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The Sphere Packing Bound via Augustin’s Method
Barış Nakiboğlu

Abstract— A sphere packing bound (SPB) with a prefactor
that is polynomial in the block length n is established for codes
on a length n product channel W[1,n], assuming that the maxi-
mum order 1/2 Rényi capacity among the component channels,
i.e. maxt∈[1,n] C1/2,Wt , is O(ln n). The reliability function of the
discrete stationary product channels with feedback is bounded
from above by the sphere packing exponent. Both results are
proved by first establishing a non-asymptotic SPB. The latter
result continues to hold under a milder stationarity hypothesis.

Index Terms— Channel coding, error analysis, error probabil-
ity, feedback communications, block codes.

I. INTRODUCTION

MOST proofs establishing the infeasibility of certain
performance for the channel coding problem under

fixed rate, fixed error probability, or slowly vanishing
error probability hypotheses rely on either a type based
expurgation [2], [31], [54] or a distinction of cases based
on types [35], [49], [58], [59]. Although similar bounds
can, usually, be obtained using the information spectrum
approach [34] with greater generality, one has to give up
the initial non-asymptotic bound in order to do so. This
relative advantage of the method of types [14], [16] over
the information spectrum approach [30] emerges from four
distinct assumptions: the product structure of the sample space,
the product structure of the probability measures, finiteness of
the input set, and the stationarity of the channel. The finite
input set assumption and the product structure assumptions
can be removed and the stationarity assumption can be relaxed
if one gives up the concept of type for the concept of
typicality. The typicality arguments are, usually, employed for
deriving asymptotic results, but they can also be used to obtain
non-asymptotic bounds.

Augustin’s proof [7] of the sphere packing bound (SPB)
stands out in this high level classification of the techniques for
deriving infeasibility results for the channel coding problem.
It establishes a non-asymptotic bound without assuming the
finiteness of the input set or the stationarity of the channel.
The main aim of this article is to build an understand-
ing of Augustin’s method around the concepts of capacity
and center. We believe such an understanding can guide us
when we apply Augustin’s method to the other information
transmission problems. To build such an understanding,
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we derive the SPBs using Augustin’s method in a way that
makes the role of the Rényi capacity and center more explicit.

Shannon et al. [54, Th. 2] published the first rigorous
proof of the SPB for arbitrary discrete stationary product
channels1 (DSPCs) in 1967. Haroutunian [31, Th. 2] pub-
lished an alternative proof that holds for arbitrary station-
ary product channels (SPCs) with finite input sets in 1968.
Haroutunian [31] expressed the sphere packing exponent in
an alternative form, which he proved to be equal to the
one in [54]. Augustin [6, Th. 4.7] published yet another
proof of the SPB that holds for —possibly non-stationary—
product channels with arbitrary (i.e. possibly infinite) input
sets, in 1969. Augustin’s SPB [6, Th. 4.7a] holds even for
product channels with infinite channel capacity. In the same
article, Augustin [6, Th. 4.8] also established a SPB with a
polynomial prefactor, under a hypothesis that is satisfied by
all DSPCs.

The first two proofs of the SPB for product channels,
presented in [31] and [54], rely on expurgations based on
the empirical distribution, i.e. the type or the composition,
of the input codewords; as a result, they are valid only for the
SPCs with finite input sets. Hence, even the non-stationary
discrete product channels are beyond the reach of the results
presented in [31] and [54], unless the channel has certain
symmetries or the channel is —at least approximately—
periodic. In order to see how the periodicity can be used to
overcome non-stationarity, consider the product of a sequence
of channels that alternates between two distinct channels at
odd and even time instances. The resulting product channel is
formally non-stationary; yet it can also be interpreted as a sta-
tionary product channel with larger components. Thus results
of [31] and [54] are applicable to non-stationary but periodic
DPCs, as well. Furthermore, if the channels in the sequence
are from a finite set W of possible component channels and
the frequencies of elements of W are asymptotically stable,
then the results of [31] or [54] can be applied through larger
component channels and appropriate worst case assumptions.2

One can obtain the same result by making minor changes in
the proofs presented in [31], or in [54], see [19, Sec. V.A] for
one such modification for a related problem. In fact, with such
changes one can handle infinite W’s under appropriate finite
approximability and asymptotic stability assumptions, albeit
with crude approximation error terms and through a rather
complicated proof.

1Recently, Dalai gave an account of the earlier results in [17, Appendix B].
2The asymptotic stability of frequencies of elements of W , rather than

the periodicity of the channel, suffices because the lack of contiguity for
the subcomponents of the component channels is inconsequential for the
performance of the codes on product channels.
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The stationarity of the channel has been assumed even in
the proofs of the SPB tailored for specific noise models, such
as the ones for the Poisson channels in [10] and [62]. In their
current form, without major changes, neither the approach of
Burnashev and Kutoyants in [10] nor Wyner’s approach in
[62] —relying on discretization — can establish the SPB for

a zero dark current Poisson channel whose inputs are intensity
functions, i.e. f ’s, that are bounded as follows:

0 ≤ f (t) ≤ g(t) ∀t ∈�+

where g is a non-periodic function that is integrable on all
bounded intervals. On the other hand, this channel satisfies
the hypothesis of [6, Th. 4.7b] by [40, eq. (92)] and the
SPB for this channel follows from Augustin’s general proof
for the product channels, provided that g satisfies rather mild
conditions.

The Shannon, Gallager, Berlekamp proof and Haroutunian’s
proof had greater impact on the field than Augustin’s
proof. Variants of Haroutunian’s proof can be found
in [14], [16], [18], [33], and [45]. For the DSPCs,
Haroutunian’s method leads to a SPB with a polynomial pref-
actor, i.e. a prefactor of the form e−O(ln n). The prefactor of the
Shannon, Gallager, Berlekamp proof in [54] is e−O(

√
n), which

is considerably worse. Valembois and Fossorier [60] have
improved the prefactor of [54] for moderate block lengths; the
asymptotic behavior of the prefactor, however, is still e−O(

√
n).

Wiechman and Sason [61] improved the prefactor of [60] for
channels with certain symmetries by eliminating the type
based expurgation step of the derivation and the resulting
contribution to the rate back-off term in the bound. This
improvement, however, is inconsequential for the asymptotic
behavior of the prefactor in [61], which is e−O(

√
n), as well.

Augustin derived a SPB with a polynomial prefactor for certain
product channels in [6, Th. 4.8]; however, the prefactors of
his general results [6, Th. 4.7], [7, Th. 31.4] are e−O(

√
n).

One of our main contributions is establishing the SPB with a
polynomial prefactor for a large class of product channels.

Using the list decoding variant of Gallager’s bound [23],
[28, ex 5.20], one can see that the exponential decay rate of
the SPB, i.e. the sphere packing exponent, is tight. But deter-
mining the right prefactor for the SPB is still an open problem
even for the DSPCs. Altuğ and Wagner [1] considered the
DSPCs with positive transition probabilities satisfying certain
symmetry conditions [28, p. 94] and established a SBP with
a prefactor of the form n− 1+�

2α for any � > 0 for certain α
in (0, 1). Their result is tight because later they have proved
in [3] that Gallager’s bound [27] can be improved to have a
prefactor n− 1

2α , for the aforementioned α, for arbitrary DSPCs.
For arbitrary DSPCs, we only have bounds for the constant
composition codes that are also due to Altuğ and Wagner [4].

The SPB has been conjectured to hold for the channel
codes on DSPCs with feedback. Assuming certain symmetries,
Dobrushin [20] proved it to be the case. However, it was
challenging to prove the conjecture for arbitrary DSPCs with
feedback because of the reliance of the standard proofs on
the type based expurgations. In 1977, Haroutunian [32] estab-
lished a lower bound on the error probability of codes on arbi-
trary DSPCs with feedback; but the exponent of Haroutunian’s

bound is equal to the sphere packing exponent only for DSPCs
with certain symmetries. Haroutunian points out in [32] that
his exponent is strictly larger than the sphere packing exponent
even for the stationary binary input binary output channel with
the following transition probability matrix�

1/2 1/2

0 1

�
.

There are other partial results [11], [46], [48] establishing the
SPB for certain families of codes —rather than all codes— on
the DSPCs with feedback.

In 1978, Augustin [7, Th. 41.7] presented a proof sketch
establishing the SPB for codes on arbitrary DSPCs with
feedback. A complete proof following Augustin’s sketch can
be found in [41]. One of our main contributions is the new
derivation of the SPB for codes on DSPCs with feedback. Fur-
thermore, our result holds for non-stationary and non-periodic
DPCs with feedback under an appropriate stationarity hypoth-
esis, see Assumption 4 and Theorem 4.

In 1982, Sheverdyaev [55] suggested another proof.
Sheverdyaev’s proof, however, is supported rather weakly at
certain critical points. Palaiyanur’s thesis [48, A7] includes
an in depth discussion of the subtleties of [55]. It is worth
mentioning that Sheverdyaev [55] has two major claims about
DSPCs with feedback. Our reservations are for the claim
about the SPB. Sheverdyaev proves the claim about the strong
converse satisfactorily and demonstrates that the exponential
decay rate of the probability of successful transmission is not
changed with the availability of the feedback for rates above
capacity. Earlier that year, Csiszár and Körner [15] established
the same result. The result in question was also reported by
Augustin [7, Th. 41.3], as Csiszár and Körner pointed out
in [15].

In the rest of this section, we describe our notation, model,
and contributions. In §I-A, we describe the notion we use
throughout the article. In §I-B, we define the channel coding
problem, product channels, stationarity, memorylessness, and
product channels with feedback. In §I-C, we provide an
overview of the article and our main contributions.

A. The Notation

We denote the set of all reals by � , positive reals by �+ ,
non-negative reals by �≥0 , and integers by Z . For any x ∈ � ,
�x	 is the greatest integer less than or equal to x and 
x� is
the least integer greater than or equal to x. We call (−∞,∞]
valued functions continuous if they satisfy the topological
definition of continuity for the order topology on (−∞,∞].

For any set Y, we denote the set of all subsets of Y, i.e. the
power set of Y, by 2Y and the set of all probability mass
functions that are non-zero only on finitely many members of
Y by P(Y). We call the set of all y’s for which p(y) > 0 the
support of p and denote it by supp(p). Let X be another set;
then we denote the set of all functions from X to Y by YX.

For any measurable space (Y,Y), we denote the set of all
finite signed measures by M(Y), the set of all non-zero finite
measures by M+

(Y), and the set of all probability measures
by P(Y). For any pair of measurable spaces (X,X ) and
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(Y,Y), we denote the set of all (X ,Y)-measurable functions
from X to Y by YX and the set of all transition probabilities
from (X,X ) to (Y,Y) by P(Y|X ). The formal definition of
a transition probability is as follows.

Definition 1: Let (X,X ) and (Y,Y) be measurable spaces.
Then a function W : Y × X → [0, 1] is called a transition
probability (stochastic kernel, Markov kernel) from (X,X ) to
(Y,Y) if it satisfies the following two constraints:

(i) For all x ∈ X, the function W(·|x) : Y → [0, 1] is a
probability measure on (Y,Y).

(ii) For all E ∈ Y , the function W(E|·) : X → [0, 1] is a
(X ,B([0, 1]))-measurable function.

If X is the power set of X, then the second constraint,
i.e. the measurability constraint, is void because it is always
satisfied. Hence, the above definition is consistent with the
customary use of the term transition probability in information
theory, in which X and Y are finite sets and X and Y are their
power sets. Recall that for any transition probability W , p�W
defines a joint probability measure with desired properties for
all probability measures p on (X,X ) by [9, Th. 10.7.2].

A measure μ on (Y,Y) is absolutely continuous with respect
to another measures ν on (Y,Y), i.e. μ≺ν, iff μ(E) = 0 for
any E ∈ Y such that ν(E) = 0.

We denote the integral of a measurable function f on (Y,Y)
with respect to a probability measure ν ∈ P(Y), i.e. the
expected value of f under ν, by Eν

�
f
�

or Eν

�
f (Y)

�
. If the

integral is on the real line and with respect to the Lebesgue
measure, we denote it by

�
f dy or

�
f (y)dy, as well.

When discussing the convergence of sequences of functions,
we denote the ν−almost everywhere convergence by

ν−a.e.−−−→,
the convergence in measure for ν by

ν−→ and the convergence

in variation, i.e. L1(ν) convergence, by
L1(ν)−−−→.

Our notation will be overloaded for certain symbols; but
the relations represented by these symbols will be clear from
the context. We denote the product of topologies, σ -algebras,
and measures by ⊗. We denote the Cartesian product of sets
by ×. We use the short hand Xn

t for the Cartesian product
of sets Xt, . . . ,Xn and Yn

t for the product of the σ -algebras
Yt, . . . ,Yn. We use |·| to denote the absolute value of reals
and the size of sets.

The sign ≤ stands for the usual less than or equal to
relation for reals and the corresponding pointwise inequality
for functions. For μ and ν in M(Y), μ ≤ ν iff μ(E) ≤ ν(E)
for all E ∈ Y .

The minimum of reals x and y is denoted by x ∧ y. For the
real valued functions f and g, f ∧ g stands for their pointwise
minimum. We use the symbol ∨ analogously to ∧; but we
represent maxima and suprema with it, rather than minima
and infima.

B. The Channel Model and Channel Coding Problem

A channel code is a strategy to convey from the transmitter
at the input of the channel to the receiver at the output of the
channel, a random choice from a finite message set. Once the
transmitter and receiver agree on a strategy, the transmitter
is given an element of the message set, i.e. the message.
Then the transmitter chooses the channel input, according to

the strategy, using the message. The channel input determines
the probabilistic behavior of the channel output. The receiver
observes the realization of the channel output and then chooses
the decoded list based on the channel output, according to
the strategy. If the message given to the transmitter is in the
decoded list determined by the receiver, then the transmission
is successful, else an error is said to occur. Let us proceed
with the formal definitions of these concepts.

Definition 2: A channel W is a function from the input set
X to the set of all probability measures on the output space
(Y,Y), i.e.

W : X → P(Y).

Y is called the output set and Y is called the σ -algebra of
the output events. A channel W is a discrete channel if both
X and Y are finite sets.

We denote the set of all channels with the input set X

and the output space (Y,Y) by P(Y|X). For the purposes of
the channel coding problem, Definition 2 suffices. However,
while analyzing other information transmission problems —
such as the joint source channel coding problem— one needs
to introduce a σ -algebra X on X and work with the transition
probabilities, described in Definition 1. Note that every tran-
sition probability is a channel, i.e. P(Y|X ) ⊂ P(Y|X) for all
σ -algebras X . The converse statement holds only for X = 2X.

Definition 2 describes the channel as introduced in the first
paragraph of this subsection accurately and it subsumes a
diverse collection of channels as special cases. However, it is
not an all-encompassing definition because it might not be
possible to model the effect of the channel input on the channel
output solely by the probabilistic rule of the channel output.
The compound channels and the arbitrarily varying channels
fall outside of the framework of Definition 2. Those models,
however, are beyond the scope of this article.

Definition 3: An (M, L) channel code on W : X → P(Y)
is an ordered pair (Ψ,Θ) composed of an encoding function
Ψ and a decoding function Θ:

• An encoding function is a function from the message set
M�{1, 2, . . . , M} to the input set X.

• A decoding function is a measurable function from the
output space (Y,Y) to �M�{L : L ⊂ M and |L| ≤ L}
with its power set 2

�M as the σ -algebra.
In an (M, L) channel code, M is called the message set size
and L is called the list size.

The channel codes are customarily defined with the tacit
assumption that their list size is one and the channel codes
with list sizes larger than one are customarily called list
codes. We will neither assume the list size of the codes
to be one, nor use the term list code; instead we will be
explicit about the list sizes of the codes throughout the
manuscript.

Definition 4: Given an (M, L) code (Ψ,Θ) on W :
X → P(Y), for each m ∈ M the conditional error
probability Pm

e is

Pm
e �EW(Ψ (m))

�
1{m/∈Θ(Y)}

�
.
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The average error probability Pav
e is

Pav
e � 1

M

	
m∈M

Pm
e .

For a channel W , the triplet (M, L, Pe) is achievable
if there exists an (M, L) channel code with the average
error probability less than or equal to Pe. Broadly speaking,
the point-to-point channel coding problem aims to characterize
the achievable (M, L, Pe) triplets. The abstract formulation
given above is general enough to subsume a diverse collection
of point-to-point channel coding problems as special cases.
However, it has scant structure to establish achievability and
infeasibility results that are provably close to one another. The
product structure, discussed in the following, is commonly
assumed in order to establish such bounds.

Definition 5: For any n ∈ Z+ and Wt : Xt → P(Yt) for t in
{1, . . . , n}, the length n product channel W[1,n] : Xn

1 → P(Yn
1 )

is defined via the following relation:

W[1,n](xn
1) =


n

t=1
Wt(xt) ∀xn

1 ∈Xn
1.

A product channel is stationary iff all Wt’s are identical.
Definition 6: A channel U : Z → P(Yn

1 ) is a memoryless
channel, if there exits a product channel W[1,n] : Xn

1 → P(Yn
1 )

satisfying U(z) = W(z) for all z ∈ Z and Z ⊂ Xn
1.

The preceding definition is consistent with the definition of
the memorylessness used by Cover and Thomas [12, p. 184]:
“The channel is said to be memoryless if the probability
distribution of the output depends only on the input at
that time and is conditionally independent of previous chan-
nel inputs or outputs.” The same property is asserted by
Gallager [28, (4.2.1)] and Csiszár and Körner [16, p. 84]
while describing the memorylessness. However, the authors
of these classic texts and the information theory commu-
nity at large use the term “the discrete memoryless channel
(DMC)” to describe channels that satisfy much more than mere
discreteness and memorylessness. In particular, customarily
the term “the DMC” stands for the DSPC described in the
following paragraph.

For any discrete channel W : X → P(Y), n ‘independent’
uses of it —denoted by W[1,n]— is not only a memoryless
channel, but also a stationary product channel according to
Definitions 5 and 6. Thus we call these channels discrete
stationary product channels (DSPCs). If the discrete channels
at each time instance are not necessarily the same, i.e. if Wt

can be different for different values of t, then we call W[1,n]
a discrete product channel (DPC). Furthermore, any U : Z →
P(Yn

1) satisfying U(z) = W[1,n](z) for all z in Z is called a
discrete memoryless channel (DMC). A commonly considered
family of DMCs is the one defined via cost constraints.

Definitions 5 and 6 can be applied to the Poisson channels.
For a duration T Poisson channel the input set FT is the set
of all integrable functions of the form f : (0, T ] → �≥0 .
The output set is the set of all possible sample paths for
the arrival process, i.e. the set of all nondecreasing, right-
continuous, integer valued functions on (0, T ]. The σ -algebra
of observable events is the Borel σ -algebra for the Skorokhod
metric on the output set and ΛT (f ) is the Poisson point process
with deterministic intensity function f for all f ∈ FT . For any

duration T ∈ �+ , intensity levels 0 ≤ a ≤ 	 ≤ b ≤ ∞,
and integrable intensity function g satisfying g(t) ≥ a for
all t ∈ (0, T ], the Poisson channels ΛT ,a,b,	, ΛT ,a,b,≤	,
ΛT ,a,b,≥	, ΛT ,a,b, and ΛT ,a,g(·) —which are also described
in [40, Sec. V-C]— are obtained by curtailing the input set
FT of the Poisson channel ΛT as follows:

FT ,a,b,	 � {f ∈ FT : a ≤ f ≤ b and
� T

0 f dt = T	}, (1a)

FT ,a,b,≤	 � ∪γ∈[a,	]FT ,a,b,γ , (1b)

FT ,a,b,≥	 � ∪γ∈[	,b]FT ,a,b,γ , (1c)

FT ,a,b � ∪γ∈[a,b]FT ,a,b,γ , (1d)

FT ,a,g(·) � {f ∈ FT : a ≤ f ≤ g}. (1e)

For any T ∈ �+ and n ∈ Z+ , the Poisson channel ΛT ,a,b

is a length n stationary product channel (SPC), in particular
ΛT ,a,b = W[1,n] for Wt = ΛT/n,a,b. Whereas, the Poisson
channel ΛT ,a,g(·) is a length n product channel, which is
stationary if g(·) is periodic with period T/n. The Poisson
channels ΛT ,a,b,	, ΛT ,a,b,≤	, and ΛT ,a,b,≥	 are not product
channels, but they are memoryless channels.

In a product channel both the input set and the output space
are products. In product channels with feedback, the output
space is still a product; but the input set is enlarged by allowing
the channel input at any time instance to depend on the
previous channel outputs. Thus the channel input at time t is
a member of Xt

Yt−1
1 rather than a member of Xt . For channels

with uncountable input or output sets, there are additional
measurability requirements and this makes the description of
the product channels with feedback more nuanced. Thus we
will describe the discrete case first.

In a length n discrete product channel with feedback each
element

−→
xn

1 of the input set
−→
Xn

1 is of the form

−→
xn

1 = (x1, Ψ2, . . . , Ψn)

where x1 ∈ X1 and Ψt ∈ Xt
Yt−1

1 . We use the symbol Ψt , rather
than xt , in order reflect in our notation the fact that Ψt is a
function from Yt−1

1 to Xt , similar to the encoding functions
we have discussed in Definition 3.

Definition 7: For any n ∈ Z+ and Wt : Xt → P(Yt) for t in
{1, . . . , n}, the length n discrete product channel with feedback

W−−→[1,n] : −→
Xn

1 → P(Yn
1) is defined via the following relation:

W−−→[1,n](y
n
1|

−→
xn

1 ) = W1(y1|x1)
�n

t=2
Wt(yt |Ψt(y

t−1
1 ))

for all
−→
xn

1 ∈ −→
Xn

1 and yn
1 ∈ Yn

1 where
−→
Xn

1 = X1 ×(×n
t=2

Xt
Yt−1

1 ).
For describing the product channels with feedback without

assuming the discreteness, we use the concept of transition
probability described in Definition 1. Let Ψ : Z → X be
a (Z,X )-measurable function, W be a transition probability
from (X,X ) to (Y,Y), and W ◦ Ψ : Y × Z → [0, 1] be

W ◦ Ψ (E|z)�W(E|Ψ (z)) ∀E∈Y, z∈Z.

Then W ◦ Ψ is a transition probability from (Z,Z) to (Y,Y)
(i.e. W ◦ Ψ ∈ P(Y|Z)) as a result of the definitions of the
measurability and the transition probabilities. On the other
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hand, there exists a unique probability measure p�U for any
U ∈ P(Y|Z) and p ∈ P(Z) by [9, Th. 10.7.2]. Using these
two observation we can generalize Definition 7 as follows.

Definition 8: For any channel W1 ∈ P(Y1|X1) and tran-
sition probabilities Wt ∈ P(Yt|Xt) for t ∈ {2, . . . , n}, the
length n product channel with feedback W−−→[1,n] is defined via
the following relation:

W−−→[1,n](
−→
xn

1 ) = W1(x1)�(W2 ◦ Ψ2) · · ·�(Wn ◦ Ψn)

for all
−→
xn

1 ∈ −→X n
1 where

−→X n
1 = X1 ×(×n

t=1 Xt
Y t−1

1 ). A product
channel with feedback is stationary iff all Wt’s are identical.

C. Overview and Main Contributions

In §II, we review Rényi’s information measures and the
sphere packing exponent.

In §III, we derive preliminary results about Augustin’s
averaging scheme and tilting.

In §IV, we establish an asymptotic SPB with a prefactor
that is polynomial in the block length for product channels,
without assuming the input sets to be finite or the channels
to be stationary. This asymptotic SPB, given in Theorem 2,
is derived by using the non-asymptotic SBP for product
channels given in Lemma 20, which can be further simplified
to (54) for SPCs.

If supt∈(0,T ] g(t) is O (ln T) then the Poisson channel
ΛT ,a,g(·) satisfies the hypothesis of Theorem 2. Without major
changes, neither Wyner’s approach in [62], nor the approach
of Burnashev and Kutoyants in [10] can establish the SPB
for these channels. To the best of our knowledge, the SPB has
not been proved for any non-stationary Poisson channel before
—except for [6, Th. 4.7] and [7, Th. 31.4], which imply the
SPB for these channels in the way that Theorem 2 does, albeit
with inferior prefactors. Augustin’s SPBs in [6] and [7] for
product channels are compared with our results in §IV-D.

In §V, we establish an asymptotic SPB for DSPCs with
feedback, i.e. Theorem 3, by first deriving a non-asymptotic
—but parametric— one in Lemma 26. The stationarity hypoth-
esis can be weakened significantly; Theorem 4 establishes
the SPB for (possibly non-stationary, non-periodic, and non-
symmetric) DPCs with feedback satisfying Assumption 4.
Theorem 4 is the first such result to best of our knowledge.
Readers who are only interested Theorems 3 and 4 may
bypass §IV.

Proofs of Theorems 3 and 4 rely on the averaging and
subblock ideas of Augustin [7], Taylor’s expansion idea
of Sheverdyaev [55], and the auxiliary channel method of
Haroutunian [32]. Nevertheless, they are substantially dif-
ferent from the proofs suggested by Augustin [7] and
Sheverdyaev [55]. We compare our results with the pre-
vious results and discuss possible extensions in §V-D.
Lemmas 24 and 25, presenting preliminary results, are new, to
the best of our knowledge. Lemma 25 is used to derive SPB
for DSPCs with feedback from Haroutunian’s bound in §V-E.

In §VI, we briefly discuss the novel observation underlying
Augustin’s method and generalizations our results to the
memoryless channels.

II. GENERAL PRELIMINARIES

Our main aim in this section is to introduce the concepts that
we use in the rest of the article. We define Rényi’s information
measures —i.e. the Rényi divergence, information, mean,
capacity, radius, and center— and review their properties
that are relevant for our purposes in §II-A-§II-C. All of the
propositions in this part of the article, except Lemma 12
of §II-C, are either from [24] or from [40]. We define and
analyze sphere packing exponent in §II-D.

A. The Rényi Divergence

Definition 9: For any α ∈ �+ and w, q ∈ M+
(Y) the order

α Rényi divergence between w and q is

Dα (w� q) �

⎧⎪⎨
⎪⎩

1
α−1 ln Eν

�� dw
dν

�α � dq
dν

�1−α
�

α �= 1

Eν

�
dw
dν

�
ln dw

dν − ln dq
dν

��
α = 1

where ν is any probability measure satisfying w≺ν and q≺ν.
The Rényi divergence is usually defined for the probability

measures; the inclusion of the finite measures allows us
to invoke Lemma 2 given in the following. The proposi-
tions derived for the usual definition will suffice for our
purposes most of the time. Thus we borrow them from
the recent article of van Erven and Harremoës [24]. The
equivalence of Definition 9 and the one used by van
Erven and Harremoës [24] for probability measures follows
from [24, Th. 5].

Lemma 1 [24, Ths. 3 and 7]: For all w, q ∈ P(Y),
Dα (w� q) is a nondecreasing and lower semicontinuous func-
tion of α on �+ that is continuous on (0, (1 ∨ χw,q)] where
χw,q� sup{α : Dα (w� q) < ∞}.

Lemma 2: Let w, q, v be non-zero finite measures on (Y,Y)
and α be any order in �+ .

• If v ≤ q, then Dα (w� q) ≤ Dα (w� v).
• If q = γ v for a γ ∈ �+ , then Dα (w� q) =

Dα (w� v) − ln γ .
Lemma 2 is an immediate consequence of Definition 9.
Let w and q be two probability measures on the measurable

space (Y,Y) and G be a sub-σ -algebra of Y . Then the
identities w|G(E) = w(E) for all E ∈ G and q|G(E) = q(E)
for all E ∈ G uniquely define probability measures w|G and
q|G on (Y,G). In the following, we denote Dα

�
w|G

�� q|G
�

by
DG

α (w� q).
Lemma 3 [24, Th. 9]: For any order α in �+ , probability

measures w and q on (Y,Y), and sub-σ -algebra G ⊂ Y
Dα (w� q) ≥ DG

α (w� q) .

Lemma 4 [24, Ths. 3 and 31]: For any order α in �+ and
probability measures w and q on (Y,Y)

Dα (w� q) ≥ 1 ∧ α

2
�w − q�2. (2)

For orders in (0, 1], the bound given in (2) is called the
Pinsker’s inequality. For orders in (0, 1), it is possible to
bound Dα (w� q) from above in terms of �w − q� as well,



NAKİBOĞLU: SPB VIA AUGUSTIN’S METHOD 821

see [57, eq. (24), p. 365]. We will only need the following
identity for α = 1/2 case, see [57, eq. (21), p. 364],

D1/2 (μ� q) ≤ 2 ln
2

2 − �μ − q� . (3)

Lemma 5 [24, Th. 12]: For any order α in �+ , the order
α Rényi divergence is convex in its second argument for
probability measures, i.e.

Dα

�
w� qβ

� ≤ βDα (w� q1) + (1 − β)Dα (w� q0)

for all probability measure w, q0, q1 in P(Y) and β ∈ (0, 1)
where qβ = βq1 + (1 − β)q0.

Lemma 6 [24, Th. 15]: For any α in �+ , Dα (w� q) is
a lower semicontinuous function of the pair of probability
measures (w, q) in the topology of setwise convergence.

B. The Rényi Information and Mean

Definition 10: For any α ∈ �+ , W : X → P(Y), and p ∈
P(X), the order α Rényi information for the input distribution
p is

Iα (p; W)�

⎧⎪⎨
⎪⎩

α
α−1 ln Eν

���
x p(x)

�
dW(x)

dν

�α�1/α
�

α �= 1
�

x p(x)Eν

�
dW(x)

dν ln dW(x)
dq1,p

�
α = 1.

(4)

where ν is any probability measure satisfying q1,p≺ν for
q1,p ∈ P(Y) defined as q1,p�

�
x p(x)W(x).

We call q1,p the order one Rényi mean for the input
distribution p. For other positive real orders, the order α
Rényi mean for the input distribution p, is defined via its
Radon-Nikodym derivative as follows:

dqα,p

dν
� 1

κ

�	
x

p(x)

�
dW(x)

dν

�α�1/α

(5)

where q1,p≺ν and κ = Eν

���
x p(x)

�
dW(x)

dν

�α�1/α
�

.

Remark 1: Gallager’s functions E0(ρ, p) can be written in
terms of the Rényi information as follows:

E0(ρ, p) = ρI 1
1+ρ

(p; W) ∀ρ ∈(−1,∞).

One can confirm the following identity by substitution

Dα (p�W� p ⊗ q) = Dα

�
p�W� p ⊗ qα,p

�+ Dα

�
qα,p

�� q
�
(6)

for all α ∈ �+ , p ∈ P(X), q ∈ M+
(Y) where p�W

is the probability measure on 2supp(p) ⊗ Y whose marginal
distribution on supp(p) is p and whose conditional dis-
tribution is W(x). Using (6) together with Lemma 4 one
obtains the following alternative characterization of the Rényi
information.

Lemma 7 [40, Lemma 14]: For any α ∈ �+ , W : X →
P(Y), and p ∈ P(X)

Iα (p; W) = Dα

�
p�W� p ⊗ qα,p

�
(7)

= infq∈P(Y) Dα (p�W� p ⊗ q) . (8)

Remark 2: We defined the Rényi information, mean, capac-
ity, radius, and center in [40] for subsets of P(Y), rather than

functions from some X to P(Y). For functions that are one-to-
one, these two approaches are describing same quantities with
different notation. Thus the propositions we are borrowing
from [40] are merely restated in an alternative notation. The
functions we consider, however, are not necessarily one-to-
one. Nevertheless, one can show easily that each proposition
we are borrowing from [40] for subset of P(Y) implies the
corresponding proposition for functions to P(Y).

C. The Rényi Capacity, Radius, and Center

Definition 11: For any α in �+ and W : X → P(Y), the
order α Rényi capacity of W is

Cα,W � supp∈P(X) Iα (p; W) .

Remark 3: E0(ρ, W) = ρC 1
1+ρ ,W for all ρ in (−1,∞) as

a result of the corresponding expression for E0(ρ, p).
Lemma 8 [40, Lemma 15-(a,c,e,f)]: Let W be a channel of

the form W : X → P(Y). Then

(a) Cα,W is a nondecreasing lower semicontinuous function
of α on �+ .

(b) 1−α
α Cα,W is a nonincreasing continuous function of α on

(0, 1) and Cα,W is a continuous function of α on (0, 1].
(c) If Cη,W < ∞ for an η ∈ (0, 1), then Cα,W is finite for all

α ∈ (0, 1).
(d) If Cη,W < ∞ for an η ∈ �+ , then Cα,W is a nondecreasing

continuous function of α on (0, η].
Note that, since Cα,W is continuous and nondecreasing in α

on (0, 1) by Lemma 8-(a,b), Cα,W has a limit as α converges
to zero from the right. We denote this limit by C0+,W :

C0+,W � limα↓0 Cα,W . (9)

We do not denote this limit by C0,W because C0,W is, cus-
tomarily, defined as the supremum of I0 (p; W). For the case
when the input set is finite, we know that C0,W = C0+,W ,
see [40, Lemma 16-(g)]. Unfortunately, we do not have a
general result establishing this equality for arbitrary channels.

Note, on the other hand that, Lemma 8-(a,b) implies

α ∧ (1 − α)

1 − α
C1/2,W ≤ Cα,W ≤ α ∨ (1 − α)

1 − α
C1/2,W (10)

for all α in (0, 1).

For all positive real orders α, the alternative characterization
of the order α Rényi information given in Lemma 7 implies the
following alternative expression for the order α Rényi capacity

Cα,W = supp∈P(X) infq∈P(Y) Dα (p�W� p ⊗ q) .

In the preceding expression, the order of the supremum and
infimum can be changed without changing the value of the
expression.

Theorem 1 [40, Ths. 1 and 3]: For any α ∈ � and W :
X → P(Y)

Cα,W = supp∈P(X) infq∈P(Y) Dα (p�W� p ⊗ q) (11)

= infq∈P(Y) supp∈P(X) Dα (p�W� p ⊗ q) (12)

= infq∈P(Y) supx∈X Dα (W(x)� q) . (13)
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If Cα,W < ∞, then there exists a unique qα,W ∈ P(Y), called
the order α Rényi center, such that

Cα,W = supp∈P(X) Dα

�
p�W� p ⊗ qα,W

�
(14)

= supx∈X Dα

�
W(x)� qα,W

�
. (15)

Furthermore, for every countably separated σ -algebra X of
subsets of X satisfying W ∈ P(Y|X ), the suprema over P(X)
in (11), (12), and (14) can be replaced by suprema over P(X ).

The right hand side of (13) can be interpreted as a radius;
it is, in fact, the definition of the order α Rényi radius:

Definition 12: For any α ∈ �+ , W : X → P(Y), and q ∈
P(Y) the order α Rényi radius of W relative to q, i.e. Sα,W (q),
and the order α Rényi radius of W , i.e. Sα,W , are

Sα,W (q) � supx∈X Dα (W(x)� q) ,

Sα,W � infq∈P(Y) supx∈X Dα (W(x)� q) .

Hence, (15) allows us to interpret qα,W as a center. This is
why qα,W is called the order α Rényi center.

The following bound on Sα,W (q) is called the
van Erven-Harremoës bound.

Lemma 9 [40, Lemma 19]: If Cα,W < ∞ for an α ∈ �+
and W : X → P(Y), then

Cα,W + Dα

�
qα,W

�� q
� ≤ Sα,W (q) ∀q∈P(Y).

The van Erven-Harremoës bound can be used to establish
the continuity of the Rényi center as a function of the order
for the total variation topology on P(Y).

Lemma 10 [40, Lemma 20]: If Cη,W < ∞ for an η ∈ �+
and W : X → P(Y), then

Dα

�
qα,W

�� qφ,W
� ≤ Cφ,W − Cα,W

for any α and φ satisfying 0 < α < φ ≤ η. Furthermore,
qα,W is a continuous function of α on (0, η] for the total
variation topology on P(Y).

A well known fact about the DSPCs is that their Rényi
capacities are additive, see [27, Th. 5], [28, eq. (5.6.59)]. In
fact, the additivity of the Rényi capacities holds for arbitrary
product channels. Furthermore, whenever it exists, the Rényi
center of a product channel is equal to the product of the
Rényi centers of its component channels. Lemma 11 states
these observations formally.

Lemma 11 [40, Lemma 22]: Any length n product channel
W[1,n] : Xn

1 → P(Yn
1 ) satisfies

Cα,W[1,n] =
	n

t=1
Cα,Wt ∀α∈�+ . (16)

Furthermore, if Cα,W[1,n] is finite for an order α ∈ �+ , then
qα,W[1,n] = �n

t=1 qα,Wt .
Note that the input set of a product channel is a subset

of the input set of the corresponding product channel with
feedback. An immediate consequence of this observation is
that Cα,W−−→[1,n] ≥ Cα,W[1,n] . More interestingly, the reverse
inequality Cα,W−−→[1,n] ≤ Cα,W[1,n] is also true.

Lemma 12: Any length n product channel with feedback
W−−→[1,n] : −→X n

1 → P(Yn
1 ) with countably separated σ−algebras

X2, . . . ,Xn satisfies.

Cα,W−−→[1,n] =
	n

t=1
Cα,Wt ∀α∈�+ . (17)

Furthermore, if Cα,W−−→[1,n] is finite for an order α ∈ �+ , then

qα,W−−→[1,n] = �n
t=1 qα,Wt .

For the case when the component channels are discrete,
Lemma 12 has been common knowledge among the researcher
working on the error exponents with feedback for some
time now. Augustin [7, pp. 304–306] mentions the following
equivalent claim without a proof for the case when input sets
of Wt are finite:

“e
α−1
α Cα,W−−→[1,n] qα,W−−→[1,n] = e

α−1
α Cα,W[1,n] qα,W[1,n]

whenever qα,W[1,n] is defined.”

Proof of Lemma 12: We prove the lemma for α ∈ �+ \{1}
in the following. This implies Cα,W−−→[1,n] = �n

t=1 Cα,Wt for all
α ∈ �+ , because the Rényi capacity is a nondecreasing lower
semicontinuous function of the order by Lemma 8-(a). The
claim about the Rényi centers follows from the corresponding
claim in Lemma 11 and the uniqueness of the Rényi centers,
established in Theorem 1.

Recall that W[1,n](xn
1) = W−−→[1,n](x

n
1) for all xn

1 in Xn
1, which

is a subset of
−→X n

1 . Then Lemma 11 implies that
�n

t=1 Cα,Wt ≤
Cα,W−−→[1,n] . Hence, (17) holds if Cα,Wt is infinite for a t ∈
{1, . . . , n}. Thus, we assume that Cα,Wt is finite for all t for
the rest of the proof. Then for each t, Wt has a unique Rényi
center qα,Wt by Theorem 1.

On the other hand, Definition 8 implies that for every
−→
xn

1

in
−→X n

1 there exists an x1 ∈ X1 and Ψt ∈ Xt
Y t−1

1 for all t in
{2, . . . , n} such that

W−−→[1,n](
−→
xn

1 ) = W1(x1)�(W2 ◦ Ψ2) · · ·�(Wn ◦ Ψn)

Note that Wt ◦ Ψt ∈ P(Yt |Y t−1
1 ) by definition. Furthermore,

Theorem 1 implies for all yt−1
1 ∈ Yt−1

1 that

Dα

�
W1(x1)� qα,W1

� ≤ Cα,W1

Dα

�
Wt ◦ Ψt(·|yt−1

1 )
��� qα,Wt

�
≤ Cα,Wt .

Then using [9, Th. 10.7.2] we get

Dα

�
W−−→[1,n](

−→
xn

1 )
��� qn

�
≤ Dα (W1(x1)� · · · �(Wn−1 ◦ Ψn−1)� qn−1) + Cα,Wn

≤ Dα (W1(x1)� · · · �(Wı ◦ Ψı )� qı ) +
	n

t=ı+1
Cα,Wt

≤
	n

t=1
Cα,Wt

where qı = �ı
t=1 qα,Wt for ı ∈ {1, . . . , n}. Hence,

sup−→
xn

1 ∈−→X n
1

Dα

�
W−−→[1,n](

−→
xn

1 )
��� qn

�
≤
	n

t=1
Cα,Wt .

Then Cα,W−−→[1,n] ≤ �n
t=1 Cα,Wt by (13). Thus (17) holds and

qα,W−−→[1,n] = �n
t=1 qα,Wt by Theorem 1.

In the following we discuss the operational significance of
the Rényi capacity in the point to point communication only in
terms of the SPB. The implications of Gallager’s bound [27]
and Arimoto’s bound [5] for the operational significance of
the Rényi capacity in the point to point communication are
discussed in [37, Appendix B].
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D. The Sphere Packing Exponent

Definition 13: For any channel W : X → P(Y) and rate
R ∈ �≥0 the sphere packing exponent is

Esp (R, W) � supα∈(0,1)

1 − α

α

�
Cα,W − R

�
.

Lemma 13: For any channel W : X → P(Y), Esp (R, W) is
convex and nonincreasing in R on �≥0 , finite on (C0+,W ,∞),
and continuous on [C0+,W ,∞) for C0+,W is defined in (9).
In particular,

Esp (R, W)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ R < C0+,W

sup
α∈(0,1)

1−α
α

�
Cα,W − R

�
R = C0+,W

sup
α∈[φ,1)

1−α
α

�
Cα,W − R

�
R = Cφ,W for a φ ∈ (0, 1)

0 R ≥ C1,W

(18)

Proof of Lemma 13: Esp (R, W) is convex/nonincreasing
in R, because 1−α

α (Cα,W − R) is convex/nonincreasing in R
for any α ∈ (0, 1) and the pointwise supremum of a family of
convex/nonincreasing functions is convex/nonincreasing.

Recall that Cα,W is a nondecreasing in α by Lemma 8-(a).
• If C0+,W = ∞, then C1/2,W = ∞ and Esp (R, W) = ∞

for all R ∈ �≥0 . On the other hand R < C0+,W for all
R ∈ �≥0 . Hence (18) holds.

• If C0+,W < ∞ and C0+,W = C1,W , then Esp (R, W) = ∞
for all R < C1,W and Esp (R, W) = 0 for all R ≥ C1,W .
Thus (18) holds.

• If C0+,W < ∞ and C0+,W �= C1,W , then Esp (R, W) = ∞
for all R < C0+,W . For R ≥ C0+,W , the non-negativity of
1−α
α (Cα,W − R) implies the restrictions given in (18) for

different intervals.
Esp (R, W) is continuous on (C0+,W ,∞) by [21, Th. 6.3.3]
because it is finite on (C0+,W ,∞) by (18) and convex on �≥0 .
On the other hand Esp (R, W) is lower semicontinuous because
it is the pointwise supremum of continuous functions. Thus it
is continuous from the right because it is nonincreasing. Thus
Esp (R, W) is continuous on [C0+,W ,∞), as well.

III. PRELIMINARIES FOR AUGUSTIN’S METHOD

The propositions proved in this section are used
in §IV and §V to derive SPBs. In §III-A, we define the
average order α Rényi center q�

α,W as the average of the
Rényi centers on a specific length � interval around α. Using
the convexity and the monotonicity properties of the Rényi
divergence, we bound the order α Rényi radius of W relative
to q�

α,W , i.e. Sα,W (q�
α,W ), from above and call the bound the

average Rényi capacity �C�
α,W . Then we show that both �C�

α,W
and the associated sphere packing exponent �E�

sp (R, W) differ
from the corresponding quantities Cα,W and Esp (R, W) at
most by a factor proportional to �. In §III-B, we consider
the tilted probability measure between a probability measure
w and a family of probability measures qα that is continuous in
α for the total variation topology on P(Y). We show that both
the tilted probability measure wqα

α and the Rényi divergences

Dα (w� qα), D1
�

wqα
α

��w
�
, and D1

�
wqα

α

�� qα

�
are continuous in

α on (0, 1).

A. The Augustin’s Averaging

If the order φ Rényi capacity of a channel is finite for a
φ ∈ �+ , then the Rényi centers of the channel form a transition
probability from ((0, 1),B((0, 1))) to (Y,Y). We define the
average Rényi center using this transition probability. In order
to see why such a transition probability structure exists, first
note that Cα,W is finite for all α ∈ (0, 1) by Lemma 8-(a,c)
because Cφ,W is finite for a φ ∈ �+ . This implies the existence
of a unique order α Rényi center qα,W for each α ∈ (0, 1) by
Theorem 1. Furthermore, qα,W is continuous in α on (0, 1)
for the total variation topology on P(Y), by Lemma 10. As a
result, q·,W (E) : (0, 1) → [0, 1] is a continuous and hence a
(B((0, 1)),B([0, 1]))-measurable function for any E ∈ Y .

Remark 4: The continuity for the topology of setwise con-
vergence is sufficient for ensuring the continuity of qα,W (E)
in α for all E ∈ Y and hence for ensuring the existence of the
transition probability structure.

Definition 14: For any α, � ∈ (0, 1) and W : X → P(Y)
satisfying C1/2,W < ∞, the average Rényi center q�

α,W is the Y

marginal of the probability measure uα,��q·,W where uα,� is
the uniform probability distribution on (α− �α, α + �(1−α)):

q�
α,W�1

�

� α+�(1−α)

α−�α
qη,W dη.

The order α Rényi radius relative to the order α Rényi
center, i.e. Sα,W (qα,W ), is Cα,W by Theorem 1. What can we
say about Sα,W (q�

α,W )? For channels with certain symmetries
such as the ones in [40, Examples 5–8], qα,W is the same
probability measure for all α for which it exists. For such
channels Sα,W (q�

α,W ) = Cα,W for all α, � ∈ (0, 1) because
q�
α,W = qα,W for all α, � ∈ (0, 1). For certain other channels,

such as W of [40, Example 1], qα,W is same for all α on
an interval and Sα,W (q�

α,W ) = Cα,W at least for some α for
small enough �. However, we cannot assert the equality of
qα,W and q�

α,W in general and Sα,W (q�
α,W ) > Cα,W whenever

q�
α,W �= qα,W . In particular,

Sα,W (q�
α,W ) ≥ Cα,W + Dα

�
qα,W

�� q�
α,W

�
by Lemma 9. Lemma 14 bounds Sα,W (q�

α,W ) from above in
terms of an integral of the Rényi capacity, which converges to
Cα,W as � converges to zero for any α ∈ (0, 1).

Lemma 14: For any α, � ∈ (0, 1) and W : X → P(Y)
satisfying C1/2,W < ∞,

supx∈X Dα

�
W(x)� q�

α,W

� ≤ �C�
α,W (19)

≤ C1/2,W

(1 − α)(1 − �)
(20)

where the average Rényi capacity �C�
α,W is

�C�
α,W � 1

�

� α+�(1−α)

α−�α

�
1 ∨

�
α

1 − α

1 − η

η

��
Cη,W dη. (21)

Before presenting the proof of Lemma 14, we point out
certain properties of �C�

α,W . As a result of the continuity of
Cα,W in α on (0, 1), i.e. Lemma 8-(b), we have

lim�↓0�C�
α,W = Cα,W ∀α∈(0, 1).
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In fact, we can bound�C�
α,W from above using the monotonicity

of Cα,W and 1−α
α Cα,W , i.e. Lemma 8-(a,b), as follows

�C�
α,W ≤ Cα,W

�

� α

α−�α

1 − α(1 − �)

(1 − α)(1 − �)
dη

+Cα,W

�

� α+�(1−α)

α

α + (1 − α)�

α(1 − �)
dη

≤ Cα,W + �

1 − �

Cα,W

α(1 − α)
. (22)

On the other hand �C�
α,W ≥ Cα,W because Sα,W (q�

α,W ) ≥ Cα,W

by Theorem 1. Thus Cα,W can be approximated by �C�
α,W at

any α in (0, 1). The expression in (22), however, suggests that
it might not be possible to do this approximation uniformly
on (0, 1). In order to show this formally, we bound �C�

α,W
from below using the monotonicity of Cα,W and 1−α

α Cα,W

as follows,

�C�
α,W ≥ 1

�

� α− �
2 α

α−�α

α

1 − α

1 − η

η
Cη,W dη

≥ α

2 − �
(1 + α�

2(1 − α)
)Cα−�α,W .

Note that this lower bound is true even when C1,W is finite.
Thus, Cα,W can be approximated by �C�

α,W uniformly only on
compact subsets of (0, 1), but not on (0, 1) in itself.

The additivity of Rényi capacity for product channels,
i.e. Lemma 11, implies the additivity of average Rényi capacity
for product channels:

�C�
α,W[1,n] =

	n

t=1
�C�

α,Wt
. (23)

Lemma 11 also states that qα,W[1,n] = �n
t=1 qα,Wt . The average

Rényi center q�
α,W[1,n] , however, does not satisfy such a product

structure, in general.
Proof of Lemma 14: The convexity of Dα (w� q) in q,

i.e. Lemma 5, and the Jensen’s inequality imply

Dα

�
W(x)� q�

α,W

� ≤
� α+�(1−α)

α−�α

Dα

�
W(x)� qη,W

�
�

dη. (24)

Note that Dα

�
W(x)� qη,W

� = α
1−α D1−α

�
qη,W

��W(x)
�

for
any α ∈ (0, 1) by definition and the Rényi divergence is
nondecreasing in its order by Lemma 1. Thus

Dα

�
W(x)� qη,W

� ≤ 1{η≥α}Dη

�
W(x)� qη,W

�
+1{η<α}

α

1 − α

1 − η

η
Dη

�
W(x)� qη,W

�

=
�

1 ∨ α

1 − α

1 − η

η

�
Dη

�
W(x)� qη,W

�
.

(25)

Recall that Dη

�
W(x)� qη,W

� ≤ Cη,W for all x ∈ X by
Theorem 1. Then (19) follows from using (21), (24), and (25).

In order to obtain (20) from (19) recall that Cα,W is nonde-
creasing in α by Lemma 8-(a) and 1−α

α Cα,W is nonincreasing
in α on (0, 1) by Lemma 8-(b). Thus we have,

Cη,W ≤ η

1 − η
C1/2,W1{η>1/2} + C1/2,W1{η≤1/2} ∀η∈(0, 1).

Then using the definition of �C�
α,W given in (21) we get

�C�
α,W ≤ C1/2,W

�

� α+�(1−α)

α−�α

�
1∨ α

1 − α

1 − η

η

��
1∨ η

1 − η

�
dη

≤ C1/2,W

�

� α+�(1−α)

α−�α

�
1

1 − η
∨ α

1 − α

1

η

�
dη

≤ C1/2,W

�

� α+�(1−α)

α−�α

1

(1 − α)(1 − �)
dη.

Definition 15: For any � ∈ (0, 1), W : X → P(Y) with
finite C1/2,W , and R ∈ �≥0 , the average sphere packing
exponent �E�

sp (R, W) is

�E�
sp (R, W) � supα∈(0,1)

1 − α

α

��C�
α,W − R

�
. (26)

�E�
sp (R, W) is nonincreasing and convex in R on �+ because

it is the pointwise supremum of nonincreasing and convex
functions of R. One can show that �C�

α,W is nondecreasing
and continuous in α on (0, 1) for any � ∈ (0, 1) using the
continuity and monotonicity of Cα,W in α on (0, 1). Since we
do not need this observation in our analysis, we leave its proof
to the interested reader. Using the monotonicity of �C�

α,W one
can also show that �E�

sp (R, W) is finite and continuous in R on
(limα↓0�C�

α,W ,∞).
Lemma 15: For any W : X → P(Y) with finite C1/2,W ,

φ ∈ (0, 1), R ∈ [Cφ,W ,∞), and � ∈ (0, φ),

0 ≤ �E�
sp (R, W) − Esp (R, W) ≤ �

1 − �

R ∨ Esp (R, W)

φ
(27)

≤ �

1 − �

R

φ2 . (28)

Proof of Lemma 15: Cα,W ≤ Sα,W (q�
α,W ) ≤ �C�

α,W by
Lemma 14 and Theorem 1. Then as a result the definitions
of Esp (R, W) and �E�

sp (R, W) we have

Esp (R, W) ≤ �E�
sp (R, W) ∀R∈�≥0 . (29)

Let us proceed with bounding �E�
sp (R, W) from above for R’s

greater than or equal to Cφ,W . First note that
� α

α−�α

�
1 − η

η
Cη,W − 1 − α

α
R

�
dη

=
� α

α−�α

1 − η

η
(Cη,W − R)dη +

� α

α−�α

α − η

ηα
Rdη

≤
� α

α−�α

1 − η

η
(Cη,W − R)dη + �2

1 − �
R.

Then as a result of the definition of �C�
α,W we have

1 − α

α

��C�
α,W − R

� ≤ 1

�

� α

α−�α

1 − η

η
(Cη,W − R)dη + �

1 − �
R

+1

�

� α+�(1−α)

α

1−α

α
(Cη,W −R)dη. (30)

We bound �E�
sp (R, W) by bounding the expression in (30)

separately on two intervals for α.
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Note that 1−η
η (Cη,W −R) ≤ Esp (R, W) for all η ∈ (0, 1) and

(1 − α)Esp (R, W) + αR ≤ R ∨ Esp (R, W) for all α ∈ (0, 1).
Thus for α ∈ [φ, 1), (30) implies

1 − α

α

��C�
α,W − R

�

≤ 1

�

� α

α−�α
Esp (R, W) dη + �

1 − �
R

+1

�

1 − α

α

� α+�(1−α)

α

η

1 − η
Esp (R, W) dη

≤ Esp (R, W) + �

1 − �

1 − α

α
Esp (R, W) + �

1 − �
R

≤ Esp (R, W)+ �

1−�

R ∨ Esp (R, W)

φ
. (31)

On the other hand, R ≥ Cφ,w by the hypothesis and the
Rényi capacity is nondecreasing in its order by Lemma 8−(a).
Thus for α∈(0, φ], (30) implies

1−α

α
(C̃�

α,W − R)

≤ �

1−�
R+ 1

�

� α+�(1−α)

φ

(1−α)η

α(1−η)
Esp(R, W )dη1{α∈[ φ−∈

1−∈ ,φ]}

≤ �

1−�
R+ 1

�

α(1−�)+�

α(1−�)

� α(1−�)+�

φ
Esp(R, W )dη1{α∈[ φ−∈

1−∈ ,φ]}

= �

1−�
R

+
�
α(1−�)+2�−φ

�
− φ−�

α(1−�)

�
Esp(R, W )1{α∈[ φ−∈

1−∈ ,φ]}

≤ �

1−�

φR+(1−φ)Esp(R, W )

φ
+(1−φ)Esp(R, W ). (32)

Note that (27) follows from (29), (31), and (32). In order
to obtain (28) from (27), recall that Cα,W is nondecreasing
in α by Lemma 8-(a) and 1−α

α Cα,W is nonincreasing in α on
(0, 1) by Lemma 8-(b). Then Esp (R, W) ≤ 1−φ

φ R and hence
R ∨ Esp (R, W) ≤ R/φ for all R ≥ Cφ,W by Lemma 13.

B. Tilting With a Family of Measures

Definition 16: For any α ∈ �+ and w, q in P(Y) satisfying
Dα (w� q) < ∞, the order α tilted probability measure wq

α is

dwq
α

dν
� e(1−α)Dα( w�q)(

dw

dν
)α(

dq

dν
)1−α (33)

where ν ∈ P(Y) satisfies w≺ν and q≺ν.
In many applications, the tilted probability measure between

two fixed probability measures is of interest for orders
in (0, 1). In our analysis we need to allow one of those proba-
bility measures to change with the order, as well. Lemma 16,
in the following, considers the tilted probability measure wqα

α

as a function of the order α for the case when qα is a
continuous function of α from (0, 1) to P(Y) for the total
variation topology on P(Y).

Lemma 16: Let qα be a continuous function of α from (0, 1)
to P(Y) for the total variation topology and w ∈ P(Y) satisfy
Dα (w� qα) < ∞ for all α ∈ (0, 1). Then

(a) wqα
α is a continuous function of α from (0, 1) to P(Y) for

the total variation topology,

(b) Dα (w� qα), D1
�

wqα
α

��w
�
, and D1

�
wqα

α

�� qα

�
are continu-

ous functions of α from (0, 1) to �≥0 .

Remark 5: The continuity of qα in the order α for the total
variation topology on P(Y) does not imply the continuity of
the corresponding Radon-Nikodym derivatives dqα

dν for some
reference measure ν, see [40, Remark 2]. Thus Lemma 16
is not a corollary of standard results on the continuity of
integrals, such as [9, Corollary 2.8.7].

Lemma 16 does not assume qα to be any particular family of
probability measures, such as Rényi centers; qα is unspecified
except for its continuity in α and finiteness of Dα (w� qα) for
all α in (0, 1). However, for any channel W with finite C1/2,W ,
the Rényi center qα,W satisfies the hypothesis of Lemma 16 for
w = W(x) for all x ∈ X because Cα,W < ∞ for all α ∈ (0, 1)
by Lemma 8-(c), Dα

�
W(x)� qα,W

� ≤ Cα,W by Theorem 1,
and qα,W is continuous in α for the total variation topology
on P(Y) by Lemma 10.

Remark 6: We believe qα,W satisfies the monotonicity
described in [40, Conjecture 1]. If that is the case, we do
not need Lemma 16, we can establish the continuity of w

qα,W
α ,

Dα

�
w� qα,W

�
, D1

�
w

qα,W
α

��w
�
, and D1

�
w

qα,W
α

�� qα,W
�

for w =
W(x) for all x ∈ X using standard results on the continuity of
integrals, such as [9, Cor. 2.8.7].

Proof of Lemma 16: Any function g on (0, 1) is contin-
uous iff for every convergent sequence αn → α in (0, 1), the
sequence g(αn) converges to g(α) by [36, Th. 21.3] because
(0, 1) is metrizable. Let {αn}n∈Z+ be a convergent sequence
such that limn→∞ αn = α and ν be

ν = w

4
+ qα

4
+ 1

2

	
n∈Z+

qαn

2n
.

Instead of working with measures as members of M(Y) for
the total variation topology, we work with the corresponding
Radon-Nikodym derivatives with respect to ν as members
of L1(ν). We can do so because all of the measures we
are considering are absolutely continuous with respect to ν

and for any sequence {ξn}n∈Z+ ⊂ L1(ν), ξn
L1(ν)−−−→ ξ iff the

corresponding sequence of measures {ξnν}n∈Z+ converges to
ξν in M(Y) for the total variation topology.

For any finite signed measure μ such that μ≺ν, we denote
its Radon-Nikodym derivative with respect to ν by ξμ:

ξμ = dμ

dν
∀μ∈M(Y) such that μ≺ν.

We make an exception and denote the Radon-Nikodym deriv-
ative of wqα

α by ξα rather than ξwqα
α

.

(a) For any α ∈ (0, 1) let ξsα be ξsα�ξα
wξ1−α

qα
. Using the

triangle equality we get:��ξsα − ξsαn

��
=
���ξsα − ξαn

w ξ1−αn
qαn

���
≤
���ξsα − ξαn

w ξ1−αn
qα

���+ ξαn
w

���ξ1−αn
qα

− ξ1−αn
qαn

���. (34)

• {ξαn
w ξ1−αn

qα }n∈Z+ is uniformly integrable because

Eν

�
1{E}ξαn

w ξ1−αn
qα

�
≤ w(E)αn qα(E)1−αn by the
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Hölder’s inequality and w(E)αn qα(E)1−αn is bounded
above by w(E) + qα(E).

• ξαn
w ξ1−αn

qα

ν−→ ξsα because almost everywhere con-
vergence implies convergence in measure for finite
measures by [9, Th. 2.2.3] and ξαn

w ξ1−αn
qα

ν−a.e.−−−→ ξsα

by definition.

Then

ξαn
w ξ1−αn

qα

L1(ν)−−−→ ξsα (35)

by the Lebesgue-Vitali convergence theorem [9, 4.5.4].
Using the derivative test one can confirm that (z+τ )β−zβ

is a nonincreasing function of z for any z ≥ 0, τ ≥ 0,
and β ∈ (0, 1). Thus (z + τ )β − zβ ≤ τβ for any z ≥ 0,
τ ≥ 0, and β ∈ (0, 1). Then using the Hölder’s inequality
we get,

Eν

�
ξαn

w

���ξ1−αn
qα

−ξ1−αn
qαn

����≤ Eν

�
ξαn

w

��ξqα − ξqαn

��1−αn
�

≤ Eν [ξw]αn Eν

���ξqα −ξqαn

���1−αn

Then using ξqαn

L1(ν)−−−→ ξqα , αn −→ α, and α ∈ (0, 1) we
get

limn→∞ Eν

�
ξαn

w

���ξ1−αn
qα

− ξ1−αn
qαn

���� = 0. (36)

(34), (35), and (36) imply ξsαn

L1(ν)−−−→ ξsα . Thus sα is
continuous in α on (0, 1) for the total variation topology
on M+

(Y). Then �sα� = Eν

�
ξsα

�
is continuous in α,

as well. Furthermore, �sα� is positive because �sα� =
e(α−1)Dα( w�qα) and Dα (w� qα) is finite by the hypothesis
of the lemma. On the other hand, ξα = ξsα/�sα� and the
triangle inequality implies

��ξα − ξαn

�� ≤ 1

�sα�
��ξsα − ξsαn

��+
�����
�sα� − ��sαn

��
�sα�

�����.
Since �sα� is positive for all α ∈ (0, 1), the continuity of

�sα� in α and ξsαn

L1(ν)−−−→ ξsα imply ξαn

L1(ν)−−−→ ξα . Thus
wqα

α is continuous in α on (0, 1) for the total variation
topology on P(Y).

(b) �sα� is positive for all α ∈ (0, 1) by the hypothesis
because Dα (w� qα) = ln �sα�

α−1 . Furthermore, Dα (w� qα)
is continuous in α because product and composition of
continuous functions are continuous.
D1
�

wqα
α

��w
�

and D1
�

wqα
α

�� qα

�
are both lower semicon-

tinuous in α because the Rényi divergence is jointly
lower semicontinuous in its arguments for the topology
of setwise convergence by Lemma 6 and wqα

α and qα are
continuous in the topology of setwise convergence.
D1
�

wqα
α

��w
�

is upper semicontinuous in α because
Dα (w� qα) is continuous in α, D1

�
wqα

α

�� qα

�
is lower

semicontinuous in α, and D1
�

wqα
α

��w
�

satisfies

D1
�

wqα
α

��w
� = 1 − α

α
Dα (w� qα) − 1 − α

α
D1
�

wqα
α

�� qα

�
.

Then D1
�

wqα
α

��w
�

is continuous in α because it is both
lower semicontinuous and upper semicontinuous in α.

Expressing D1
�

wqα
α

�� qα

�
in terms of D1

�
wqα

α

��w
�

and following a similar reasoning, we deduce that
D1
�

wqα
α

�� qα

�
is continuous in α, as well.

IV. THE SPB FOR PRODUCT CHANNELS

Assumption 1: {Wt}t∈Z+ is a sequence of channels such that
the maximum C1/2,Wt among the first n Wt’s is O (ln n): there
exists n0 ∈ Z+ and K ∈ �+ such that

maxt∈[1,n] C1/2,Wt ≤ K ln n ∀n≥n0.

Theorem 2: Let {Wt}t∈Z+ be a sequence of channels sat-
isfying Assumption 1, ε be a positive real number, and α0,
α1 be orders satisfying 0 < α0 < α1 < 1. Then for
any sequence of codes on the product channels {W[1,n]}n∈Z+
satisfying

Cα1,W[1,n] ≥ ln
Mn

Ln
≥ Cα0,W[1,n] + ε(ln n)2 ∀n≥n0 (37)

there exists a τ ∈ �+ and an n1 ≥ n0 such that

Pav
e

(n) ≥ n−τ e
−Esp

�
ln Mn

Ln
,W[1,n]

�
∀n≥n1. (38)

The main aim of this section is to prove the asymptotic
SPB given in Theorem 2; we do so following the program put
forward by Augustin [6]. In §IV-A, we bound the moments
of certain zero mean random variables related to the tilted
probability measures. In §IV-B, we bound the small deviation
probability for sums of independent random variables using
the Berry-Esseen theorem. In §IV-C, we first derive non-
asymptotic, but parametric, SPBs for codes on arbitrary prod-
uct channels and on certain product channels with feedback;
then we prove Theorem 2 using the bound for codes on
arbitrary product channels. In §IV-D, we compare our SPBs
with the SBPs derived by Augustin [6], [7] for the product
channels.

We make a brief digression to discuss the implications of
Theorem 2, before starting its proof. Theorem 2 and the list
decoding variant of Gallager’s bound, i.e. [37, Lemma 29],
determine the optimal Pav

e
(n) up to a polynomial factor for

all sequences of product channels satisfying Assumption 1.
In order to see why, note that if there exists an α0 ∈ [ 1

1+Ln
, 1]

satisfying ln Mn
Ln

≥ Cα0,W[1,n] , then

Pav
e

(n) ≤ e
1−α0
α0 e

−Esp

�
ln Mn

Ln
,W[1,n]

�
(39)

by [37, Lemma 29] because Esp (R, W) ≤ 1−α
α +

Esp (R + 1, W) for any α ∈ (0, 1) satisfying R ≥ Cα,W by
Lemma 13.

If the sequence of channels satisfying Assumption 1 is
composed of channels with bounded order 1/2 Rényi capacity,
i.e. if supt∈Z+ C1/2,Wt ≤ K for some K ∈ �+ , then we can
bound τ in Theorem 2 from above, as well. But, our bounds
are too crude to recover the right polynomial prefactor.

Assumption 1 holds for all stationary product channels
and many non-stationary product channels. As an example
consider the Poisson channel ΛT ,a,g(·) whose input set is
described in (1e). The Rényi capacity of ΛT ,a,g(·) is deter-
mined in [40, eq. (92)] to be:
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Cα,ΛT ,a,g(·) =
� T

0

��
α

g − a

gα − aα

� 1
1−α − α

α − 1

agα − gaα

gα − aα

�
dt

Then C 1
2 ,ΛT ,a,g(·) = 1

4

� T
0 (

√
g(t) − √

a)2dt and the Poisson

channels W[1,n] = Λn,a,g(·) satisfy Assumption 1 provided that
supt∈(0,T ] g(t) is O (ln T). Thus Theorem 2 implies the SPB
for the Poisson channel ΛT ,a,g(·) asymptotically, provided that
supt∈(0,T ] g(t) is O (ln T).

A. Moment Bounds for Tilting

The tilted probability measures arise naturally in the trade
off between the exponents of the false alarm and the missed
detection probabilities in the binary hypothesis testing problem
with independent samples. We use them in the same vein with
the help of the following bound.

Lemma 17: Let w and q be two probability measures on the
measurable space (Y,Y) such that D1/2 (w� q) < ∞. Then

Ewq
α

�|ξα |κ �1/κ ≤ 3
1
κ
((1 − α)Dα (w� q)) ∨ κ

α(1 − α)
(40)

for all κ ∈ �+ and α ∈ (0, 1) where wq
α is the tilted

probability measure given in (33) and ξα is defined using the
Radon-Nikodym derivative of wac, i.e. the component3 of w
that is absolutely continuous in q, as follows

ξα� ln
dwac

dq
− Ewq

α

�
ln

dwac

dq

�
.

Proof: Note that for any γ > 0,

Ewq
α

�|ξα|κ� = Ewq
α

�
1{ξα>γ }|ξα|κ �+ Ewq

α

�
1{|ξα |≤γ }|ξα|κ�

+ Ewq
α

�
1{ξα<−γ }|ξα|κ � . (41)

In the following, we bound the expectations in the preceding
expression from above for an arbitrary γ and show that these
bounds are not larger than (γ0)

κ for γ = γ0, see (44) and (46),
where

γ0�
((1 − α)Dα (w� q)) ∨ κ

α(1 − α)
.

This will imply Ewq
α

�|ξα|κ� ≤ 3(γ0)
κ and thus (40).

Using the identity dwq
α

dw = e(α−1)ξα+D1(wq
α

��w), we can bound
the first expectation in (41) for all γ ≥ 0 and κ ≥ 0 as follows

Ewq
α

�
1{ξα>γ }|ξα|κ� = Ew

�
1{ξα>γ }|ξα|κe(α−1)ξα+D1(wq

α

��w)
�

≤ eD1(wq
α

��w) supz>γ e−(1−α)zzκ . (42)

On the other hand, for any β > 0, κ ≥ 0, and γ ≥ 0 we have

supz>γ e−βzzκ =
 

( κ
eβ )κ γ ≤ κ

β

e−βγ γ κ γ > κ
β

. (43)

Using (42) and (43) for β = (1−α) and γ = γ0 and invoking
(1−α)Dα (w� q) = αD1

�
wq

α

��w
�+(1−α)D1

�
wq

α

�� q
�

we get

Ewq
α

�
1{ξα>γ }|ξα|κ � ≤ eD1(wq

α

��w)− 1−α
α Dα( w�q)(γ0)

κ

= e− 1−α
α D1(wq

α

��q)(γ0)
κ . (44)

3Any w has a unique decomposition w = wac + ws such that wac≺q and
ws ⊥ q by the Lebesgue decomposition theorem, [21, 5.5.3].

Using the identity dwq
α

dq = eαξα+D1(wq
α

��q), we can bound the
third expectation in (41) for all γ ≥ 0 and κ ≥ 0 as follows

Ewq
α

�
1{ξα<−γ }|ξα|κ� = Eq

�
1{ξα<−γ }|ξα|κeαξα+D1(wq

α

��q)
�

≤ eD1(wq
α

��q) supz>γ e−αzzκ . (45)

Using (43) and (45) for β = α and γ = γ0 and invoking
(1 − α)Dα (w� q) = αD1

�
wq

α

��w
� + (1 − α)D1

�
wq

α

�� q
�

we
get

Ewq
α

�
1{ξα<−γ }|ξα|κ� ≤ eD1(wq

α

��q)−Dα( w�q)(γ0)
κ

= e− α
1−α D1(wq

α

��w)(γ0)
κ . (46)

B. A Corollary of the Berry-Esseen Theorem

In this subsection we derive a lower bound to the probability
of having a small deviation from the mean for sums of inde-
pendent random variables using the Berry-Esseen theorem. Let
us start with recalling the Berry-Esseen theorem.

Lemma 18 (Berry-Esseen Theorem [8], [25], [56]): Let
{ξt}t∈Z+ be independent random variables satisfying

E [ξt] = 0 ∀tand g2 ∈ �+

where gκ = ��n
t=1 E

�|ξt |κ
��1/κ

. Then there exists an absolute
constant ζ ≤ 0.5600 such that

���P �	n

t=1
ξt < τg2

�
− � (τ)

��� ≤ ζ

�
g3

g2

�3

where � (τ) = 1√
2π

� τ
−∞ e− z2

2 dz.
The following lemma is obtained by applying the

Berry-Esseen theorem for appropriately chosen values of τ ;
thus it is merely a corollary of the Berry-Esseen theorem.

Lemma 19: Let {ξt}t∈Z+ be independent zero mean random
variables. Then

P
����	n

t=1
ξt

��� < 3gκ

�
≥ 1

2
√

n
∀n∈Z+, κ ≥3. (47)

Augustin [7, Th. 18.2] derived a similar bound; the proof
of Lemma 19 is similar to the proof of that bound.

Proof of Lemma 19: If gκ/g2 ≥ √
2/3, then using the Markov

inequality we get

P
����	n

t=1
ξt

��� ≤ 3gκ

�
≥ 1 − P

����	n

t=1
ξt

��� > g2
√

2
�

≥ 1

2
.

Thus (47) holds. Hence, we assume that gκ/g2 <
√

2/3 for the
rest of the proof. By the Berry-Esseen theorem we have

P
����	n

t=1
ξt

��� ≤ 3gκ

�

≥
!

�

�
3gκ

g2

�
− ζ

�
g3

g2

�3
"

−
!

�

�−3gκ

g2

�
+ ζ

�
g3

g2

�3
"

= 2

⎡
⎣�

3gκ
g2

0

e− z2
2√

2π
dz − ζ

�
g3

g2

�3
⎤
⎦ .
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On the other hand
� τ

0 e− z2
2 dz ≥ τe−τ2/6 by the Jensen’s

inequality because the exponential function is convex. Thus

P
����	n

t=1
ξt

��� ≤ 3gκ

�
≥ 2

�
3gκ/g2√

2π
e− (3gκ/g2)2

6 − ζ

�
g3

g2

�3
�
.

(48)

Since κ ≥ 3, the Hölder’s inequality implies

E
�	n

t=1
|ξt |3

�
≤ E

�	n

t=1
|ξt |κ

� 1
κ−2

E
�	n

t=1
|ξt |2

� κ−3
κ−2

.

Then ( g3
g2

)3 ≤ ( gκ
g2

)
κ

κ−2 . Thus using gκ
g2

<
√

2
3 and (48) we get

P
����	n

t=1
ξt

��� ≤ 3gκ

�
≥ 2

�
e−1/3

√
2π

3 − 0.56

�
gκ

g2

≥ 0.595
gκ

g2
. (49)

In order to bound gκ/g2 we use the Jensen’s inequality and the
concavity of the functions zα in z for α ∈ (0, 1].

E
�	n

t=1

1

n
|ξt |2

�1/2

≤ E
�	n

t=1

1

n
|ξt |κ

�1/κ

∀κ ≥2.

Then gκ/g2 ≥ n
1
κ − 1

2 ≥ 1/
√

n and (47) follows from (49).

C. Non-Asymptotic SPBs for Product Channels

The ultimate aim of this subsection is to establish the
asymptotic SPB given in Theorem 2. First we establish a
non-asymptotic SPB for product channels, i.e. Lemma 20,
using Lemmas 17 and 19, the intermediate value theorem, and
pigeon hole arguments. We prove Theorem 2 using Lemma 20
at the end of this subsection. We make a brief digression before
that proof and point out three variants of Lemma 20 that are
proved without invoking the averaging scheme described in
§III-A. Lemma 21 is for product channels satisfying

e
α−1
α Cα,W[1,n] qα,W[1,n] ≤ e

z−1
z Cz,W[1,n] qz,W[1,n] (50)

for all α ≤ z in (0, 1). Lemma 22 is for product channels
whose Rényi centers do not change with the order. Lemma 23
establishes the SPB given in Lemma 22 for product channels
with feedback, under a stronger hypothesis.

Lemma 20: Let W[1,n] be a product channel for an n ∈ Z+ ,
φ ∈ (0, 1), � ∈ (0, n

n+1 ), κ ≥ 3, and γ be

γ� 3 κ
√

3

1 − �

�	n

t=1

�
C1/2,Wt ∨ κ

�κ�1/κ

. (51)

If M and L are integers such that M
L > 16

√
ne
�C�

φ,W[1,n]+
γ

1−φ ,
then any (M, L) channel code on W[1,n] satisfies

Pav
e ≥

�
�e−2γ

16e2n3/2

�1/φ

e
−�E�

sp

�
ln M

L ,W[1,n]
�

(52)

for �E�
sp (R, W) defined in (26).

We have presented Lemma 20 via (52) in order to emphasize
its similarity to the Gallager’s bound, i.e. [37, Lemma 29].
However, the expression on the right hand side of (52)
converges to zero as φ converges to zero because �e−2γ

16e2n3/2 < 1.

By changing the analysis slightly it is possible to obtain the
following alternative bound which does not have that problem:

Pav
e ≥ �e−2γ

16n3/2 e−�E�
sp(R,W[1,n]) (53)

where R = ln M
L − 2γ − ln 16e2n3/2

� . The bound given in (53)
is preferable especially for codes with low rates on channels
satisfying limR↓0 Esp

�
R, W[1,n]

�
< ∞.

We can make �C�
φ,W[1,n] and �E�

sp

�
ln M

L , W[1,n]
�

as close as

we please to Cφ,W[1,n] and Esp
�
ln M

L , W[1,n]
�

by choosing �
small enough. But as we decrease �, the first term of the
lower bound in (52) also decreases. The appropriate choice of
� balances these two effects. The choice of κ influences the
constraint on ln M

L and the lower bound in (52) only through
the value of γ . The appropriate choice of κ minimizes the
value of γ . The constraint on ln M

L becomes easier to satisfy
as φ decreases; however, the smaller values of φ also lead
to smaller, i.e. worse, lower bounds in (52). Thus for a given
ln M

L we desire to have the greatest possible value for φ to have
the best bound in (52). As an example consider the stationary
case when Wt = W for all t and set κ = ln n and � = 1

n .
Invoking (22) to bound �C�

φ,W[1,n] and Lemma 15 to bound�E�
sp

�
R, W[1,n]

�
, we get the following: For any n ≥ 10, if

1

n
ln

M

L
≥ ln 16

√
n

n
+ Cφ,W + Cφ,W + 13.2φ(C1/2,W ∨ ln n)

(n − 1)φ(1 − φ)

for a φ ∈ (1/n, 1) then any (M, L) channel code on W[1,n]
satisfies

Pe ≥
!

(L/M)
1

(n−1)φ

16e2(n ∨ eC1/2,W )29

"1/φ

e
−nEsp

�
1
n ln M

L ,W
�
. (54)

Proof of Lemma 20 and (53): Let (Ψ,Θ) be an (M, L)
channel code on W[1,n]. In order to avoid lengthy expres-
sions we denote W[1,n](Ψ (m)) by wm and its marginal in
P(Yt) by wm

t . Let us describe vm
α,t ∈ P(Yt) through its

Radon-Nikodym derivative:

dvm
α,t

dν
�e

(1−α)Dα

�
wm

t �q�
α,Wt

� �
dwm

t

dν

�α �dq�
α,Wt

dν

�1−α

where q�
α,Wt

is the average Rényi center of Wt and ν is any
probability measure satisfying both wm

t ≺ν and q�
α,Wt

≺ν.
Let ξm

α,t be a random variable defined as

ξm
α,t� ln

d(wm
t )ac

dq�
α,Wt

− Evm
α,t

�
ln

d(wm
t )ac

dq�
α,Wt

�

where (wm
t )ac is the component of wm

t that is absolutely
continuous in q�

α,Wt
. Note that ξm

α,t can also be written as
follows:

ξm
α,t = 1

α − 1

�
ln

dvm
α,t

dwm
t

− D1
�

vm
α,t

��wm
t

��
(55)

= 1

α

!
ln

dvm
α,t

dq�
α,Wt

− D1
�

vm
α,t

�� q�
α,Wt

�"
. (56)

Let qα and vm
α be the probability measures defied as

qα �

n

t=1
q�
α,Wt

,

vm
α �


n

t=1
vm
α,t.
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Let ξm
α be a random variable in (Yn

1,Yn
1 , vm

α )

ξm
α �

	n

t=1
ξm
α,t .

As a result of (55), (56), and the product structure of qα, vm
α ,

and wm we have

ξm
α = 1

α − 1

�
ln

dvm
α

dwm
− D1

�
vm
α

��wm�� , (57)

= 1

α

�
ln

dvm
α

dqα
− D1

�
vm
α

�� qα

��
. (58)

Let Em ∈ Yn
1 be Em�{y ∈ Yn

1 : m ∈ Θ(y)}. Then for any
α ∈ (0, 1) and real numbers τ1 and τ2 we have

Pm
e ≥ e−D1( vm

α �wm)−τ1 Evm
α

�
1{Yn

1\Em}1{ξm
α ≥ τ1

α−1 }
�
,

qα(Em) ≥ e−D1( vm
α �qα)−τ2 Evm

α

�
1{Em}1{ξm

α ≤ τ2
α }
�
.

Then for τ1 = γ
α and τ2 = γ

1−α using (57) and (58) we get

Pm
e eD1( vm

α �wm)+ γ
α + qα(Em)eD1( vm

α �qα)+ γ
1−α

≥ Evm
α

�
1{ −γ

(1−α)α ≤ξm
α ≤ γ

(1−α)α }
�
. (59)

The random variables ξm
α,t are zero mean in the probability

space (Yn
1,Yn

1 , vm
α ) by construction. Furthermore, they are

jointly independent because of the product structure of the
probability measures wm, qα , and vm

α . Thus we can apply
Lemma 19 to bound the right hand side of (59) from below,
if we can show that γ defined in (51) is large enough.
To that end, first note that Evm

α

���ξm
α,t

��κ� = Evm
α,t

���ξm
α,t

��κ� by
construction. Then Lemma 17 implies

Evm
α

���ξm
α,t

��κ� ≤ 3

⎡
⎣
�
(1 − α)Dα

�
wm

t

�� q�
α,Wt

��
∨ κ

α(1 − α)

⎤
⎦

κ

. (60)

We can bound Dα

�
wm

t

�� q�
α,Wt

�
using (20) of Lemma 14

(1 − α)Dα

�
wm

t

�� q�
α,Wt

� ≤ C1/2,Wt

1 − �
. (61)

Using the definition of γ given in (51) and together with (60)
and (61) we get

3
�	n

t=1
Evm

α

���ξm
α,t

��κ��1/κ ≤ γ

α(1 − α)
.

Then (59) and Lemma 19 implies

Pm
e eD1( vm

α �wm)+ γ
α + qα(Em)eD1( vm

α �qα)+ γ
1−α ≥ 1

2
√

n
. (62)

On the other hand, the product structure of the probability
measures wm and qα implies

Dα

�
wm
�� qα

� =
	n

t=1
Dα

�
wm

t

�� q�
α,Wt

�
.

Bounding each term in the sum using (19) of Lemma 14 and
then invoking (23) we get

Dα

�
wm
�� qα

� ≤ �C�
α,W[1,n] . (63)

In the following, we show that the message set has a size
≈ M�

n subset in which all the messages has a conditional

error probability greater than ≈ ( e−2γ√
n

)
1
φ ( �

n )
1−φ
φ e−�E�

sp(R,W[1,n]).

The existence of such a subset will imply (52). We prove the
existence of such a subset using (62), (63), the intermediate
value theorem, and pigeon hole arguments. Let us consider the
subset of the message set, M1 defined as follows:

M1�
'

m : inf
α∈(φ,1)

�
(qα(Em) + L

M
)eD1( vm

α �qα)+ γ
1−α

�
≥ 1

4
√

n

(
.

First, we bound the size of M1 from above. We can
bound D1

�
vm
α

�� qα

�
using the definitions of vm

α,t , vm
α , qα,

the non-negativity of the Rényi divergence for probability
measures, which is implied by Lemma 4, and (63), as follows

D1
�

vm
α

�� qα

� = Dα

�
wm
�� qα

�− α

1 − α
D1
�

vm
α

��wm� (64)

≤ �C�
α,W[1,n] (65)

for all m ∈ M, α ∈ (0, 1). Then summing the inequality in the
condition for membership of M1 over the members of M1 we
get

2Le
�C�

α,W[1,n] +
γ

1−α ≥ |M1| 1

4
√

n
∀α∈(φ, 1).

Then |M1|
L ≤ 8

√
ne
�C�

φ,W[1,n]+
γ

1−φ . Consequently |M1| < M
2

because M
L > 16

√
ne
�C�

φ,W[1,n]+
γ

1−φ by the hypothesis.
On the other hand, as a result of the definition of M1, for

each m ∈ M \ M1 there is an α ∈ (φ, 1) satisfying

(qα(Em) + L

M
)eD1( vm

α �qα)+ γ
1−α <

1

4
√

n
.

Furthermore, qα is continuous in α for the total variation
topology on P(Yn

1 ) by construction.4 Then D1
�

vm
α

�� qα

�
is

continuous in α by Lemma 16 and qα(Em) is continuous in α,
as well. Thus (qα(Em) + L

M )eD1( vm
α �qα)+ γ

1−α is continuous in

α. Since limα↑1(qα(Em)+ L
M )eD1( vm

α �qα)+ γ
1−α = ∞, using the

intermediate value theorem [51, 4.23] we can conclude that
for each m ∈ M \ M1 there exists an αm ∈ (φ, 1) such that

(qαm(Em) + L

M
)eD1

�
vm
αm

��qαm
�+ γ

1−αm = 1

4
√

n
. (66)

Then for any positive integer K , there exists a length 1
K

interval with 
 M
2 K � or more αm’s. Let [η, η + 1

K ] be the
aforementioned interval, �̃ and α̃ be real numbers in (0, 1)

�̃ � 1

K
+ �(1 − 1

K
), α̃�1 − �

1 − �̃
η.

Then q�
α,Wt

≤ �̃
� q�̃

α̃,Wt
for all α ∈ [η, η + 1

K ], by the definition
of the average Rényi center. Thus

qα ≤ (
�̃

�
)nq̃ ∀α∈[η, η+ 1

K
]

where q̃ ∈ P(Yn
1 ) is defined as follows

q̃�

n

t=1
q�̃
α̃,Wt

.

4In particular
��qα − qη

�� ≤
)

8n ln �
�−|α−η| for all α and η in (0, 1) such

that |η − α| < � by (3), the product structure of qα , and the definition of the
average Rényi center, which implies

���q�
α,Wt

− q�
η,Wt

��� ≤ 2|α−η|
� for all Wt .



830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 2, FEBRUARY 2019

On the other hand, at least half of the messages with αm’s in
[η, η + 1

K ] satisfy q̃(Em) ≤ 2 L

M/2 K� . Then at least 
 1

2
 M
2 K ��

messages with αm’s in [η, η + 1
K ] satisfy

qαm(Em) ≤ 4L

M
K

�
1 + 1

K

1 − �

�

�n

Note that n(1−�)
� > 1 because � < n

n+1 . Then we can set K to

� n(1−�)
� 	 and use the identity (1 + z)1/z < e to get

qαm(Em) ≤ 4L

M

n(1 − �)

�
e2. (67)

Then using (66), we can bound D1
�

vm
αm

�� qαm

�
for all m

satisfying (67) as follows

eD1
�

vm
αm

��qαm
�+ γ

1−αm ≥ 1

4
√

n

�

4e2n

M

L
. (68)

On the other hand we can bound Pm
e using (62) and (66)

Pm
e eD1

�
vm
αm

��Ψ (m)
�+ γ

αm ≥ 1

4
√

n
. (69)

Using (63), (64), (68), and (69) we get

Pm
e e

1−αm
αm

�C�
αm ,W[1,n] +2 γ

αm ≥ (
1

4
√

n
)

1
αm

�
�

4e2n

M

L

� 1−αm
αm

. (70)

Hence, for all m satisfying (67) as a result of the definition of�E�
sp (R, W) given in (26) we have

Pm
e ≥ e−2 γ

φ (
1

4
√

n
)

1
φ

� �

4e2n

� 1−φ
φ

e−�E�
sp(R,W[1,n])

where R = ln M
L . Since there are at least 
 M

4 K � such messages
we get the inequality given in (52).

In order to obtain (53), we change the analysis after (70).
For all m satisfying (67), as a result of (70) and the definition
of �E�

sp (R, W) given in (26) we have

Pm
e ≥ (

1

4
√

n
)e−2γ e−�E�

sp(R,W[1,n])

where R = ln M
L − 2γ − ln 16 e2n3/2

� .
Since there are at least 
 M

4 K � such messages we get the
bound given in (53).

The Rényi centers and capacities of certain channels sat-
isfy (50) for all α ≤ z in (0, 1), e.g. the Poisson channel
ΛT ,a,b,	 whose input set is described in (1a). The Rényi capac-
ity and center of ΛT ,a,b,	 are determined in [40, Example 9]:

Cα,ΛT ,a,b,	 =

⎧⎪⎨
⎪⎩

α
α−1

��
	−a
b−a bα + b−	

b−a aα
�1/α − 	

�
T α �= 1�

	−a
b−a b ln b

	 + b−	
b−a a ln a

	

�
T α = 1.

The order α Rényi center of ΛT ,a,b,	 is the stationary Poisson
processes with intensity ( 	−a

b−a bα + b−	
b−a aα)1/α . For channels

satisfying (50) for all α ≤ z in (0, 1), the averaging scheme
is not needed to establish the SPB. In addition, the resulting
bound is sharper than the one given in Lemma 20.

Lemma 21: Let W[1,n] be a product channel for an n ∈ Z+

satisfying C1,W[1,n] ≥ φ2

2 for a φ ∈ (0, 1) and (50) for all α, z
satisfying φ ≤ α ≤ z < 1, κ satisfy κ ≥ 3, and γ be

γ�3 κ
√

3
�	n

t=1

�
C1/2,Wt ∨ κ

�κ�1/κ

. (71)

If M, L are integers satisfying M
L > 16

√
neCφ,W[1,n]+ γ

1−φ , then
any (M, L) channel code on W[1,n] satisfies

Pav
e ≥ φ2e−2γ

32n1/2C1,W[1,n]
e−Esp(R,W) (72)

where R = ln M
L − ln

95n1/2C1,W[1,n]
φ2e−2γ .

Proof of Lemma 21: We use qα,Wt ’s rather than q�
α,Wt

’s to
define qα; thus qα is equal to qα,W[1,n] . We repeat the analysis
of Lemma 20 up to (66): There are at least 
 M

2 � messages
satisfying the following identity for some αm ∈ (φ, 1)

(qαm(Em) + L

M
)eD1

�
vm
αm

��qαm
�+ γ

1−αm = 1

4
√

n
.

Let K be � 2C1,W[1,n]
φ2 	. Note that there exists a length 1

K

interval with 
 M
2 K � or more αm’s. Let [η − 1

K , η] be the
aforementioned interval; then for all α ∈ [η − 1

K , η] we have
1−α
α Cα,W[1,n] − 1−η

η Cη,W[1,n] ≤ 1 by the monotonicity of Cα,W

in α, i.e. Lemma 8-(a). Then as a result of the hypothesis of the
lemma we have qα ≤ eqη for all α in [η− 1

K , η]. On the other
hand at least half of the messages with αm’s in [η − 1

K , η],
satisfy qη(Em) ≤ 2 L


M/2 K� . Then at least 
 1
2
 M

2 K �� messages

with αm’s in [η − 1
K , η] satisfy

qαm(Em) ≤ 4eL K

M
. (73)

Using (73) instead of (67) and repeating the rest of the analysis
we get (72) using 8(4e + 1) ≤ 95.

For certain channels the Rényi center does not change with
the order on the interval that it exits, e.g. [40, Example 8],
the binary symmetric channels. The hypothesis of Lemma 21,
described in (50), is satisfied for these channels as a result
of the monotonicity of 1−α

α Cα,W , i.e. Lemma 8-(b). But it
is possible to derive the following sharper bound for these
channels.

Lemma 22: Let W[1,n] be a product channel for an n ∈ Z+
satisfying

qα,W[1,n] = qφ,W[1,n] ∀α∈(φ, 1) (74)

for a φ ∈ (0, 1) and κ ≥ 3. If M, L are integers satisfying
M
L > 16

√
neCφ,W[1,n]+ γ

1−φ for γ described in (71), then any
(M, L) channel code on W[1,n] satisfies

Pav
e ≥ e−2γ

16n1/2 e−Esp(R,W[1,n]) (75)

where R = ln M
L − ln 20n1/2

e−2γ .
Proof of Lemma 22: qα,Wt = qφ,Wt for all α ∈ [φ, 1)

by the hypothesis of the lemma and Lemma 11. We use
qφ,Wt ’s rather than q�

α,Wt
’s to define the probability measure qα.

Since qα is the same probability measure for all α ∈ [φ, 1),
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we denote it by q. We repeat the analysis of Lemma 20 up
to (66): There are at least 
 M

2 � messages satisfying

(q(Em) + L

M
)eD1

�
vm
αm

��q
�+ γ

1−αm = 1

4
√

n

for some αm ∈ (φ, 1). Among these 
 M
2 � messages, there

exists at least 
 M
4 � messages satisfying

q(Em) ≤ 4L

M
. (76)

Using (76) instead of (67) and repeating the rest of the analysis
we get (75).

Lemma 19 is a key ingredient of the proof of Lemma 20.
The independence hypothesis of Lemma 19 is implied by the
product structure of each W[1,n](Ψ (m)) and qα. However,
the product structure is not necessary for the independence,
provided that the channel has certain symmetries.

Lemma 23: Let W−−→[1,n] be a product channel with feedback

for an n ∈ Z+ satisfying5 for each t ∈ {1, . . . , n}
qα,Wt = qt ∀α∈(0, 1), (77)

qt(
d(Wt(x))ac

dqt
≤ z) = gt(z) ∀x ∈Xt, z∈�≥0 (78)

for a qt ∈ P(Yt) and a cumulative distribution function gt,
φ ∈ (0, 1), κ ≥ 3, and γ be the constant defined in (71).
If M, L are integers satisfying M

L > 16
√

neCφ,W[1,n]+ γ
1−φ , then

any (M, L) channel code on W−−→[1,n] satisfies (75).
Any product channel whose component channels are mod-

ular shift channels described in [40, Example 5], satisfy
the constraints given in (77) and (78). Products of more
general shift invariant channels described in [40, Example 8],
do satisfy the constraint given in (77) but they may or may
not satisfy the constraint given in (78) depending on F.

Proof of Lemma 23: As we have done for Lemma 22
we use qt’s, rather than q�

α,Wt
’s, to define q. Although

W−−→[1,n](Ψ (m)) is not necessarily a product measure, ξm
α,t’s are

jointly independent random variables in the probability space
(Yn

1,Yn
1 , vm

α ) for any α ∈ (0, 1) and m ∈ M, as a result of the
hypothesis of the lemma given in (78). The rest of the proof
is identical to the proof of Lemma 22.

Proof of Theorem 2: We prove Theorem 2 using
Lemmas 15 and 20. Note that we are free to choose different
values for � and κ for different values of n, provided that the
hypotheses of Lemmas 15 and 20 are satisfied.

As a result of Assumption 1 there exists a K ∈ [1,∞)
and an n0 ∈ Z+ such that maxt∈[1,n] C1/2,Wt ≤ K ln n for all
n ≥ n0. Let κn be K ln n and �n be 1/n. Then

γn ≤ 4eK ln n (79)

for all n large enough. Furthermore, (22) and (79) imply

16
√

ne
�C�

α0 ,W[1,n] +
γn

1−α0 ≤ 16e
Cα0,W[1,n] +( 1

2 + 4eK
1−α0

+ K
α0(1−α0) ) ln n

for all n large enough. Thus as a result of the hypothesis of
the theorem, hypotheses of Lemma 20 is satisfied for all n

5(Wt(x))ac stands for the component that is absolutely continuous in qt .

large enough. Thus using (79) we can conclude that

Pav
e ≥

�
n−1−8eK

16e2n3/2

� 1
α0

e
−�E1/n

sp

�
ln Mn

Ln
,W[1,n]

�
(80)

for all n large enough.
On the other hand Lemma 15, the hypothesis given in (37),

and the monotonicity of Cα,W in α imply that

�E1/n
sp

�
ln

Mn

Ln
, W[1,n]

�
≤ Esp

�
ln

Mn

Ln
, W[1,n]

�
+ Cα1,W[1,n]

(n − 1)α2
0

for all n large enough. Then using the monotonicity of Cα,W

and 1−α
α Cα,W in α we can conclude that

�E1/n
sp

�
ln

Mn

Ln
, W[1,n]

�
≤ Esp

�
ln

Mn

Ln
, W[1,n]

�

+ ( α1
1−α1

∨ 1)nK ln n

(n − 1)α2
0

for all n large enough. Then (38) follows from (80).

D. Augustin’s SPBs for Product Channels

In the following, we compare our results with the
SPBs derived by Augustin [6], [7] for the product chan-
nels. Augustin works with the maximum error probability,
Pmax

e � maxm∈MPm
e , rather than the average error probability.

This, however, is inconsequential for our purposes because any
SPB for Pav

e holds for Pmax
e as is and any SPB for Pmax

e can be
converted into a SPB for Pav

e through a standard application
of Markov inequality for channel codes, with definite and
essentially inconsequential correction terms.

The main advantage of Theorem 2 over the SPBs in [6]
and [7], is its polynomial prefactor. Augustin did establish a
SPB with a polynomial prefactor, but only under consider-
ably stronger hypotheses, [6, Th. 4.8]. In addition all of the
asymptotic SPBs in [6] and [7] assume the uniform continuity
condition described in Assumption 2, given in the following.
Theorem 2, on the other hand, does not have such a hypothesis.

Assumption 2: {Wt}t∈Z+ and C0+,W defined in (9) satisfy

limα↓0 supn∈Z+
1

n

�
Cα,W[1,n] − C0+,W[1,n]

� = 0.

Remark 7: This assumption is given as in [6, eq. (7)] and
[7, Condition 31.3a]. In [7], the condition is stated without 1/n

factor; we believe that it is a typo.
After this general overview, let us continue with a discussion

of the individual results.
Reference [6, Th. 4.7b] bounds Pmax

e
(n) from below by

e
−eK

√
32n−Esp

�
ln Mn

Ln
,W[1,n]

�
for large enough n for any sequence

of channels satisfying supt∈Z+ C1,Wt < K for some K ∈
�+ and Assumption 2. Thus [6, Th. 4.7b] proves a claim
weaker than Theorem 2 under a hypothesis stronger than
Assumption 1.

Reference [6, Th. 4.8] is a SPB with a polynomial prefac-
tor for product channels satisfying Assumptions 2 and 3.

Assumption 3: ∃K ∈�+ , {νt}t∈Z+ satisfying

1

K
≤ dWt(x)

dνt
≤ K Wt(x) − a.e. ∀x ∈Xt.
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Assumption 3 implies Assumption 1, but the converse is
not true, e.g. if Wt = ΛT ,a,b then Assumption 1 holds but
Assumption 3 does not hold. Thus [6, Th. 4.8] is weaker
than Theorem 2 because it establishes the same claim under
a stronger hypothesis.

References [6, Th. 4.7a] and [7, Th. 31.4] bound Pmax
e

(n)

from below by e
−O(

√
n)−Esp

�
ln Mn

Ln
,W[1,n]

�
for large enough n.

These SPBs are not comparable with Theorem 2 because
their hypotheses are not comparable with the hypotheses of
Theorem 2. However, these SPBs can be proved without
relying on Assumption 2, using a variant of Lemma 20, which
is obtained by applying Chebyshev’s inequality instead of
Lemma 19.

Reference [7, Lemma 31.2] is quite similar to Lemma 20;
the main difference is the infimum taken over (0, 1). In order to
remove this infimum and obtain a bound similar to Lemma 20,
one needs to assume an equicontinuity condition similar to the
one in Assumption 2.

V. THE SPB FOR PRODUCT CHANNELS WITH FEEDBACK

Theorem 3: Let {Wt}t∈Z+ be a sequence of discrete chan-
nels satisfying Wt = W for all t ∈ Z+ and α0, α1 be orders
satisfying 0 < α0 < α1 < 1. Then for any sequence of codes
on the discrete stationary product channels with feedback
{W−−→[1,n]}n∈Z+ satisfying

Cα1,W ≥ 1

n
ln

Mn

Ln
≥ Cα0,W + ln n

n1/4
∀n≥n0 (81)

there exists an n1 ≥ n0 such that

Pav(n)
e ≥ e

−n
�
Esp

�
1
n ln Mn

Ln
,W
�
+ 1

α0
ln n

n1/4

�
∀n≥n1. (82)

We prove Theorem 3 using ideas from Sheverdyaev [55],
Haroutunian [31], [32], and Augustin [6], [7]. In §V-A,
we establish a Taylor’s expansion for Dα (w� q) around α = 1
assuming Dλ (w� q) is finite for a λ > 1. In §V-B, we recall
the auxiliary channel method and prove that for any channel W
satisfying limα↑1

1−α
α Cα,W = 0 and rate R ∈ (C0+,W , C1,W )

there exists a channel V and a constant β > 1 satisfying
both Cβ,V � R and supx∈X D1 (V(x)� W(x)) � Esp (R, W).
In §V-C, we first introduce the concept of subblocks
and derive a non-asymptotic SPB using it; then we prove
Theorem 3 using this SPB. In §V-D, we provide an asymptotic
SPB for (possibly non-stationary) DPCs, i.e. Theorem 4,
and compare our results with the earlier ones. In §V-E,
we show that Haroutunian’s bound, the results of §V-B,
and the concept of subblocks imply an asymptotic SPB for
DSPCs with feedback, as well.

A. A Taylor’s Expansion for the Rényi Divergence

Sheverdyaev employed the Taylor’s expansion —albeit
with approximation error terms that are not explicit—
for his attempt to prove the SPB for the codes on
the DSPCs with feedback in [55]. Recently, Fong and
Tan [26, Proposition 11] bounded Dβ (w� q) for β ∈ [1, 5

4 ]
using Taylor’s expansion for the case when Y is a finite set
and Y is 2Y. The bound by Fong and Tan, however, is not

appropriate for our purposes because its approximation error
term is proportional to |Y|. Assuming dw

dq to be bounded
Sason and Verdú [52, Th. 35-(b), (469)] derived a similar
bound.6 In Lemma 24 we bound Dβ (w� q) for β ∈ (1, λ)
using Taylor’s expansion assuming only Dλ (w� q) to be finite.

Lemma 24: Let w and q be two probability measures on
the measurable space (Y,Y) satisfying Dλ (w� q) ≤ γ for a
γ ∈ �+ and a λ ∈ (1,∞). Then for any β ∈ (1, λ)

0 ≤ Dβ (w� q) − D1 (w� q)

≤ 2(β − 1)

e2

�
1 + e(β−1)γ (

γ eτ

2τ
)2
�

(83)

where τ = (λ−β)γ
2 ∧ 1.

The Rényi divergences with orders greater than one are
not customarily used for establishing the SPB; Sheverdyaev’s
proof [55] is an exception in this respect.7 In §V-B, we use
Lemma 24 to construct an auxiliary channel with certain
properties desirable for our purposes, see Lemma 25.

Proof of Lemma 24: Dβ (w� q) − D1 (w� q) is non-
negative because the Rényi divergence is a nondecreasing
function of the order by Lemma 1. In order to bound
Dβ (w� q) − D1 (w� q) from above we use Taylor’s theorem
on the function g(α) defined as follows:

g(α)�Eq

�
(
dw

dq
)α
�

.

g(α) is continuous in α on (0, λ) by [9, Corollary 2.8.7]
because Eq

�
( dw

dq )λ
�

= e(λ−1)Dλ( w�q) < ∞ by the hypothesis

and ( dw
dq )α ≤ 1 + ( dw

dq )λ. In order to apply Taylor’s theorem
to g(α), we show that g(α) is twice differentiable and bound
its second derivative. To that end, first note that we can bound
xα|ln x|κ for any α ∈ (0, λ) and κ ∈ {1, 2}, using the derivative
test as follows

xα|ln x|κ ≤ (
κ

eα
)κ1{x∈[0,1]} + (

κ

e(λ − α)
)κxλ1{x∈(1,∞)}.

Hence, for all α ∈ (0, λ) and κ ∈ {1, 2} we have���� dκ

dακ
(
dw

dq
)α
���� = (

dw

dq
)α
����ln dw

dq

����
κ

≤ (
κ

eα
)κ + (

κ

e(λ − α)
)κ(

dw

dq
)λ. (84)

The expression on the right hand side has finite expectation
under q for any α ∈ (0, λ) and κ ∈ {1, 2}. Thus g(α) is
twice differentiable in α on (0, λ) by [9, Corollary 2.8.7].
Furthermore, for α in (0, λ) and κ ∈ {1, 2} we have

dκ

dακ
g(α) = Eq

�
(
dw

dq
)α(ln

dw

dq
)κ
�

. (85)

6Reference [52, Th. 35-(b)] is obtained by expressing Dα ( w� q), which is
not an f -divergence, as a monotonically increasing function of the order α
Hellinger divergence between w and q, which is an f -divergence. Guntuboyina
et al. [29] presented a general method for establishing sharp bounds among
f -divergences, without assuming either dw

dq or dq
dw to be bounded. Yet such

conditions can easily be included in the framework proposed in [29].
7To be precise Sheverdyaev does not explicitly use Rényi divergences

in [55], but his analysis can be easily expressed via Rényi divergences.
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Since g(α) is twice differentiable applying Taylor’s theo-
rem [21, Appendix B4] around α = 1 we get

g(β) ≤ 1 + (β − 1)
d

dα
g(α)

����
α=1

+ (β − 1)2

2! sup
α∈(1,β)

d2

dα2 g(α).

(86)

On the other hand using (84) and (85) we get

d2

dα2 g(α) ≤
�

2

e

�2

+
�

2

e(λ − β)

�2

g(λ) ∀α∈(1, β). (87)

Then using the identity ln z ≤ z − 1 together with (85), (86),
and (87) we get the following inequality β ∈ (1, λ)

ln g(β) ≤ (β − 1)D1 (w� q) + (β − 1)2 2

e2

�
1 + g(λ)

(λ − β)2

�
.

On the other hand g(α) = e(α−1)Dα( w�q) by definition and
Dλ (w� q) ≤ γ by the hypothesis. Thus

Dβ (w� q) − D1 (w� q) ≤ (β − 1)
2

e2

!
1 + e(λ−1)γ

(λ − β)2

"
. (88)

Note that Dα (w� q) ≤ γ for any α ∈ (β, λ) because
Dλ (w� q) ≤ γ and the Rényi divergence is a nondecreasing
in its order by Lemma 1. Thus using the analysis leading to
(88), we get the following inequality ∀α∈(β, λ]

Dβ (w� q) − D1 (w� q) ≤ (β − 1)
2

e2

!
1 + e(α−1)γ

(α − β)2

"
. (89)

Using the derivative test we can confirm that the least upper
bound among the upper bounds given in (89) is the one at
α = λ ∧ ( 2

γ + β) and the resulting upper bound is the one
given in (83). As a side note, let us point out that the least
upper bound is strictly less than the upper bound at α = λ iff
γ (λ − β) > 2.

B. The Auxiliary Channel Method

Haroutunian’s seminal paper [31], establishing the SPB for
the stationary product channels with finite input sets, used the
performance of a code on an auxiliary channel as an anchor
to bound its performance on the actual channel. To the best
of our knowledge, this is the first explicit use of the auxiliary
channel method. In a nutshell, auxiliary channel method can
be described as follows:

(i) Choose an auxiliary channel V : X → P(Y) based on
the actual channel W : X → P(Y) and the code (Ψ,Θ).

(ii) Bound the performance of (Ψ,Θ) on V .
(iii) Bound the performance of (Ψ,Θ) on W using the bound

derived in part (ii) and the features of V .
Many infeasibility results that are derived without using the
auxiliary channel method, can be interpreted as an implicit
application of the auxiliary channel method, as well. As an
example, let us consider a version of Arimoto’s bound, due
to Augustin [7, Th. 27.2-(ii)], given in the following: If M
and L are positive integers satisfying ln M

L > C1,W for a
channel W , then the average error probability Pav

e of any
(M, L) channel code on W satisfies

Pav
e ≥ 1−e

α−1
α (Cα,W −ln M

L ) ∀α>1. (90)

Augustin obtained (90) by a convexity argument in [7]; but it
can be derived using the auxiliary channel method as well:
Let V : X → P(Y) be such that V(x) = qα,W for all
x ∈ X and PV

e be the average error probability of (Ψ,Θ)
on V , then PV

e ≥ 1 − L
M for any (M, L) channel code

(Ψ,Θ). Furthermore, Cα,W ≥ Dα (p�W� p�V) by Theorem 1

and Dα (p�W� p�V) ≥ ln[(Pav
e )α(PV

e )1−α+(1−Pav
e )α(1−PV

e )1−α]
α−1

by Lemma 3. Thus Cα,W ≥ ln[(1−Pav
e )α(1−PV

e )1−α]
α−1 and

(90) follows.
Haroutunian [32] applied the auxiliary channel method to

bound the error probability of codes on DSPCs with feedback
from below. The exponential decay rate of Haroutunian’s
bound with block length, however, is greater than the sphere
packing exponent for most channels. In §V-C, we use the
auxiliary channel method—via subblocks — to establish a
SPB. To do that, we employ the auxiliary channel described
in Lemma 25-(b,c), given in the following. In §V-E, we
demonstrate that one can establish a SPB for codes on DSPCs
with feedback by applying Lemma 25-(b,c) to subblocks and
invoking Haroutunian’s bound [32], as well.

Lemma 25 describes its auxiliary channels using the order α
Rényi center qα,W described in Theorem 1, the average Rényi
center q�

α,W described in Definition 14, and the tilted channel
defined in the following.

Definition 17: For any α ∈ �+ , W : X → P(Y), and q ∈
P(Y) such that supx∈X Dα (W(x)� q) < ∞, the order α tilted
channel Wq

α : X → P(Y) is defined as

dWq
α(x)

dν
�e(1−α)Dα( W(x)�q)(

dW(x)

dν
)α(

dq

dν
)1−α (91)

for all x ∈ X where ν ∈ P(Y) satisfies W(x)≺ν and q≺ν.
Lemma 25: For any channel W : X → P(Y) satisfying

both C0+,W �= C1,W and limα↑1
1−α
α Cα,W = 0 and rate R in

(C0+,W , C1,W ) there exist a φ ∈ (0, 1) such that

R = Cφ,W

and an η ∈ (φ, 1) such that

Esp (R, W) = 1 − η

η
Cη,W .

Furthermore W, R, φ, η satisfy the following assertions.

(a) There exists an f : X → [φ, η] satisfying both (92) and
(93) for all x ∈ X.

D1

�
W

qf (x),W

f (x) (x)
��� qf (x),W

�
≤ R (92)

D1

�
W

qf (x),W

f (x) (x)
���W(x)

�
≤ Esp (R, W) (93)

(b) For all � ∈ (0, φ/2) there exists an f� : X → [φ, η]
satisfying both (94) and (95) for all x ∈ X.

D1

�
W

q�
f� (x),W

f�(x)
(x)

���� q�
f�(x),W

�
≤ R + 2�C1/2,W

φ(1 − φ)2 (94)

D1

�
W

q�
f� (x),W

f� (x)
(x)

����W(x)

�
≤ Esp (R, W) + 2�C1/2,W

φ2(1 − η)
(95)
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(c) If � ∈ (0, φ/2) then for all β ∈ (1, 1+η
2η ) we have

C
β,W

q�
f� ,W

f�

≤ R + 2�C1/2,W

φ(1 − φ)2 + ln
1

�

+ (β − 1)e(β−1)
2C1/2,W

1−η

�
4 ∨ 2C1/2,W

1 − η

�2

.

(96)

Remark 8: There is a slight abuse of notation in the symbol

W
q�

f� ,W

f�
in Lemma 25-(c). It stands for a V : X → P(Y)

satisfying V(x) = W
q�

f� (x),W

f�(x)
(x) for all x ∈ X

Proof of Lemma 25: Cα,W is continuous in α on (0, 1] by
Lemma 8-(b). Then for any R ∈ (C0+,W , C1,W ) there exists
a φ ∈ (0, 1) such that R = Cφ,W by the intermediate value
theorem [51, 4.23]. Furthermore, Esp (R, W) ≤ 1−φ

φ Cφ,W by
the expression for Esp (R, W) given in Lemma 13 and the
monotonicity of 1−α

α Cα,W in α established in Lemma 8-(b).
Then the existence of η follows from the intermediate value
theorem, [51, 4.23], and the hypothesis of the lemma because
1−α
α Cα,W is continuous in α by Lemma 8-(b).

(a) qα,W is continuous in α by Lemma 10. Thus we can
replace q�

α,W with qα,W in the proof of part (b) to prove
this part.

(b) We prove the existence of the function f� by showing that
(94) and (95) are satisfied for some α ∈ [φ, η] for each

x ∈ X. We denote W
q�
α,W

α (x) —which is Wq
α(x) defined in

(91) for q = q�
α,W — by vα in the proof of this part. Note

that vα satisfies

D1
�

vα� q�
α,W

�+ α

1−α
D1 (vα� W(x)) = Dα

�
W(x)� q�

α,W

�

for all α ∈ (0, 1). Then (19) of Lemma 14 implies that

D1
�

vα� q�
α,W

�+ α

1 − α
D1 (vα� W(x)) ≤ �C�

α,W (97)

for all α ∈ (0, 1). Then using the non-negativity of the
Rényi divergence, which is implied by Lemma 4, we get

D1

�
vφ

�� q�
φ,W

�
≤ �C�

φ,W , (98)

D1
�

vη

��W(x)
� ≤ 1 − η

η
�C�

η,W . (99)

As a result of (98), D1

�
vφ

�� q�
φ,W

�
and D1

�
vη

�� q�
η,W

�
satisfy one of the following three cases:

(i) If D1

�
vφ

�� q�
φ,W

�
= �C�

φ,W , then D1
�

vφ

��W(x)
� = 0

by (97). Then (94) and (95) hold for α = φ as a
result of (10) and (22).

(ii) If D1

�
vη

�� q�
η,W

�
≤ �C�

φ,W , then (94) and (95) hold
for α = η as a result of (10), (22), and (99).

(iii) If D1

�
vφ

�� q�
φ,W

�
< �C�

φ,W and D1

�
vη

�� q�
η,W

�
>

�C�
φ,W , then D1

�
vα� q�

α,W

�
= �C�

φ,W for some α ∈
(φ, η) by the intermediate value theorem [51, 4.23]
provided that D1

�
vα� q�

α,W

�
is continuous in α.

The continuity of D1

�
vα� q�

α,W

�
, on the other hand,

follows from
���q�

α,W − q�
α�,W

��� ≤ 1−�
�

��α − α���, which

holds for all α, α� ∈ (0, 1), and Lemma 16-(b).
The α satisfying D1

�
vα� q�

α,W

�
= �C�

φ,W satis-
fies (94) as a result of (10) and (22). Furthermore,
D1 (vα� W(x)) ≤ �E�

sp

��C�
φ,W , W

�
for the same α

by (97) and the definition of the average sphere
packing exponent given in (26). On the other hand,�E�

sp (R, W) is a nonincreasing in R because it is
the pointwise supremum of such functions. Then�E�

sp

��C�
φ,W , W

�
≤ Esp (R, W)+ 2�

φ2 R by Lemma 15.

Thus (95) holds for α satisfying D1

�
vα� q�

α,W

�
=

�C�
φ,W by (10).

(c) We introduce two shorthands for notational brevity:

V(x) = W
q�

f� (x),W

f� (x)
(x),

Q(x) = q�
f�(x),W .

The Rényi divergence is a nondecreasing function of the
order by Lemma 1 and f�(x) ∈ [φ, η] for all x ∈ X by
part (b); then

D 1
η
(V(x)� Q(x)) ≤ D 1

f� (x)
(V(x)� Q(x)) . (100)

The definitions of the Rényi divergence, V , and Q imply

D 1
f� (x)

(V(x)� Q(x))

= Df�(x) (W(x)� Q(x))

+ 1
1

f�(x)
− 1

ln Eν

�
dW(x)

dν
1{ dQ(x)

dν >0}

�

≤ Df�(x) (W(x)� Q(x)) . (101)

Using (20) of Lemma 14, together with f�(x) ≤ η and
� ≤ φ/2 ≤ 1/2, we get

Df�(x) (W(x)� Q(x)) ≤ 2C1/2,W

1 − η
. (102)

First bounding D 1
η
(V(x)� Q(x)) using (100), (101), (102)

and then applying Lemma 24 we get,

Dβ (V(x)� Q(x)) − D1 (V(x)� Q(x))

≤ 2(β − 1)

e2

�
1 + e(β−1)

2C1/2,W
1−η (

2C1/2,W

1 − η

eτβ

2τβ
)2
�

for all β ∈ (1, 1
η ), x ∈ X where τβ = ( 1

η − β)
C1/2,W
1−η ∧ 1.

Since ez/z is a decreasing function of z on (0, 1),

Dβ (V(x)� Q(x)) − D1 (V(x)� Q(x))

≤ 2(β − 1)

e2

�
1 + e(β−1)

2C1/2,W
1−η (

C1/2,W

1 − η

eτ

τ
)2
�

for all β ∈ (1, 1+η
2η ), x ∈ X where τ = C1/2,W

2η ∧ 1. Thus

Dβ (V(x)� Q(x)) − D1 (V(x)� Q(x))

≤ 2(β − 1)

�
1 + e(β−1)

2C1/2,W
1−η (

2 ∨ C1/2,W

1 − η
)2
�

≤ (β − 1)e(β−1)
2C1/2,W

1−η

�
4 ∨ 2C1/2,W

1 − η

�2

(103)
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On the other hand Q(x) ≤ 1
� qW for all x ∈ X by the

definition of Q(x) where qW�
� 1

0 qz,W dz. Then as a result
of Lemma 2 we have

Dβ (V(x)� qW ) ≤ Dβ (V(x)� Q(x)) + ln
1

�
. (104)

Since Sβ,V ≤ Sβ,V (qW ) by definition, (94), (103) and
(104) imply

Sβ,V ≤ R + 2�R

φ(1 − φ)2 + ln
1

�

+ (β − 1)e(β−1)
2C1/2,W

1−η

�
4 ∨ 2C1/2,W

1 − η

�2

.

Then (96) follows from Cβ,V = Sβ,V established in
Theorem 1.

C. A Non-Asymptotic SPB for Product
Channels With Feedback

The ultimate aim of this subsection is to prove Theorem 3.
To that end we first derive the following parametric bound on
the error probability of codes on DSPCs with feedback.

Lemma 26: Let n be a positive integer, W−−→[1,n] be a DSPC
with feedback satisfying Wt = W for all t for a W for which
C0+,W �= C1,W , α0 < α1 < z be orders in (0, 1) satisfying8

1−z
z Cz,W = Esp

�
Cα1,W , W

�
, and M, L, κ be positive integers

satisfying � n
κ 	C1/2,W ≥ 2 and

Cα1,W ≥ 1

n
ln

M

L

≥ Cα0,W + C1/2,W

1−z

�
2�

α0(1 − z)
+ 14

3
√

κ

�
+ κ

n
ln

1

�
(105)

for an � ∈ (0, α0
2 ). Then any (M, L) channel code on W−−→[1,n]

satisfies

Pav
e ≥ 1

4
e
−n

�
Esp

�
1
n ln M

L ,W
�
+ C1/2,W

α0(1−z)

�
6�

α0(1−z) + 15
3√κ

�
− κ ln �

nα0

�
. (106)

Lemma 26 is proved using the auxiliary channel method:
(i) Apply Lemma 25 on subblocks to choose V

(ii) Use (90) to bound the error probability on V , i.e. PV
e .

(iii) Use Lemma 3 to bound Pav
e in terms of PV

e .
We have described all ingredients of the proof strategy given
above, except the concept of subblocks. Before the proof of
Lemma 26, let us revisit the DPC with feedback and introduce
the concept of subblocks.

Any DPC with feedback can be reinterpreted as a shorter
DPC with feedback with larger component channels, which
we call subblocks. Consider for example a length n DPC with
feedback W−−→[1,n]. Recall that the input set of W−−→[1,n] can be
written in terms of the input and output sets of the component
channels as ×n

t=1 Xt
Yt−1

1

where AB is the set of all functions from the set B to the set
A, A∅ = A, Y

j
ı = ×j

t=ı Yt for all integers ı ≤ j , and Y
j
ı = ∅

8The existence of such a z is established in Lemma 25.

for all integers ı > j . Furthermore, the output set of W−−→[1,n] is
Yn

1 and the transition probabilities of W−−→[1,n] can be written as

W−−→[1,n](y
n
1|Ψ n

1 ) =
�n

t=1
Wt(yt|Ψt(y

t−1
1 )).

where Ψt ∈ Xt
Yt−1

1 .
The preceding description can be modified to define a

subblock W−−→[τ,t] for any t > τ , analogously. Furthermore, these
subblocks can be used to construct alternative descriptions of
the DPC with feedback. Let t0, . . . , tκ a sequence of integers
satisfying t0 = 0, tκ = n, and tj < tı for all j < ı and
Uı : Aı → P(Bı ) be W−−−−−−−→[1+tı−1,tı ] for each ı ∈ {1, . . . , κ}:

Aı = ×tı

j=1+tı−1
Xj

Yj−1
1+tı−1

Bı = Y
tı
1+tı−1

Uı (bı |aı ) =
�tı

j=1+tı−1
Wj (yj |Ψj(y

j−1
1+tı−1

))

where Ψj ∈ Xj
Yj−1

1+tı−1 , aı = Ψ
tı
1+tı−1

, and bı = ytı
1+tı−1

.
Then the length n DPC with feedback W−−→[1,n] and the length

κ DPC with feedback U−−→[1,κ] are representing the same channel:

×n

t=1 Xt
Yt−1

1 = ×κ

ı=1 Aı
Bı−1

1

Yn
1 = Bκ

1

W−−→[1,n](y
n
1|Ψ n

1 ) = U−−→[1,κ](b
κ
1 |�Ψ κ

1 )

where �Ψı (b
ı−1
1 ) = (Ψ1+tı−1(b

ı−1
1 ), . . . , Ψtı (·, bı−1

1 )) and bı =
ytı

1+tı−1
. This observation plays a crucial role in the proof of

Lemma 26 and hence in establishing the SPB for codes on the
DPCs with feedback.

Proof of Lemma 26: We divide the interval [1, n] into κ
subintervals of, approximately, equal length: we set t0 to zero
and define �ı and tı for ı ∈ {1, . . . , κ} as follows

�ı � 
n/κ�1{ı≤n−�n/κ	κ} + �n/κ	1{ı>n−�n/κ	κ},
tı � tı−1 + �ı .

The length n DSPC with feedback W−−→[1,n] can be interpreted

as a length κ DPC9 with feedback U−−→[1,κ] for Uı : Aı → Bı

defined as follows

Uı�W−−−−−−−→[1+tı−1,tı ] ∀ı ∈{1, . . . , κ}.
As a result any (M, L) channel code (Ψ,Θ) on the channel
W−−→[1,n] : (×n

t=1 Xt
Yt−1

1 ) → P(Yn
1) is also an (M, L) channel

code on U−−→[1,κ] : (×κ
ı=1 Aı

Bı−1
1 ) → P(Bκ

1) with exactly the
same error probability. In the rest of the proof we work with
the latter interpretation.

Since Wt = W for all t, Lemma 12 and the definition of the
sphere packing exponent imply

Cα,Uı = �ı Cα,W (107)

Esp
�
Cα,Uı , Uı

� = �ı Esp
�
Cα,W , W

�
(108)

for all ı ∈ {1, . . . , κ} and α ∈ (0, 1).

9U−−→[1,n] is stationary iff �ı is same for all ı , i.e. iff n/κ is an integer.
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We define φ and η by applying Lemma 25 to W for R
defined as

R�1

n
ln

M

L
− C1/2,W

1 − z

�
2�

α0(1 − z)
+ 14

3
√

κ

�
− κ

n
ln

1

�
. (109)

Then φ ∈ [α0, α1] by (105) and the monotonicity of Cα,W in α,
i.e. Lemma 8-(a). Hence, the definition of z, the monotonicity
of 1−α

α Cα,W in α, i.e. Lemma 8-(b), and the monotonicity of
Esp (R, W) in R, i.e. Lemma 13, imply η ∈ [α0, z].

For each ı ∈ {1, . . . , κ}, we define φı and ηı by applying
Lemma 25 to Uı for �ı R. Then φı = φ and ηı = η for all ı

by (107) and (108). We denote W
q�

f� ,W

f�
resulting from applying

Lemma 25-(b,c) to Uı by Vı : Aı → P(Bı ), i.e.

Vı (a) = Uı
q�

f� (a),Uı
f�(a) (a) ∀a∈Aı . (110)

Then φ ∈ [α0, α1], η ∈ [α0, z], and Lemma 25-(b) imply

D1 (Vı (a)� Uı (a)) ≤ Esp (�ı R, Uı ) + 2�C1/2,Uı

α2
0(1 − z)

∀a∈Aı

(111)

On the other hand, C1/2,Uı ≥ 2 by (107) and the hypothesis
� n

κ 	C1/2,W ≥ 2. Thus Lemma 25-(c) implies

Cβ,Vı ≤ �ı R + 2�C1/2,Uı

α0(1 − z)2 + ln
1

�

+(β − 1)e(β−1)
2C1/2,Uı

1−z

�
2C1/2,Uı

1 − z

�2

for all β ∈ (1, 1+z
2z ). Furthermore, � n

κ 	C1/2,W ≥ 2 and κ ≥ 1

imply 1 + κ
2/3(1−z)

4nC1/2,W
≤ 1+z

2z . Hence

Cβ,Vı ≤ �ı R + 2�C1/2,Uı

α0(1 − z)2 + ln
1

�
+ e1/ 3√κ

3
√

κ

2C1/2,Uı

1 − z

≤ �ı R + 2�C1/2,Uı

α0(1 − z)2 + ln
1

�
+ 6

3
√

κ

C1/2,Uı

1 − z
(112)

for β = 1 + κ
2/3(1−z)

4nC1/2,W
.

We use Vı ’s described in (110) to define the length κ DPC
with feedback V−−→[1,κ] :

�×κ
ı=1 Aı

Bı−1
1

�
→ P(Bκ

1 ). Then using
Lemma 12, (107), (109), and (112) we get

Cβ,V−−→[1,n] ≤ ln
M

L
− n

C1/2,W

1 − z

8
3
√

κ

for β = 1 + κ
2/3(1−z)

4nC1/2,W
. We bound the average error probability

of (Ψ,Θ) on V−−→[1,n], i.e. P
V−−→[1,n]
e , using (90) and τ ≥ ln(1 + τ ):

P
V−−→[1,n]
e ≥ 1 − e− 3√κ

≥
3
√

κ

1 + 3
√

κ
. (113)

On the other hand (107), (108), and (111) imply

D1

�
V−−→[1,κ](x)

���U−−→[1,κ](x)
�

≤ nEsp (R, W) + n
2�C1/2,W

α2
0(1 − z)

(114)

for all x ∈
�×κ

ı=1 Aı
Bı−1

1

�
.

Let p be the probability distribution generated by the
encoder Ψ on the input set of U−−→[1,κ], i.e. on

�×κ
ı=1 Aı

Bı−1
1

�
,

for the uniform distribution over the message set. Then
Lemma 3 and the identity τ ln τ + (1 − τ ) ln(1 − τ ) ≥ ln 1/2,
which holds for all τ ∈ [0, 1], imply

D1

�
p�V−−→[1,κ]

��� p�U−−→[1,κ]
�

≥ ln 1/2 − P
V−−→[1,n]
e ln Pav

e . (115)

Note that D1

�
p�V−−→[1,κ]

��� p�U−−→[1,κ]
�

is bounded from above

by the supremum of D1

�
V−−→[1,κ](x)

���U−−→[1,κ](x)
�

over the com-

mon input set of V−−→[1,κ] and U−−→[1,κ], i.e. ×κ
ı=1 Aı

Bı−1
1 . Then

using (113), (114), and (115) we get

ln Pav
e ≥ −1 + 3

√
κ

3
√

κ

!
nEsp (R, W) + n

2�C1/2,W

α2
0(1 − z)

+ ln 2

"
.

Then using the identity Esp
�
Cφ,W , W

� ≤ (1−φ)Cφ,W
φ , which is

implied by Lemma 13, together with (10), (105), and (109)
we get

ln Pav
e ≥−nEsp (R, W)+n

C1/2,W

α0

�
4�

α0(1 − z)
+ 1

3
√

κ

�
+2 ln 2.

Then (106) is implied by (109) via the following consequence
of Lemma 13: If R = Cα,W for an α ∈ [α0, α1],

Esp (R, W) ≤ Esp (R + δ, W) + (1 − α0)

α0
δ ∀δ≥0.

Remark 9: The input sets of the subblocks grow rapidly
with their length; in particular

ln |Aı | =
�	�ı−1

j=0
|Y|j

�
ln |X|.

This rapid growth would have made our bounds useless,
at least for establishing a result in the spirit Lemma 26, if the
approximation error terms in Lemma 25-(b,c) were in terms
of ln |X| rather than C1/2,W , which grows only linearly with
the length of the subblock.

One is initially inclined to use Lemma 26 either for κ =
n or for κ = 1, i.e. apply Lemma 25 either to W−−→[1,n] or to the
component channel W . Both of these choices, however, lead
to poor approximation error terms. Instead we use Lemma 26
for κ ≈ n3/4 to prove Theorem 3. In [7], while proving a
statement similar to Theorem 3, Augustin used subblocks in
a similar fashion; other ingredients of Augustin’s analysis,
however, are quite different. Palaiyanur discussed Augustin’s
proof sketch in more detail in his thesis [48, A.8]. A complete
proof following Augustin’s sketch can be found in [41].

Proof of Theorem 3: We prove Theorem 3 by applying
Lemma 26 for appropriately chosen �n and κn. Note that
� and κ can take any value as long as the hypothesis of
Lemma 26 is satisfied. For �n = α0(1−η)

4√n
and κn = �n3/4	,

the hypothesis � κ
n 	C1/2,W ≥ 2 holds for all n large enough.

Furthermore, the other hypothesis of Lemma 26 given in (105)
is satisfied for n large enough because of (81). Thus we can
apply Lemma 26 with �n = α0(1−η)

4√n
and κn = �n3/4	 for all n

large enough. Then (106) implies (82) for n large enough.
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D. Extensions and Comparisons

Theorem 3 is stated for stationary sequences of channels, but
it holds for periodic sequences of channels too. In other words,
Theorem 3 assumed Wt = W for all t ∈ Z+ ; but its assertions
hold whenever there exists a τ ∈ Z+ satisfying Wt = Wt+τ

for all t ∈ Z+ . Thus the SPB holds for codes on the periodic
discrete product channels, as well.

It is possible establish similar results under weaker station-
arity hypotheses. In order to prove the SPB for codes on the
DPCs with feedback using the approach employed for proving
Theorem 3, we need the Rényi capacity of the subblocks to
be approximately equal to one another as functions, i.e.

Cα,Uı ≈ �ı

n
Cα,W[1,n]

uniformly over ı and α. This condition is a stationarity
hypotheses too; but it is considerably weaker than assuming
all Wt’s to be identical. There is not just one but many precise
ways to impose this condition and each one of them leads
to a slightly different result. Assumption 4 and Theorem 4
are provided as examples. In order to prove Theorem 4 we
need to modify Lemmas 25 and 26, slightly. We present
those modifications, their proofs, and the proof of Theorem 4
in [37, Appendix A].

Assumption 4: {Wt}t∈Z+ is a sequence of channels satisfy-
ing the following three conditions for some ϕ : (0, 1) → �+

i. limn→∞ 1
n Cα,W[1,n] = ϕ(α) for all α ∈ (0, 1).

ii. limα↑1
1−α
α ϕ(α) = 0.

iii. There exists K ∈ �+ and n0 ∈ Z+ such that

sup
α∈(0,1)

sup
t∈Z+

��Cα,W[t,t+n−1] − nϕ(α)
�� ≤ K ln n ∀n≥n0.

Theorem 4: Let {Wt}t∈Z+ be a sequence of discrete chan-
nels satisfying Assumption 4 and α0, α1 be orders satisfying
0 < α0 < α1 < 1. Then for any sequence of codes
on the discrete product channels with feedback {W−−→[1,n]}n∈Z+
satisfying

Cα1,W[1,n] ≥ ln
Mn

Ln
≥ Cα0,W[1,n] + (K + 1)n3/4 ln n ∀n≥n0

(116)

there exists an n1 ≥ n0 such that

Pav
e

(n) ≥ e
−Esp

�
ln Mn

Ln
,W[1,n]

�
− 6K+1

α0
n3/4 ln n ∀n≥n1. (117)

We have confined the claims of Theorem 4 to discrete chan-
nels in order avoid certain measurability issues. We believe,
however, it should be possible to resolve those issues and
to extend Theorem 4 to any sequence of channels satisfying
Assumption 4. Augustin [7, Corollary 41.9] makes the same
conjecture for the stationary channels.

Augustin sketches a derivation of the SPB for codes on finite
input set SPCs with feedback in [7, Sec. 41]. The approxima-
tion error terms in Augustin’s asymptotic SPB [7, Th. 41.7] are
O
�
n−1/3 ln n

�
rather than O

�
n−1/4 ln n

�
. A complete proof of

SPB for codes on DSPCs with feedback following Augustin’s
sketch can be found in [41].

Throughout this section, we have refrained from making
any assumptions on the Rényi centers of the component

channels or their relation to the output distributions of the
component channels. Such assumptions may lead to sharper
bounds under milder stationarity hypotheses. For example,
Lemma 23 establishes a non-asymptotic bound for certain
product channels with feedback that can be used, in place of
Lemma 20, to prove the asymptotic SPB given in Theorem 2
under Assumption 1. Thus if the sequence {Wt}t∈Z+ satisfies
Assumption 1 and every channel in {Wt}t∈Z+ satisfies the
hypothesis of Lemma 23, then the SPB holds with a poly-
nomial prefactor for codes on W−−→[1,n]. First Dobrushin [20]
and then Haroutunian [32] employed similar observations to
establish the SPB for codes on certain DSPCs with feedback.
Later, Augustin [7, p. 318] did the same for codes on certain
product channels with feedback.

E. Haroutunian’s Bound and Subblocks

Haroutunian’s article [32] is probably the most celebrated
work on the exponential lower bounds to the error probability
of channel codes on DSPCs with feedback. In the rest of this
section we discuss [32] in light of Lemma 25 and the concept
of subblocks.

Haroutunian [32] considers (M, L) channel codes satisfying
R = 1

n ln M
L on DSPCs with feedback W−−→[1,n] satisfying Wt =

W for a W : X → P(Y) to prove that for any rate R ≥ 0 and
ε > 0 the following bound holds for large enough n

Pav
e

(n) ≥ (1 − ε)e−n(Eh(R−ε,W)+ε) (118)

where Eh(R, W), which is customarily called Haroutunian’s
exponent, is defined as, [16, p. 180], [32, eq. (15)],

Eh(R, W)� infV :C1,V ≤R supx∈X D1 (V(x)� W(x)) . (119)

Haroutunian points out not only that Eh(R, W) is greater
than or equal to Esp (R, W) for all R, but also that the
inequality is strict on (C0,W , C1,W ) even for most of the
binary input binary output channels, see [32, Th. 3.1]. Thus,
for certain W ’s there does not exist any V satisfying both
C1,V ≤ R and supx∈X D1 (V(x)� W(x)) ≤ Esp (R, W) at the
same time.

On the other hand, both inequalities are satisfied approxi-

mately for V = W
q�

f� ,W
f�

by Lemma 25-(b,c). In particular,

supx∈X D1 (V(x)� W(x)) ≤ Esp (R, W) + 2�C1/2,W

φ2(1 − η)
(120)

C1,V ≤ R + 2�C1/2,W

φ(1 − φ)2 + ln
1

�
(121)

for any � ∈ (0, φ/2) where φ and η are determined uniquely
by Cφ,W = R and 1−η

η = Esp (R, W).

If we apply (120) and (121) to W−−→[1,n] for Rn =
n(R−ε) and �n = 1/n, then the additivity of the Rényi capacity
for the product channels with feedback, i.e. Lemma 12, and
monotonicity of Eh(R, W) in R, i.e. [32, Th. 3.5], imply

lim supn→∞
1

n
Eh(nR, W−−→[1,n]) ≤ Esp (R − ε, W) ∀ε>0.

Then the continuity of Esp (R, W) in R, i.e Lemma 13, and
the identity Esp (R, W) ≤ Eh(R, W) imply

limn→∞
1

n
Eh(nR, W−−→[1,n]) = Esp (R, W) . (122)
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Recall that any channel code on W−−−→[1,n�] is also a channel code
on U−−→[1,n] where Ut = W−−→[1,�] for all t, see the discussion of the

concept of subblocks in the beginning of §V-C. Thus (118)
implies that for any ε > 0 for large enough n

Pav
e

(�n) ≥ (1 − ε)e
−n(Eh(�R−ε,W−−→[1,�])+ε)

.

Then (122) implies

lim supn→∞
1

n
ln

1

Pav
e

(n)
≤ Esp (R, W) .

Thus Lemma 25, the concept of subblocks, and Haroutunian’s
bound imply the most important asymptotic conclusion of
Theorem 3, i.e. the reliability function of the DSPC with feed-
back is bounded from above by the sphere packing exponent.

Remark 10: Palaiyanur and Sahai [47] used the method
of types to establish the following relation for all discrete
channels W ,

limn→∞
1

n
Eh(nR, W[1,n]) = Esp (R, W) . (123)

This was first reported in Palaiyanur’s thesis [48, Lemma 7].
Note that (123) cannot be used in the preceding argument to
establish the sphere packing exponent as an upper bound to
the reliability function of the DSPCs with feedback because
W−−−→[1,n�] is not equivalent to B−−→[1,n] for Bt = W[1,�].

It is worth mentioning that (122) implies (123) by the
definition of Haroutunian’s exponent.

VI. DISCUSSION

We have established SPBs with approximation error terms
that are polynomial in the block length for a class of prod-
uct channels, which includes all stationary product channels.
Our results hold for a large class of non-stationary product
channels, which might have infinite channel capacity.

We have presented a new proof of the SPB for the codes on
DSPCs with feedback that can be applied to the codes on DPCs
with feedback satisfying a milder stationarity hypothesis, see
§V-D and [37, Appendix A]. The validity of SPB for codes
on DSPCs with feedback implies improvements in the bounds
for codes with errors-and-erasures decoding on DSPCs with
feedback that were previously derived using Haroutunian’s
bound in [43, Secs. IV and V] and [44, Secs. 2.4 and 2.5].

In our judgment, the averaging described in §III-A is one
way of employing the following more fundamental observation

limφ→α Sα,W (qφ,W ) = Sα,W ∀α∈(0, 1).

The preceding observation and Theorem 1, are at the heart of
Augustin’s method. However, only the preceding observation
can be interpreted as a novelty of Augustin’s method because
Theorem 1 is employed by Shannon et al. [54], albeit in an
indirect way and for discrete channels only.10

In §IV and §V, we have confined our discussion of the
SPB to the product channels. The Rényi capacity and center,

10The equality of the Rényi capacity to the Rényi radius and the existence
of a Rényi center is invoked via [54, eq. (4.22)]. The uniqueness of the Rényi
center is implicit in the analysis of fs as a function of s; it is established in
the discussion between [54, (A27) and (A28)].

as defined in §II-C, served our purposes satisfactorily. For
studying the SPB on the memoryless channels, however,
the Augustin capacity and center, described below, are better
suited. The Rényi information has multiple non-equivalent
definitions. The following definition was proposed and ana-
lyzed by Augustin [7, Sec. 34] and later popularized by
Csiszár [13]:

Ic
α (p; W)� infq∈P(Y)

	
x

p(x)Dα (W(x)� q) .

We have called this quantity Augustin information in [38]
and [39]. The Augustin capacity and center are defined anal-
ogously to the Rényi capacity and center.11 Using these con-
cepts and assuming a bounded cost function Augustin derived
a SPB for channel codes on the cost constrained memoryless
channels in [7, Ch. VII]. Augustin’s framework is general
enough to subsume the Poisson channels described in (1) as
special cases in the way that the framework of Theorem 2
subsumed the Poisson channels described in (1d) and (1e) as
special cases. The Gaussian channels studied by Ebert [22],
Richters [50], and Shannon [53], however, are not subsumed
by Augustin’s framework because the quadratic cost function
used for these channels is not bounded. To remedy this situa-
tion, we have recently derived a SPB with a polynomial prefac-
tor for codes on the cost constrained (possibly non-stationary)
memoryless channels, [38], [42], without assuming the bound-
edness of the cost function. We have also derived the SPB
for codes on the stationary memoryless channels with convex
composition constraints on the codewords in [38] and [42]. It
seems extending the results to the channels with memory is
the pressing issue in this line of work; but that is likely to be
more challenging than the case of memoryless channels.

ACKNOWLEDGMENT

The author would like to thank Fatma Nakiboğlu and
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[4] Y. Altuğ and A. B. Wagner, “Refinement of the sphere-packing
bound: Asymmetric channels,” IEEE Trans. Inf. Theory, vol. 60, no. 3,
pp. 1592–1614, Mar. 2014.

[5] S. Arimoto, “On the converse to the coding theorem for discrete
memoryless channels (Corresp.),” IEEE Trans. Inf. Theory, vol. IT-19,
no. 3, pp. 357–359, May 1973.

11The constrained Rényi capacity Cα,W ,A is defined by taking the supre-
mum of the Rényi information over the priors in a subset A of P(X),
rather than P(X) itself, see [40, Appendix A]. The unconstrained Rényi and
Augustin capacities are equal, see [13, Propostion 1] or [39, Ths. 2 and 3];
however, this is not the case in general for the constrained capacities.
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