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Variations on a Theme by Schalkwijk and Kailath
Robert G. Gallager, Life Fellow, IEEE, and Barış Nakiboğlu

Abstract—Schalkwijk and Kailath (1966) developed a class of
block codes for Gaussian channels with ideal feedback for which
the probability of decoding error decreases as a second-order ex-
ponent in block length for rates below capacity. This well-known
but surprising result is explained and simply derived here in terms
of a result by Elias (1956) concerning the minimum mean-square
distortion achievable in transmitting a single Gaussian random
variable over multiple uses of the same Gaussian channel. A simple
modification of the Schalkwijk–Kailath scheme is then shown to
have an error probability that decreases with an exponential
order which is linearly increasing with block length. In the infinite
bandwidth limit, this scheme produces zero error probability
using bounded expected energy at all rates below capacity. A
lower bound on error probability for the finite bandwidth case
is then derived in which the error probability decreases with an
exponential order which is linearly increasing in block length at
the same rate as the upper bound.

Index Terms—Additive memoryless Gaussian noise channel,
block codes, error probability, feedback, reliability, Schalk-
wijk–Kailath encoding scheme.

I. INTRODUCTION

T HIS paper describes coding and decoding strategies
for discrete-time additive memoryless Gaussian-noise

(DAMGN) channels with ideal feedback. It was shown by
Shannon [14] in 1961 that feedback does not increase the ca-
pacity of memoryless channels, and was shown by Pinsker [10]
in 1968 that fixed-length block codes on Gaussian-noise chan-
nels with feedback cannot exceed the sphere-packing bound if
the energy per codeword is bounded independently of the noise
realization. It is clear, however, that reliable communication can
be simplified by the use of feedback, as illustrated by standard
automatic repeat strategies at the data link control layer. There
is a substantial literature (for example, [11], [3], [9]) on using
variable-length strategies to substantially improve the rate of
exponential decay of error probability with expected coding
constraint length. These strategies essentially use the feedback
to coordinate postponement of the final decision when the noise
would otherwise cause errors. Thus, small error probabilities
can be achieved through the use of occasional long delays,
while keeping the expected delay small.

For DAMGN channels an additional mechanism for using
feedback exists whereby the transmitter can transmit unusually
large amplitude signals when it observes that the receiver is in
danger of making a decoding error. The power (i.e., the expected
squared amplitude) can be kept small because these large ampli-
tude signals are rarely required. In 1966, Schalkwijk and Kailath
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[13] used this mechanism in a fixed-length block-coding scheme
for infinite bandwidth Gaussian noise channels with ideal feed-
back. They demonstrated the surprising result that the resulting
probability of decoding error decreases as a second-order ex-
ponential1 in the code constraint length at all transmission rates
less than capacity. Schalkwijk [12] extended this result to the fi-
nite bandwidth case, i.e., DAMGN channels. Later, Kramer [8]
(for the infinite bandwidth case) and Zigangirov [15] (for the fi-
nite bandwidth case) showed that the above doubly exponential
bounds could be replaced by th-order exponential bounds for
any in the limit of arbitrarily large block lengths. Later
encoding schemes inspired by the Schalkwijk and Kailath ap-
proach have been developed for multiuser communication with
DAMGN [16]–[20], secure communication with DAMGN [21],
and point-to-point communication for Gaussian noise channels
with memory [22].

The purpose of this paper is threefold. First, the existing re-
sults for DAMGN channels with ideal feedback are made more
transparent by expressing them in terms of a 1956 paper by Elias
on transmitting a single signal from a Gaussian source via mul-
tiple uses of a DAMGN channel with feedback. Second, using
an approach similar to that of Zigangirov in [15], we strengthen
the results of [8] and [15], showing that error probability can be
made to decrease with block length at least with an exponen-
tial order for given coefficients and . Third,
a lower bound is derived. This lower bound decreases with an
exponential order in equal to where is the same
as in the upper bound and is a sublinear function2 of the
block length .

Neither this paper nor the earlier results in [12], [13], [8],
and [15] are intended to be practical. Indeed, these second-
and higher order exponents require unbounded amplitudes (see
[10], [2], [9]). Also, Kim et al. [7] have recently shown that if
the feedback is ideal except for additive Gaussian noise, then
the error probability decreases only as a single exponential in
block length, although the exponent increases with increasing
signal-to-noise ratio (SNR) in the feedback channel. Thus, our
purpose here is simply to provide increased understanding of
the ideal conditions assumed.

We first review the Elias result [4], and use it to get an al-
most trivial derivation of the Schalkwijk and Kailath results.
The derivation yields an exact expression for error probability,
optimized over a class of algorithms including those in [12],
[13]. The linear processing inherent in that class of algorithms
is then relaxed to obtain error probabilities that decrease with
block length at a rate much faster than an exponential order

1For integer � � �, the �th-order exponent function � ��� is defined as
� ��� � ��������� � � �������� � � ��� with � repetitions of ���. A function
���� � � is said to decrease as a �th-order exponential if for some constant
� � � and all sufficiently large �� ���� � ��� ����.

2i.e., 	
� � �.
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Fig. 1. The setup for � channel uses per source use with ideal feedback.

of . Finally, a lower bound to the probability of decoding error
is derived. This lower bound is first derived for the case of two
codewords and is then generalized to arbitrary rates less than
capacity.

II. THE FEEDBACK CHANNEL AND THE ELIAS RESULT

Let represent successive inputs
to a DAMGN channel with ideal feedback. That is, the channel
outputs satisfy where
is an -tuple of statistically independent Gaussian random vari-
ables, each with zero mean and variance , denoted .
The channel inputs are constrained to some given average power
constraint in the sense that the inputs must satisfy the second-
moment constraint

where (1)

Without loss of generality, we take . Thus, is both a
power constraint and an SNR constraint.

A discrete-time channel is said to have ideal feedback if each
output , is made known to the transmitter in
time to generate input (see Fig. 1). Let be the random
source symbol to be communicated via this -tuple of channel
uses. Then each channel input is some function
of the source and previous outputs. Assume (as usual) that
is statistically independent of .

Elias [4], was interested in the situation where
is a Gaussian random variable rather than a dis-

crete message. For , the rate–distortion bound (with a
mean-square distortion measure) is achieved without coding or
feedback. For , attempts to map into an -dimensional
channel input in the absence of feedback involve nonlinear or
twisted modulation techniques that are ugly at best. Using the
ideal feedback, however, Elias constructed a simple and elegant
procedure for using the channel symbols to send in such
a way as to meet the rate–distortion bound with equality.

Let be an arbitrary choice of energy, i.e., second
moment, for each . It will be shown shortly that
the optimal choice for , subject to (1), is
for . Elias’s strategy starts by choosing the first
transmitted signal to be a linear scaling of the source variable

, scaled to meet the second-moment constraint, i.e.,

At the receiver, the minimum mean-square error (MMSE) esti-
mate of is , and the error in that estimate is

. It is more convenient to keep track of the MMSE

estimate of and the error in that estimate. Since and
are the same except for the scale factor , these are

given by

(2)

(3)

where and .
Using the feedback, the transmitter can calculate the error

term at time . Elias’s strategy is to use as the source
signal (without a second-moment constraint) for the second
transmission. This unconstrained signal is then linearly
scaled to meet the second-moment constraint for the second
transmission. Thus, the second transmitted signal is given
by

We use this notational device throughout, referring to the uncon-
strained source signal to be sent at time by and to the linear
scaling of , scaled to meet the second moment constraint ,
as .

The receiver calculates the MMSE estimate
and the transmitter then calculates the error in this

estimate, . Note that

Thus, can be viewed as the error arising from estimating
by . The receiver continues to update its
estimate of on subsequent channel uses, and the transmitter
continues to transmit linearly scaled versions of the current es-
timation error. Then the general expressions are as follows:

(4)

(5)

(6)

where and .
Iterating on (6) from to yields

(7)

Similarly, iterating on , we get

(8)
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This says that the error arising from estimating by
is . This is valid for any (nonneg-

ative) choice of , and this is minimized, subject to
, by for . With this optimal

assignment, the mean square estimation error in after
channel uses is

(9)

We now show that this is the MMSE over all ways of using the
channel. The rate–distortion function for this Gaussian source
with a squared-difference distortion measure is well known to
be

This is the minimum mutual information, over all channels, re-
quired to achieve a mean-square error (distortion) equal to .
For is , which is the ca-
pacity of this channel over uses (it was shown by Shannon
[14] that feedback does not increase the capacity of memoryless
channels). Thus, the Elias scheme actually meets the rate–distor-
tion bound with equality, and no other coding system, no matter
how complex, can achieve a smaller mean-square error. Note
that (9) is also valid in the degenerate case . What is sur-
prising about this result is not so much that it meets the rate–dis-
tortion bound, but rather that the mean-square estimation error
goes down geometrically with . It is this property that leads di-
rectly to the doubly exponential error probability of the Schalk-
wijk–Kailath scheme.

III. THE SCHALKWIJK–KAILATH SCHEME

The Schalkwijk and Kailath (SK) scheme will now be de-
fined in terms of the Elias scheme,3 still assuming the discrete-
time channel model of Fig. 1 and the power constraint of (1).
The source is a set of equiprobable symbols, denoted by

. The channel uses will now be numbered from
to , since the use at time will be quite distinct from the

others. The source signal, is a standard -PAM modulation
of the source symbol. That is, for each symbol ,
from the source alphabet, is mapped into the signal where

. Thus, the signals in are symmetric
around with unit spacing. Assuming equiprobable symbols,
the second moment of is . The initial channel
input is a linear scaling of , scaled to have an energy
to be determined later. Thus, is an -PAM encoding, with
signal separation .

(10)

The received signal is fed back to the trans-
mitter, which, knowing , determines . In the following

channel uses, the Elias scheme is used to send the Gaussian
random variable to the receiver, thus reducing the effect of

3The analysis here is tutorial and was carried out in slightly simplified form
in [5, p. 481]. A very readable further simplified analysis is in [23].

the noise on the original transmission. After the trans-
missions to convey , the receiver combines its estimate of
with to get an estimate of , from which the -ary signal
is detected.

Specifically, the transmitted and received signals for times
are given by (4), (5), and (6). At time , the

unconstrained signal is and . Thus,
the transmitted signal is given by , where the second
moment is to be selected later. We choose for

for optimized use of the Elias scheme, and thus the
power constraint in (1) becomes . At the
end of transmission , the receiver’s estimate of from

is given by (7) as

The error in this estimate, , is a zero-
mean Gaussian random variable with variance , where is
given by (9) to be

(11)

Since and we have

(12)

where .
Note that is a function of the noise vector

and is thus statistically independent4 of . Thus, de-
tecting from (which is known at the re-
ceiver) is the simplest of classical detection problems, namely,
that of detecting an -PAM signal from the signal plus an
independent Gaussian noise variable . Using maximum-like-
lihood (ML) detection, an error occurs only if exceeds half
the distance between signal points, i.e., if

Since the variance of is , the probability of
error is given by5

(13)

where and is the complementary
distribution function of , i.e.,

(14)

Choosing and , subject , to maximize
(and thus minimize ), we get . That

4Furthermore, for the given feedback strategy, Gaussian estimation theory can
be used to show, first, that � is independent of �� ���� �, and, second, that
�� � � � �� ���� � is a sufficient statistic for � based on ��� (i.e.,
���� ���� � � ���� ��� �). Thus, this detection strategy is not as ad hoc as
it might initially seem.

5The term����	�� in (13) arises because the largest and smallest signals
each have only one nearest neighbor, whereas all other signals have two nearest
neighbors.
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is, if is less than , all the energy is used to send and the
feedback is unused. We assume in what follows, since
for any given this holds for large enough . In this case,

is one unit larger than , leading to

(15)

Substituting (15) into (13)

(16)

where .
This is an exact expression for error probability, optimized

over energy distribution, and using -PAM followed by the
Elias scheme and ML detection. It can be simplified as an upper
bound by replacing the coefficient by . Also, since
is a decreasing function of its argument, can be further upper-
bounded by replacing by . Thus

(17)

where .
For large , which is the case of interest, the above bound

is very tight and is essentially an equality, as first derived by
Schalkwijk6 in [12, eq. (12)]. Recalling that , we can
further lower-bound (thus upper-bounding ). Substituting

and we get

(18)

The term in brackets is decreasing in . Thus

(19)

(20)

Using this together with (17) and (18) we get

(21)

or more simply yet,

(22)

Note that for decreases as a second-order expo-
nential in .

In summary, then, we see that the use of standard -PAM at
time , followed by the Elias algorithm over the next trans-
missions, followed by ML detection, gives rise to a probability
of error that decreases as a second-order exponential for all

. Also, satisfies (21) and (22) for all .
Although decreases as a second-order exponential with

this algorithm, the algorithm does not minimize over all al-
gorithms using ideal feedback. The use of standard -PAM at

6Schalkwijk’s work was independent of Elias’s. He interpreted the steps in
the algorithm as successive improvements in estimating� rather than as esti-
mating � .

time could be replaced by pulse-amplitude modulation (PAM)
with nonequal spacing of the signal points for a modest reduc-
tion in . Also, as shown in the next section, allowing trans-
missions to to make use of the discrete nature of
allows for a major reduction in .7

The algorithm above, however, does have the property that
it is optimal among schemes in which, first, standard PAM is
used at time and, second, for each is a
linear function of and . The reason for this is that and

are then jointly Gaussian and the Elias scheme minimizes
the mean-square error in and thus also minimizes .

A. Broadband Analysis

Translating these results to a continuous time formulation
where the channel is used times per second,8 the capacity
(in nats per second) is . Letting and
letting be the rate in nats per second, this formula
becomes

(23)

Let be the continuous-time power constraint, so that
. In the broadband limit as

for fixed . Since (23) applies for all ,
we can simply go to the broadband limit, . Since
the algorithm is basically a discrete time algorithm, however,
it makes more sense to view the infinite bandwidth limit as a
limit in which the number of available degrees of freedom
increases faster than linearly with the constraint time . In this
case, the SNR per degree of freedom, goes to with
increasing . Rewriting in (17) for this case

(24)

(25)

where the inequality was used. Note
that if increases quadratically with , then the term is
simply a constant which becomes negligible as the coefficient
on the quadratic becomes large. For example, if ,
then this term is at most and (25) simplifies to

for (26)

7Indeed, Zigangirov [15] developed an algorithm quite similar to that de-
veloped in the next section. The initial phase of that algorithm is very sim-
ilar to the algorithm [12] just described, with the following differences. In-
stead of starting with standard � -PAM, [15] starts with a random ensemble
of non-equally spaced� -PAM codes ingeniously arranged to form a Gaussian
random variable. The Elias scheme is then used, starting with this Gaussian
random variable. Thus, the algorithm in [15] has different constraints than those
above. It turns out to have an insignificantly larger � (over this phase) than the
algorithm here for � greater than ���� �� ���� and an insignificantly smaller
� otherwise.

8This is usually referred to as a channel band-limited to� . This is a harmless
and universally used abuse of the word bandwidth for channels without feed-
back, and refers to the ability to satisfy the Nyquist criterion with arbitrarily
little power sent out of band. It is more problematic with feedback, since it as-
sumes that the sum of the propagation delay, the duration of the transmit pulse,
the duration of the matched filter at the receiver, and the corresponding quan-
tities for the feedback, is at most ���� . Even allowing for a small fraction of
out-of-band energy, this requires considerably more than bandwidth� .
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Fig. 2. Given that � is the sample value of the PAM source signal � , the sample value of � is � � where � �
�
� �� . The figure illustrates the

probability density of � given this conditioning and shows the 	 -PAM signal points for � that are neighbors to the sample value � � � � . Note that this
density is� �� � 
 ��, i.e., it is the density of� , shifted to be centered at � � . Detection using ML at this point simply quantizes � to the nearest signal point.

This is essentially the same as the broadband SK result (see the
final equation in [13]). The result in [13] used de-
grees of freedom, but chose the subsequent energy levels to be
decreasing harmonically, thus slightly weakening the coefficient
of the result. The broadband result is quite insensitive to the en-
ergy levels used for each degree of freedom9, so long as is
close to and the other are close to . This partly explains
why the harmonic choice of energy levels in [13] comes reason-
ably close to the optimum result.

IV. AN ALTERNATIVE PAM SCHEME IN THE HIGH

SIGNAL-TO-NOISE REGIME

In the previous section, Elias’s scheme was used to allow the
receiver to estimate the noise originally added to the PAM
signal at time . This gave rise to an equivalent observation,

with attenuated noise as given in (12).
The geometric attenuation of with is the reason why
the error probability in the Schalkwijk and Kailath (SK) [13]
scheme decreases as a second-order exponential in time.

In this section, we explore an alternative strategy that is again
based on the use of -PAM at time , but is quite different
from the SK strategy at times to . The analysis is re-
stricted to situations in which the SNR at time is so large
that the distance between successive PAM signal points in
is large relative to the standard deviation of the noise. In this
high-SNR regime, a simpler and more effective strategy than
the Elias scheme suggests itself (see Fig. 2). This new strategy
is limited to the high-SNR regime, but Section V develops a
two-phase scheme that uses the SK strategy for the first part of
the block, and switches to this new strategy when the SNR is
sufficiently large.

In this new strategy for the high-SNR regime, the receiver
makes a tentative ML decision at time . As seen in the
figure, that decision is correct unless the noise exceeds half the
distance to either the signal value on the right or
the left of the sample value of . Each of these two events
has probability .

The transmitter uses the feedback to calculate and
chooses the next signal (in the absence of a second-moment
constraint) to be a shifted version of the original -PAM
signal, shifted so that where is the original
message symbol being transmitted. In other words, is the
integer-valued error in the receiver’s tentative decision

9To see this, replace ���� � in (13) by ���	 
����� ��, each
term of which can be lower-bounded by the inequality 
���� �� � �� � �
.

of . The corresponding transmitted signal is essentially
given by , where is the energy allo-
cated to .

We now give an approximate explanation of why this strategy
makes sense and how the subsequent transmissions are chosen.
This is followed by a precise analysis. Temporarily ignoring
the case where either or (i.e., where has
only one neighbor), is with probability . The
probability that is two or more is essentially negligible, so

with a probability approximately equal to .
Thus

(27)

This means that is not only a shifted version of , but (since
) is also scaled up by a factor that is exponential

in when is sufficiently large. Thus, the separation between
adjacent signal points in is exponentially increasing with .

This also means that when is transmitted, the situation
is roughly the same as that in Fig. 2, except that the distance
between signal points is increased by a factor exponential in .
Thus, a tentative decision at time will have an error probability
that decreases as a second-order exponential in .

Repeating the same procedure at time will then give rise to
a third-order exponential in , etc. We now turn to a precise
analysis and description of the algorithm at times to .

The following lemma provides an upper bound to the second
moment of , which was approximated in (27).

Lemma 4.1: For any , let be a -quantization of a
normal random variable in the sense that for each
integer , if , then . Then is
upper-bounded by

(28)

Note from Fig. 2 that, aside from a slight exception described
below, is the same as the -quantization of
where . The slight exception is that should
always lie between and . If , then

, whereas the -quantization takes on a larger in-
teger value. There is a similar limit for . This
reduces the magnitude of in the above exceptional cases, and
thus reduces the second moment. Thus, the bound in the lemma
also applies to . For simplicity, in what follows we avoid
this complication by assuming that the receiver allows to be
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larger than or smaller than . This increases both the error
probability and the energy over true ML tentative decisions, so
the bounds also apply to the case with true ML tentative deci-
sions.

Proof: From the definition of , we see that if
. Thus, for

From symmetry, , so the second
moment of is given by

Using the standard upper bound for
, and recognizing that , this becomes

for (29)

We now define the rest of this new algorithm. We have defined
the unconstrained signal at time to be but have
not specified the energy constraint to be used in amplifying
to . The analysis is simplified by defining in terms of a
specified scaling factor between and . The energy in
is determined later by this scaling. In particular, let

where

The peculiar expression for above looks less peculiar when
expressed as . When is re-
ceived, we can visualize the situation from Fig. 2 again, where
now is replaced by . The signal set for is again a
PAM set but it now has signal spacing and is centered on
the signal corresponding to the transmitted source symbol .
The signals are no longer equally likely, but the analysis is sim-
plified if an ML tentative decision is again made. We see
that where is the -quantization of (and
where the receiver again allows to be an arbitrary integer).
We can now state the algorithm for each time .

(30)

(31)

(32)

(33)

where is the -quantization of .

Lemma 4.2: For , the algorithm of (31)–(33) satisfies
the following for all alphabet sizes and all message sym-
bols :

(34)

(35)

(36)

(37)

where with exponentials.
Proof: From the definition of in (30)

This establishes the first part of (34) and the inequality follows
since and is increasing in .

Next, since , we can use (34) and Lemma 4.1 to
see that

where we have canceled the exponential terms, estab-
lishing (35).

To establish (36), note that each is increasing as a function
of , and thus each is upper-bounded by taking
to be . Then , , and the other terms
can be bounded in a geometric series with a sum less than .

Finally, to establish (37), note that

where we have used Lemma 4.1 in , the fact that in
, and (34) in and .

We have now shown that, in this high-SNR regime, the error
probability decreases with time as an th-order exponent. The
constants involved, such as , are somewhat ad hoc, and
the details of the derivation are similarly ad hoc. What is hap-
pening, as stated before, is that by using PAM centered on the
receiver’s current tentative decision, one can achieve rapidly ex-
panding signal point separation with small energy. This is the
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critical idea driving this algorithm, and in essence this idea was
used earlier by10 Zigangirov [15]

V. A TWO-PHASE STRATEGY

We now combine the Shalkwijk–Kailath (SK) scheme of
Section III and the high-SNR scheme of Section IV into a
two-phase strategy. The first phase, of block length , uses
the SK scheme. At time , the equivalent received signal

(see (12)) is used in an ML decoder to
detect the original PAM signal in the presence of additive
Gaussian noise of variance .

Note that if we scale the equivalent received signal,
by a factor of so as to have an

equivalent unit variance additive noise, we see that the distance
between adjacent signal points in the normalized PAM is

where is given in (13). If is selected to be
large enough to satisfy , then this detection at time

satisfies the criterion assumed at time of the high-SNR
algorithm of Section IV. In other words, the SK algorithm not
only achieves the error probability calculated in Section III,
but also, if the block length of the SK phase is chosen to be
large enough, it creates the initial condition for the high-SNR
algorithm. That is, it provides the receiver and the transmitter at
time with the output of a high SNR PAM. Consequently,
not only is the tentative ML decision at time correct
with moderately high probability, but also the probability of the
distant neighbors of the decoded messages vanishes rapidly.

The intuition behind this two-phase scheme is that the SK al-
gorithm seems to be quite efficient when the signal points are so
close (relative to the noise) that the discrete nature of the signal
is not of great benefit. When the SK scheme is used enough
times, however, the signal points become far apart relative to
the noise, and the discrete nature of the signal becomes impor-
tant. The increased effective distance between the signal points
of the original PAM also makes the high-SNR scheme feasible.
Thus, the two-phase strategy switches to the high-SNR scheme
at this point and the high-SNR scheme drives the error proba-
bility to as an -order exponential.

We now turn to the detailed analysis of this two-phase
scheme. Note that five units of energy must be reserved for
phase 2 of the algorithm, so the power constraint for the first
phase of the algorithm is . For any fixed rate

, we will find that the remaining time
units are a linearly increasing function of and yield an error
probability upper-bounded by .

A. The Finite-Bandwidth Case

For the finite-bandwidth case, we assume an overall block
length , an overall power constraint , and an
overall rate . The overall energy available for
phase 1 is at least , so the average power in phase 1 is at
least .

We observed that the distance between adjacent
signal points, assuming that signal and noise are normalized to

10However, unlike the scheme presented above, in Zigangirov’s scheme the
total amount of energy needed for transmission is increasing linearly with time.

Fig. 3. The figure shows the function ���� and also the value of � , denoted
� ���, at which ���� � �. It also shows � , which satisfies ��� � �
� � ���, and gives the solution to (40) with equality. It turns out to be more
convenient to satisfy (40) with inequality using � , which by simple geometry
satisfies � � � ��� � .

unit noise variance, is twice the parameter given in (16).
Rewriting (16) for the power constraint

(38)

where to get we assumed that . We can also show
that the multiplicative term, , is a decreasing
function of satisfying

This establishes (38). In order to satisfy , it suffices
for the right-hand side of (38) to be greater than or equal to .
Letting , this condition can be rewritten as

(39)

Define by

This is a concave increasing function for and can be
interpreted as the capacity of the given channel if the number of
available degrees of freedom is reduced from to without
changing the available energy per block, i.e., it can be inter-
preted as the capacity of a continuous-time channel whose band-
width has been reduced by a factor of . We can then rewrite (39)
as

(40)

where . This is interpreted in Fig. 3.
The condition is satisfied by choosing

for defined in Fig. 3, i.e.,
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Thus, the duration of phase 2 can be chosen to be

(41)

This shows that increases linearly with at rate
for . As a result of Lemma 4.2, the error proba-
bility is upper-bounded as

(42)

Thus, the probability of error is bounded by an exponential order
that increases at a rate . We later derive a lower bound
to error probability which has this same rate of increase for the
exponential order of error probability.

B. The Broadband Case—Zero Error Probability

The broadband case is somewhat simpler since an unlimited
number of degrees of freedom are available. For phase 1, we
start with (24), modified by the fact that five units of energy
must be reserved for phase 2.

where, in order to get the inequality in the second step, we as-
sumed that and used the identity .
As in the broadband SK analysis, we assume that is in-
creasing quadratically with increasing . Then becomes

just a constant. Specifically, if , we get

It follows that if

(43)

If (43) is satisfied, then phase 2 can be carried out for arbitrarily
large , with satisfying (42). In principle, can be infinite,
so becomes whenever is large enough to satisfy (43).

One might object that the transmitter sequence is not well de-
fined with , but in fact it is, since at most a finite number
of transmitted symbols can be nonzero. One might also object
that it is impossible to obtain an infinite number of ideal feed-
back signals in finite time. This objection is certainly valid, but
the entire idea of ideal feedback with infinite bandwidth is un-
realistic. Perhaps a more comfortable way to express this result
is that is the greatest lower bound to error probability when
(43) is satisfied, i.e., any desired error probability, no matter how
small, is achievable if the continuous-time block length sat-
isfies (43).

VI. A LOWER BOUND TO ERROR PROBABILITY

The previous sections have derived upper bounds to the prob-
ability of decoding error for data transmission using particular
block coding schemes with ideal feedback. These schemes are
nonoptimal, with the nonoptimalities chosen both for analytical

convenience and for algorithmic simplicity. It appears that the
optimal strategy is quite complicated and probably not very in-
teresting. For example, even with a block length , and a
message set size , PAM with equispaced messages is nei-
ther optimal in the sense of minimizing average error probability
over the message set (see [6, Exercise 6.3 ]) nor in the sense of
minimizing the error probability of the worst message. Aside
from this rather unimportant nonoptimality, the SK scheme is
also nonoptimal in ignoring the discrete nature of the signal until
the final decision. Finally, the improved algorithm of Section V
is nonoptimal both in using ML rather than maximum a pos-
teriori probability (MAP) for the tentative decisions and in not
optimizing the choice of signal points as a function of the prior
received signals.

The most important open question, in light of the extraordi-
narily rapid decrease of error probability with block length for
the finite bandwidth case, is whether any strictly positive lower
bound to error probability exists for fixed block length . To
demonstrate that there is such a positive lower bound we first
derive a lower bound to error probability for the special case of
a message set of size . Then, we generalize this to codes
of arbitrary rate and show that for , the lower bound de-
creases as a th-order exponential where increases with the
block length and has the form where the coeffi-
cient is the same as that in the upper bound in Section V. It is
more convenient in this section to number the successive signals
from to rather than to as in previous sections.

A. A Lower Bound for

Although it is difficult to find and evaluate the entire optimal
code, even for , it turns out to be easy to find the optimal
encoding in the last step. Thus, for each , we want to find
the optimal choice of as a function of, first,
the encoding functions ,
and, second, the allocation of energy, for that

. We will evaluate the error probability for such an optimal
encoding at time and then relate it to the error probability
that would have resulted from decoding at time . We will
use this relation to develop a recursive lower bound to error
probability at each time in terms of that at time .

For a given code function for
, the conditional probability density11 of given or

is positive for all sample values for ; thus, the corresponding
conditional probabilities of hypotheses and are
positive, i.e.,

In particular, for , define
for some given . Finding the error probability

is an elementary binary de-
tection problem for the given . MAP detection, using the
a priori probabilities and , minimizes the resulting error
probability.

11We do not use the value of this density, but for completeness, it can be
seen to be ��� � ������� ��, where ���� is the normal density
���� ������ ���.
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For a given sample value of , let and be the values
of for and , respectively. Let be half the distance
between and , i.e., . The error probability
depends on and only through . For a given , we choose

and to satisfy , thus maximizing for
the given . The variance of conditional on is given
by

and since , this means that is related to by
.

Now let . Note that is the probability of
error for a hypothetical MAP decoder detecting at time
from . The error probability for the MAP decoder at
the end of time is given by the classic result of binary MAP
detection with a priori probabilities and

(44)

where and .
This equation relates the error probability at the end of time

to the error probability at the end of time , both condi-
tional on . We are now going to view and as functions
of , and thus as random variables. Similarly, can be
any nonnegative function of , subject to a constraint on
its mean; so we can view as an arbitrary nonnegative random
variable with mean . For each and determine the
value of ; thus, is also a nonnegative random variable.

We are now going to lower-bound the expected value of
in such a way that the result is a function only of the expected
value of and the expected value of . Note that in (44)
can be lower-bounded by ignoring the first term and replacing
the second term with . Thus

(45)

where the last step uses the facts that is a decreasing func-
tion of and that .

(46)

(47)

(48)

In (46), we used Jensen’s inequality, based on the facts that
is a convex function for and that is a probability

distribution on . In (47), we used the Schwarz inequality
along with the fact that is decreasing for .

We now recognize that is simply the overall error prob-
ability at the end of time and is the overall error proba-
bility (if a MAP decision were made) at the end of time .
Thus, we denote these quantities as and respectively

(49)

Note that this lower bound is monotone increasing in .
Thus, we can further lower-bound by lower-bounding .
We can lower-bound (for a given and ) in ex-
actly the same way, so that .
These two bounds can be combined to implicitly bound in
terms of and . In fact, the same technique can
be used for each , getting

(50)

This gives us a recursive lower bound on for any given choice
of subject to the power constraint .

We have been unable to find a clean way to optimize this over
the choice of , so as a very crude lower bound on ,
we upper-bound each by . For convenience, multiply each
side of (50) by

for (51)

At this point, we can see what is happening in this lower bound.

As approaches , . Also, approaches

as . Now we will lower-bound the expression on the
right-hand side of (51). We can check numerically12 that for

(52)

Furthermore, is decreasing in for all , and thus

Substituting this into (51) we get

for

Applying this recursively for down to for any
we get

(53)

12That is, we can check numerically that (52) is satisfied for � � � and verify
that the right-hand side is decreasing faster than the left for � � �.
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where simply follows from the fact that . This
bound holds for , giving an overall lower bound on error
probability in terms of . In the usual case where the symbols
are initially equiprobable, and

(54)

Note that this lower bound is an th-order exponential. Al-
though it is numerically much smaller than the upper bound in
Section V, it has the same general form. The intuitive interpre-
tation is also similar. In going from block length to ,
with very small error probability at , the symbol of large
a priori probability is very close to and the other symbol

is approximately at . Thus, the error probability is
decreased in one time unit by an exponential in , leading
to an th-order exponential over time units.

B. A Lower Bound for Arbitrary

Next consider feedback codes of arbitrary rate with
sufficiently large block length and codewords. We
derive a lower bound on error probability by splitting into
an initial segment of length and a final segment of length

. This segmentation is for bounding purposes only
and does not restrict the feedback code. The error probability
of a hypothetical MAP decoder at the end of the first segment,

, can be lower-bounded by a conventional use of the Fano
inequality. We will show how to use this error probability as the
input of the lower bound for case derived in the previous
subsection, i.e., (53). There is still the question of allocating
power between the two segments, and since we are deriving a
lower bound, we simply assume that the entire available energy
is available in the first segment, and can be reused in the second
segment. We will find that the resulting lower bound has the
same form as the upper bound in Section V.

Using energy over the first segment corresponds to power
, and since feedback does not increase the channel ca-

pacity, the average directed mutual information over the first
segment is at most . Reusing the definitions

and from Section V,

The entropy of the source is , and thus the condi-
tional entropy of the source given satisfies

(55)

where we have used the Fano inequality and then bounded the
binary entropy by .

To use (55) as a lower bound on , it is necessary for
to be small enough that is substantially less than

, and to be specific we choose to satisfy

(56)

With this restriction, it can be seen from (55) that

(57)

Fig. 4. The figure shows the value of � , denoted � ���, at which ���� � �.
It also shows � , where ��� � � �����. This gives the solution to (56) with
equality, but � � � ��� � can be seen to be less than � and
thus also satisfies (56).

Fig. 4 illustrates that the following choice of in (58) satisfies
both (56) and (57). This uses the fact that is a monotoni-
cally increasing concave function of

(58)

The corresponding choice for is

(59)

Thus, with this choice of , the error probability at the end
of time satisfies (57).

The straightforward approach at this point would be to gen-
eralize the recursive relationship in (50) to arbitrary . This
recursive relationship could then be used, starting at time
and using each successively smaller until terminating the re-
cursion at where (57) can be used. It is simpler, however,
since we have already derived (50) for , to define a binary
coding scheme from any given -ary scheme in such a way that
the binary results can be used to lower-bound the -ary results.
This technique is similar to one used earlier in [1].

Let for be any given coding
function for . That code is used to define
a related binary code. In particular, for each received sequence

over the first segment, we partition the message set into
two subsets, and . The particular partition
for each is defined later. This partitioning defines a binary
random variable as follows:

At the end of the transmission, the receiver will use its decoder
to decide . We define the decoder for at time , using the
decoder of as follows:

Note that with the above mentioned definitions, whenever the
-ary scheme decodes correctly, the related binary scheme

does also, and thus the error probability for the -ary
scheme must be greater than or equal to the error probability

of the related binary scheme.
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The binary scheme, however, is one way (perhaps somewhat
bizarre) of transmitting a binary symbol, and thus it satisfies the
results13 of Section VI-A. In particular, for the binary scheme,
the error probability at time is lower-bounded by the error
probability at time by (53)

(60)

Our final task is to relate the error probability at time for
the binary scheme to the error probability in (57) for the

-ary scheme. In order to do this, let be the prob-
ability of message conditional on the received first segment

. The MAP error probability for an -ary decision at time
, conditional on , is where

Thus, , given in (57), is the mean of
over .

Now is the mean, over , of the error probability of a
hypothetical MAP decoder for at time conditional on

. This is the smaller of the a posteriori probabilities of
the subsets conditional on , i.e.,

(61)

The following lemma shows that by an appropriate choice of
partition for each , this binary error probability is lower-
bounded by the corresponding -ary error probability.

Lemma 6.1: For any probability distribution on
a message set with , let .
Then there is a partition of into two subsets, and ,
such that

and

(62)

Proof: Order the messages in order of decreasing . As-
sign the messages one by one in this order to the sets and

. When assigning the th most likely message, we calculate
the total probability of the messages that have already been as-
signed to each set, and assign the th message to the set which
has the smaller probability mass. If the probability mass of the
sets are the same, we choose one of the sets arbitrarily. With
such a procedure, the difference in the probabilities of the sets,

13This is not quite as obvious as it sounds. The binary scheme here is not
characterized by a coding function ������� � as in Section VI-A, but rather is
a randomized binary scheme. That is, for a given ��� and a given choice of � ,
the subsequent transmitted symbols � are functions not only of � and ��� ,
but also of a random choice of� conditional on � . The basic conclusion of (50)
is then justified by averaging over both ��� and the choice of � conditional
on � .

as they evolve, never exceeds . After all messages have
been assigned, let

We have seen that . Since , (62)
follows.

Since the error probability for the binary scheme is now at
least one half of that for the -ary scheme for each , we can
take the mean over , getting . Combining
this with (60) and (57)

(63)

where is given in (59). The exact terms in this expression
are not particularly interesting because of the very weak bounds
on energy at each channel use. What is interesting is that the
order of exponent in both the upper bound of (42) and (41) and
the lower bound here are increasing linearly14 at the same rate

.

VII. CONCLUSION

The SK data transmission scheme can be viewed as ordinary
PAM combined with the Elias scheme for noise reduction. The
SK scheme can also be improved by incorporating the PAM
structure into the transmission of the error in the receiver’s esti-
mate of the message, particularly during the latter stages. For the
band-limited version, this leads to an error probability that de-
creases with an exponential order where
and is a constant. In the broadband version, the error proba-
bility is zero for sufficiently large finite constraint durations .
A lower bound to error probability, valid for all was
derived. This lower bound also decreases with an exponential
order where again and is es-
sentially a constant.15 It is interesting to observe that the strategy
yielding the upper bound uses almost all the available energy in
the first phase, using at most five units of energy in the second
phase. The lower bound relaxed the energy constraint, allowing
all the allowable energy to be used in the first phase and then to
be used repeatedly in each time unit of the second phase. The
fact that both bounds decrease with the same exponential order
suggests that the energy available for the second phase is not of
primary importance. An open theoretical question is the min-
imum overall energy under which the error probability for two
codewords can be zero in the infinite bandwidth case.
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