z2|3

] 1
3

E
[
|Z3|3

] 1
3 ≤ 1

3

∑3

ı=1
E
[
|Zı|3

]
,

E
[
|Zı|3

] 1
3

E
[
|Zȷ|3

] 2
3 ≤ 1

3E
[
|Zı|3

]
+ 2

3E
[
|Zȷ|3

]
.

Thus

E

[∣∣∣∣∑3

ı=1
Zı

∣∣∣∣3
]
≤

∑3

ı=1
E
[
|Zı|3

]
+ 2

∑3

ı=1
E
[
|Zı|3

]
+
∑

ı,ȷ:ı ̸=ȷ

(
E
[
|Zı|3

]
+ 2E

[
|Zȷ|3

])
≤ 9

∑3

ı=1
E
[
|Zı|3

]
.
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