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The Rényi Capacity and Center
Barış Nakiboğlu

Abstract— Rényi’s information measures—the Rényi informa-
tion, mean, capacity, radius, and center—are analyzed relying
on the elementary properties of the Rényi divergence and the
power means. The van Erven–Harremoës conjecture is proved
for any positive order and for any set of probability measures on a
given measurable space and a generalization of it is established
for the constrained variant of the problem. The finiteness of
the order α Rényi capacity is shown to imply the continuity
of the Rényi capacity on (0, α] and the uniform equicontinuity
of the Rényi information, both as a family of functions of the
order indexed by the priors and as a family of functions of the
prior indexed by the orders.

Index Terms— Mutual information, minimax techniques,
geometry, probability density function, intensity modulation,
information analysis.

I. INTRODUCTION

INFORMATION transmission problems are often posed
on models with finite sample spaces or on models with

specific noise structures, such as Gaussian or Poisson models.
As a result, certain fundamental observations such as the
minimax theorem for the Shannon capacity in terms of the
Kullback-Leibler divergence or the existence of a unique
“capacity achieving output distribution”, i.e. the existence of
a unique Shannon center, are established either for models
with finite sample spaces or for specific noise structures.
Kemperman [37] proved these assertions far more generally
by interpreting the channel as a set of probability measures
on a given measurable space.

In a sense, Kemperman tacitly suggests a purely measure
theoretic understanding of the Shannon capacity and center
that is separated from their significance in the information
transmission problems. Even without the generality afforded
by the measure theoretic framework, such an understanding
is appealing because Shannon capacity and center come up in
various information transmission problems, with very different
operational meanings. Consider for example a finite set W of
probability mass functions on a finite output set Y.

• If we interpret W as a discrete channel that is to be used
multiple times, then the Shannon capacity of W is the
largest rate at which one can communicate reliably via
the channel W, [62].

• If we interpret W as a collection of sources that is to
be encoded by a lossless variable length source code,
then the Shannon capacity is a lower bound on the worst
redundancy among the members of W, which is off at
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most by one for some lossless variable length source
code, [16], [21], [58].

In this paper we propose an analogous measure theoretic
understanding for the Rényi capacity and center. Our interest
in these concepts stems from their operational significance
in the channel coding problem; we elucidate that operational
significance in our concurrent paper [51]. Because of the
generality of the measure theoretic model we adopt in this
paper, we can discuss in [51] the operational significance of
these concepts for a diverse family of channels in a unified
framework. In the current paper our main aim is to present an
analysis starting from the measure theoretic first principles and
the elementary properties of the Rényi divergence. We will first
present a brief overview of the Rényi information, divergence,
and mean in §II. Then we define and analyze the Rényi capac-
ity and discuss the implications of its finiteness in §III.
We establish the existence of a unique Rényi center through
a minimax theorem for the Rényi capacity in terms of the
Rényi divergence in §IV. In the rest of §IV we continue the
analysis of Rényi capacity and center. We discuss our results
and promising directions of inquiry in §V.

Deriving the technical results employed in [51] is one of
the main aims of the current paper; however, the scope of
our analysis is not restricted to the needs of the particular
analysis we present in [51]. We aim to build a more complete
understanding of Rényi’s information measures that might lead
us to new analysis techniques for the problems we investigate
in [51] or for other information transmission problems involv-
ing Rényi ’s information measures. Our abstract and general
framework is conducive to this purpose; in addition it allows
us to observe certain phenomena that cannot be observed in
simpler models. For example, the Rényi capacity is either a
continuous function of the order on (0,∞) or a finite and
continuous function of the order on (0, φ] that is infinite on
(φ,∞) for some φ ∈ [1,∞). This dichotomy, however, cannot
be observed with models with finite W or finite Y because
the Rényi capacity is bounded if either W or Y is finite. See
Lemma 15 and the following discussion for more details.

Rényi [56] provided an axiomatic characterization of a fam-
ily of divergences for pairs of probability mass functions on a
given finite sample space; the resulting family of divergences,
parametrized by positive real numbers, are named after him.
The definition of the Rényi divergence has been extended
to pairs of probability measures. Recently, van Erven and
Harremoës provided a comprehensive investigation of various
properties of the Rényi divergence in [18]. For any α in [0,∞],
the order α Rényi divergence between probability measures w
and q, denoted by Dα(w� q), is zero when w is equal to q
and non-negative when w is not equal to q. Hence, given a
measurable space (Y,Y) we can use the order α Rényi diver-
gence to measure the spread of any set of probability
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measures W relative to any probability measure q on (Y,Y)
as follows:

Sα,W(q) � supw∈WDα(w� q) . (1)

Sα,W(q) is called the order α Rényi radius of W relative
to q. By taking the infimum of Sα,W(q) over all probability
measures q on (Y,Y), we get an absolute measure of the
spread of W, called the order α Rényi radius of W,

Sα,W � infq∈P(Y) supw∈WDα(w� q) . (2)

Any probability measure q on the measurable space (Y,Y)
satisfying Sα,W(q) = Sα,W, is called an order α Rényi center
of W. The order one Rényi divergence is the Kullback-Leibler
divergence; hence the order one Rényi radius and center are
the Shannon radius and center referred to in [37].

The Shannon capacity, defined as the supremum of the
mutual information, is another measure of the spread of a
set of probability measures on a given measurable space.
In order to have a parametric generalization of the Shannon
capacity, similar to the one provided by the Rényi radius to
the Shannon radius, we need a parametric generalization of
the mutual information. Sibson [68] proposed one such para-
metric generalization using the Rényi divergence, called the
Rényi information, see Definition 4. For any set of probability
measures W on a given measurable space (Y,Y), probability
mass function p on W, and positive real number α, Iα(p;W)
is the order α Rényi information1 for prior p. The order one
Rényi information equals to the mutual information. For other
positive real orders, the order α Rényi information can be
described in terms of Gallager’s function introduced in [20]:

Iα(p;W) = E0(ρ,p)
ρ

�
�
�
ρ= 1−α

α

∀α ∈ �+ \ {1} (3)

where Gallager’s function E0(ρ, p) is defined for ρ > −1 as

E0(ρ, p) � − ln
� ��

w
p(w)( dw

dν )
1

1+ρ

�1+ρ
ν(dy). (4)

The order α Rényi capacity Cα,W is defined as the supremum
of the order α Rényi information Iα(p;W) over all priors p.

There are at least two other ways to define the Rényi infor-
mation for which the order one Rényi information is equal
to the mutual information: one by Arimoto [3] and another
one by Augustin [5] and Csiszár [13]. A review of these
three definitions of the Rényi information has recently been
provided by Verdú [74]. Assuming W and Y to be finite sets,
Csiszár showed that the order α Rényi capacity for all three
definitions of the Rényi information are equal to one another
and to the order α Rényi radius, [13, Proposition 1].

The extension of Kemperman’s result [37, Th. 1] about the
Shannon capacity and center given in Theorem 1, presented
in the following, is among the most important observations
about the Rényi capacity and center. Theorem 1 establishes the
equality of Cα,W and Sα,W for any positive order α and set of
probability measures W. Furthermore, it asserts the existence
of a unique order α Rényi center qα,W whenever Cα,W is finite

1Sibson defines “the information radius of order α” through an infimum
and then derives a closed form expression for it in [68, Th. 2.2]. We take that
closed form expression as the definition of the order α Rényi information.

and characterizes the unique order α Rényi center in terms
of the order α Rényi means. These observations, however,
have been reported in various forms before, at least partially.
Augustin [4] considered the orders in (0, 1), proved a result
equivalent to Theorem 1 for finite W’s and described how this
result can be extended to arbitrary W’s. Later, Augustin proved
[5, Thm. 26.6’], implying Theorem 1 for all orders in (0, 2).
Csiszár [13, Proposition 1] proved the equality Cα,W = Sα,W
for arbitrary positive order α assuming W and Y are finite sets.

The equality of capacity to radius and the existence of
a unique center, are phenomena that have been observed
repeatedly in various contexts. In order to clarify the standing
of Theorem 1 among these results, we provide a more compre-
hensive discussion of the previous work on these fundamental
observations in §I-A.

The current paper and the concurrent paper [51] grew out of
a desire to understand Augustin’s proofs of the sphere packing
bound given in [4] and [5] more intuitively. Augustin’s proofs
are important because, among other things, they are the only
proofs of the sphere packing bound for non-stationary product
channels, even for the case of discrete channels. Concepts of
Rényi capacity, radius, and center provide a way to express
the principal novelty of Augustin’s method in a succinct and
intuitive way. We discuss the novel observation underlying
Augustin’s method and its promise briefly in §I-B.

Similar to Theorem 1, some of the observations that we
discuss in the paper have been reported before either in terms
of Rényi ’s information measures [13], [68] or in terms of
other related quantities, such as Gallager’s function, [4], [5],
[20], [22]. But we also have a number of new observations
that have not been reported before. We provide a tally of our
most important contributions in §I-C.

We conclude the current section with a summary of our
notational conventions presented in §I-D. It is worth mention-
ing that only §I-D is necessary to understand the rest of the
paper; readers may bypass other parts of the current section
depending on their interest and background.

A. Radius, Center, and Capacity

The concepts of radius and center, as we use them,
are analogous to their counter parts in Euclidean geometry.
Let W be a set of points in the n dimensional Euclidean space
�n and q be a point in the same space. Then one measure of
the spread of W relative to q is the infimum of the radii of
the q-centered spheres including all points of W, called the
Chebyshev radius of W relative to q:

SW(q) � supw∈W�w − q�2 ∀W ⊂ �n, q ∈ �n.

If we do not require the centers of the spheres to be at a given
point q, then we get an absolute measure of the spread of W,
called the Chebyshev radius of W:

SW � infq∈�n supw∈W�w − q�2 ∀W ⊂ �n.

If SW is finite, then there exists a unique Chebyshev center
qW satisfying SW(qW) = SW.

For any set of points in a metric space (X , d), one
can define the Chebyshev radius by replacing �n with X
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and �w − q�2 with d(w, q) in the definition. However, nei-
ther the existence nor the uniqueness of the Chebyshev
center is a foregone conclusion for such generalizations.
Garkavi [23, Th. 1] provides a three point set in a Banach
space that does not have a Chebyshev center. In the Hamming
space of length two binary strings, both (0, 0) and (1, 1)
are Chebyshev centers of the set W = {(0, 1), (1, 0)}.
See [2, Ch. 15], for a discussion of these concepts on the
inner product spaces.

The Chebyshev radius is, in a sense, special because it is
defined via the distance measure —the metric corresponding
to the norm of the space for normed spaces and the metric of
the space for metric spaces— that is a part of the description
of the space. In principle, one can measure the relative and
the absolute spread of the subsets of X using any non-negative
function g on X × X satisfying g(x, x) = 0 for all x ∈ X and
define a center accordingly. However, neither the existence nor
the uniqueness of such a center is guaranteed.

When X in the above formulation is the space of all
probability measures P(Y) on a measurable space (Y,Y), one
can measure the spread of a subset W of P(Y) using the
Kullback-Leibler divergence. The resulting radius is nothing
but the Shannon radius of W and whenever the Shannon radius
is finite the existence of a unique Shannon center follows
from Kemperman’s result [37, Th. 1]. The other assertion
of Kemperman’s result [37, Th. 1] is the equality of the
Shannon radius of W and the Shannon capacity of W, defined
as the supremum of the mutual information I(p; W) over all
probability mass functions p on W. For the case where both W

and Y are finite sets, Kemperman’s result was already known
at the time [22, Th. 4.5.1]; Kemperman [37] attributes this
special case to Shannon [64]. For the case when Y is a finite
set, first Gallager [21, Th. A] and then Davisson and Leon-
Garcia [16, Th. 3] proved results equivalent to Kemperman’s.
Later, Haussler [32] proved Kemperman’s result assuming Y

to be a complete separable metric space, i.e. Polish space, and
Y to be the associated Borel ξ -algebra.

Theorem 1, which we prove in the following, extends
Kemperman’s result to the Rényi capacity and center of other
orders. The existence of a unique center under the finite
capacity hypothesis and the equality of the capacity and the
radius have been confirmed in other contexts, as well.

1) Radius for f -Divergence: Csiszár [7], [9],
Morimoto [43], and Ali and Silvey [1] defined the f -diver-
gence using convex functions, satisfying f (1) = 0. The
Kullback-Leibler divergence2 is the f -divergence
corresponding to the function f (x) = x ln x defined for
x >0 with f (0)=0 (i.e., a continuous extension of f at zero).
For any convex function f satisfying f (1) = 0, the absolute
and relative f -radius are defined in terms of the corresponding
f -divergence as follows:

Sf ,W(q) � supw∈WDf (w� q) ,

Sf ,W � infq∈P(Y) supw∈WDf (w� q) .

2For positive finite orders other than one the Rényi divergence is not an
f -divergence itself; but it can be written in terms of an f -divergence:
Dα(w� q)= 1

α−1 ln(1+(α−1)Df (w� q)) for f (x)= xα−1
α−1 , as previously pointed

out in [8, eq. (14)], [9, eq. (1.10)], [10, eq. (6)], [59, eq. (1)], and [60, eq. (80)].

The f -information and the f -capacity are defined in terms of
corresponding f -divergence as follows

If (p;W) � infq∈P(Y) Df (p�W� p ⊗ q) ,

Cf ,W � supp∈P(W) If (p;W)

where p�W is the probability measure whose marginal dis-
tribution on the support of p is p and whose conditional
distribution is w and p ⊗ q is the product measure.

The mutual information3 is the f -information corresponding
to f (x) = x ln x. For W’s that are finite, Csiszár [11, Th. 3.2]
proved the following two assertions:

• Cf ,W = Sf ,W for any f that is strictly convex at 1.
• There exists a unique f -center for any f that is strictly

convex, provided that Sf ,W is finite.
For f ’s that are strictly convex, it seems both assertions
of Csiszár [11, Th. 3.2] can be extended to arbitrary W’s
using the technique employed by Kemperman, as Kemperman
himself suggested in [37]. Gushchin and Zhdanov [28] proved
that Cf ,W equals to Sf ,W for any convex function f and
any set of probability measures W provided that Y is a
complete separable metric space, i.e. Polish space, and Y is
the associated Borel ξ -algebra.

2) Radius in Quantum Information Theory: In this paper,
we assume W to be a set of probability measures on a given
measurable space. This is a generalization of the case when
W is a set of probability mass functions on a given finite set Y,
i.e. the finite sample space case. Another generalization of the
finite sample space case is obtained by assuming W to be a
set of |Y|-by-|Y| positive semidefinite, trace one, Hermitian
matrices. In quantum information theory such matrices are
called the density matrices; they represent the states of a
|Y| dimensional Hilbert space H, [34, §1.2]. The set of
all such states is denoted by S(H). There is a one-to-one
correspondence between the diagonal members of S(H) and
the probability mass functions on Y. As a result, statements
about subsets of S(H) can be interpreted as generalizations
of the corresponding statements about sets of probability mass
functions on Y.

The definition of the Kullback-Leibler divergence has been
extended to the members of S(H); it is, however, customarily
called the quantum relative entropy [34, §3.1.1]:

D(w� q) � Trw(ln w − ln q) ∀w, q ∈ S(H). (5)

This definition can be interpreted as an extension because for
the diagonal members of S(H), the quantum relative entropy
as defined in (5) is equal to the Kullback-Leibler divergence
between the corresponding probability mass functions. For any
subset W of S(H), the quantum Shannon radius is defined as
infq∈S(H) supw∈WD(w� q).

The definition of mutual information has been extended as
well, but it is called the transmission information [34, §4.1.1]:

I(p;W) �
�

w∈W
p(w)D

�

w� qp
� ∀p ∈ P(W) (6)

3For positive finite orders other than one the Rényi information can
be written in terms of an f -information, using the analogous relation for
divergences: Iα(p;W)= 1

α−1 ln(1+(α−1)If (p;W)) for f (x)= xα−1
α−1 .
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where qp = 	

w∈Wp(w)w. Note that when W includes only
diagonal members of S(H), the above quantity equals to the
mutual information for the prior p on the corresponding set of
probability mass functions. The quantum Shannon capacity is
defined as the supremum of I(p;W) over all probability mass
functions p on W with finite support.

The quantum Shannon capacity and radius are equal to
one another for arbitrary W ⊂ S(H) provided that H is a
finite dimensional Hilbert space, [34, Th. 4.1], [53, Th. 3.5],
[61, eq. (19)]. This implies the equality of Shannon capacity
and radius in the classical case provided that Y is a finite set.
However, neither Kemperman’s result in [37] nor the weaker
result by Haussler in [32] require Y to be finite. Thus those
results are not subsumed by the quantum Information theo-
retic versions of Kemperman’s result presented in [34], [53],
and [61].

The situation is similar for the quantum Rényi capac-
ity, radius, and center. All the results on the equality of
the quantum Rényi capacity and radius that we are aware
of [15, Th. 6], [34, eq. (4.74)], [39, Lemma I.3],
[44, Th. IV.8], [45, Proposition 4.2], and [75, Lemma 14]
assume W to be a subset of S(H) for a finite dimensional
Hilbert space H. Hence, to the best of our knowledge,
Theorem 1 is not subsumed by any of the known results in
quantum information theory.

B. Augustin’s Method and the Rényi Center

Augustin’s proof of the sphere packing bound in [4] is
one of the first few complete proofs of the sphere packing
bound. Unlike its contemporaries by Shannon et al. [63] and
by Haroutunian in [29], Augustin’s proof does not assume
either the stationarity of the channel or the finiteness of the
input set because it does not rely on a type based expurgation
(i.e. a fixed composition argument). After decades, Augustin’s
proofs in [4] and [5] are still the only proofs of the sphere
packing bound for non-stationary product channels, even in
the finite input alphabet case. Augustin’s method has been
applied to problems with feedback, as well. Using a variant
of his method, Augustin [5] provides a proof sketch for the
derivation of the sphere packing bound for codes on discrete
stationary product channels with feedback; a complete proof
following this proof sketch can be found in [49]. What we
call the discrete stationary product channels with feedback are
customarily called DMCs with feedback.

Despite their strength and generality, Augustin’s derivations
of the sphere packing bound is scarcely known to date,
even among the specialists working on related problems. In
[51, §IV], we derive sphere packing bounds using Augustin’s
method in a way that makes the roles of the Rényi capacity
and center more salient and precise. Our bound for the
product channels is sharper than the corresponding bounds
in [4] and [5]. In [51, §V], we present a new proof of the
sphere packing bound for the discrete product channels with
feedback that facilitates the ideas of Haroutunian [30] and
Sheverdyaev [66], as well as Augustin [4], [5]. Our new proof
for the case with feedback holds for non-stationary channels
satisfying certain stationarity hypothesis. In [51, Appendix B],

we discuss other aspects of the operational significance of
Rényi capacity and information for the channel coding prob-
lem.

The generality and strength of Augustin’s results compel
one to ask: What is the principle behind Augustin’s proofs of
the sphere packing bound? A succinct answer exists for those
who are already familiar with the concepts of Rényi capacity,
radius and center.4 In our judgment, the novel observation
behind Augustin’s proofs is the following:

limφ→α Sα,W(qφ,W) = Cα,W.

This observation seems benign enough to hold for other para-
metric families of divergences and corresponding capacities,
radii, and centers. Thus we believe that Augustin’s method
can probably be used to derive tight outer bounds in other
information transmission problems, as well.

C. Main Contributions

(1) If W and Y are finite sets, the continuity of the
Rényi information is evident, both as a function of
the order and as a function of the prior. In their proof of
the sphere packing bound [63, p. 101], while proving the
continuity of the Rényi capacity in the order on (0, 1) —
for the finite W and Y case— Shannon, Gallager, and
Berlekamp asserted that the Rényi information is in fact
equicontinuous as a family of functions of the order on
(0, 1) indexed by the priors. We strengthen their asser-
tion by replacing the finiteness hypothesis on the sets W

and Y with a finiteness hypothesis for the Rényi capac-
ity, including orders greater than one, and establishing
uniformity of the equicontinuity, see Lemma 16-(f).
Furthermore, we show that the Rényi information is,
also, uniformly equicontinuous when considered as a
family of functions of the prior indexed by the orders,
see Lemma 16-(e).

(2) Reflecting on [18, Th. 37] for countable Y’s at α =∞,
van Erven and Harremoës conjectured the following:
Conjecture [18, Conjecture 1]: If Sα,W < ∞ for an α
in (0,∞] and a W ⊂P(Y) then there exists a unique
qα,W ∈ P(Y) satisfying Sα,W = supw∈WDα

�

w� qα,W
�

.
Furthermore, for all q ∈ P(Y) we have

supw∈WDα(w� q) ≥ Sα,W + Dα

�

qα,W




 q

�

.

This conjecture is confirmed in Lemma 19 for the
first time.5 Lemma 19 implicitly asserts the existence
of a unique qα,W, which is proved in Theorem 1.
This assertion, however, is not entirely new; Augustin
proved an equivalent assertion for orders in (0, 2) in
[5, Th. 26.6�] and gave a proof sketch for an equivalent
assertion for orders in (0, 1) in [4].
In Appendix A, we define Cα,W,A as the supremum
of Iα(p;W) over all priors p in A and generalize the

4Although Augustin does not work with them either in [4] or in [5], one
can restate his observations in terms of Rényi’s information measures.

5We were notified in [31] that van Erven and Harremoës had a proof
establishing their conjecture in [18] under some regularity conditions, at the
time.
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van Erven-Harremoës bound to the convex A case, see
Definition 8 and Lemma 25.

(3) Our framework allows us to pose and answer certain
questions that are non-trivial only for infinite W’s, i.e.
infinite subsets of P(Y).

(a) There exists a countable subset W� of W such that
Cα,W� = Cα,W for all α in [0,∞], Lemma 15-(b).

(b) If Cη,W is finite, then for all � > 0 there exists a
finite subset W� of W such that Cα,W� > Cα,W−�
for all α in [�, η], Lemma 15-(g).

(c) Cα,clW = Cα,W for all α in (0,∞] where clW

is the closure of W in the topology of setwise
convergence, Lemma 24-(b). This has been pointed
out by Csiszár and Körner for α equals one case
for finite Y in [14, Problem 8.10(b)].

D. Notational Conventions

For any set Y, we denote the set of all subsets of Y by 2Y

and the set of all probability measures on finite subsets of Y

by P(Y). For each p ∈ P(Y), i.e. for each probability mass
function (p.m.f. ), we denote the set of all y’s in Y for which
p(y) > 0, by supp(p) and call it the support of p.

We call the pair (Y,Y) a measurable space iff Y is a
ξ -algebra of the subsets of Y. On a measurable space (Y,Y),
we denote the set of all finite signed measures by M(Y),
the set of all finite measures by M+

0(Y), the set of all non-
zero finite measures by M+

(Y), and the set of all probability
measures by P(Y).

A measure μ on the measurable space (Y,Y) is absolutely
continuous with respect to another measure ν on (Y,Y), i.e.
μ≺ν, iff μ(E) = 0 for any E ∈ Y such that ν(E) = 0.
Measures μ and ν are equivalent, i.e. μ ∼ ν, iff μ≺ν and
ν≺μ. Measures μ and ν are singular, i.e. μ ⊥ ν, iff there
exists an E ∈ Y such that μ(E) = ν(Y \ E) = 0.

A subset W of M+
(Y) is absolutely continuous with respect

to a measure ν, i.e. W≺ν, iff w≺ν for all w ∈ W. A ξ -finite
measure ν is a reference measure for W iff W≺ν. A subset
W of M+

(Y) is uniformly absolutely continuous with respect
to ν, i.e. W≺uniν, iff for every � > 0 there exists a δ > 0
such that w(E) < � for all w ∈ W provided that ν(E) < δ.
By [67, p. 366, Th. 2], μ≺ν iff {μ}≺uniν. Two subsets W

and U of P(Y) are singular, i.e. W ⊥ U, iff there exists an
E ∈ Y such that w(E) = 0 for all w ∈ W and u(Y\E) = 0 for
all u ∈ U.

We denote the Borel ξ -algebra for the usual topology of
the real numbers by B(�). We denote the essential supremum
of a Y-measurable, i.e. (Y,B(�))-measurable, function f for
the measure ν on (Y,Y) by ess supν f (y), i.e.

ess supν f � inf{γ : ν({y : f (y) > γ }) = 0}.
We denote the integral of a measurable function f on (Y,Y)
with respect to the measure ν by

�

f ν(dy) or
�

f (y)ν(dy).
We denote the integral by

�

f dy or
�

f (y)dy, as well, if it is
on the real line and with respect to the Lebesgue measure.
If ν is a probability measure, then we also call the integral
of f with respect to ν the expectation of f or the expected
value of f and denote it by Eν

�

f



or Eν

�

f (Y)



.

While discussing the continuity of measure valued functions
and functions defined on sets of measures, we use either
the topology of setwise convergence or the total variation
topology. The topology of setwise convergence is the topology
generated by the sets of the form {μ : |μ(E) − t| < �} for
some E ∈ Y , t ∈ �+ , � ∈ �+ ; see [6, §4.7(v)] for a more
detailed discussion. The total variation topology is the metric
topology generated by the total variation norm. For any μ in
M(Y) the total variation norm of μ is defined as

�μ� � supE∈Y μ(E) − μ(Y \ E).

As a consequence of the Lebesgue decomposition theorem [17,
Th. 5.5.3] and the Radon-Nikodym theorem [17, Th. 5.5.4] we
have

�μ� =
� �

�
�

dμ
dν

�
�
�ν(dy) ∀μ, ν : μ≺ν.

Our notation will be overloaded for certain symbols; how-
ever, the relations represented by these symbols will be
clear from the context. We denote the products of topologies
[17, p. 38], ξ -algebras [17, p. 118], and measures
[17, Th. 4.4.4] by ⊗. We denote the Cartesian product of
sets [17, p. 38] by ×. We denote the absolute value of real
numbers and the size of sets by |·|. For extended real valued
functions f and g on Y, f ≤ g iff f (y) ≤ g(y) for all y ∈ Y.
For measures μ and ν on (Y,Y), μ ≤ ν iff μ(E) ≤ ν(E) for
all E ∈ Y .

For x, y ∈ � , x∧y is the minimum of x and y. For extended
real valued functions f and g on Y, f ∧ g is the pointwise
minimum of f and g. For μ, w ∈ M(Y), μ ∧ w is the unique
measure satisfying dμ∧w

dν = dμ
dν ∧ dw

dν for any ν satisfying μ≺ν
and w≺ν. If F is a set of real valued functions, then ∧f ∈Ff
is the extended real valued function obtained by taking the
pointwise infimum of f ’s in F. For a U ⊂ M(Y) satisfying
w ≤ u for all u ∈ U for some w ∈ M(Y), ∧u∈Uu is the
measure which is the infimum of U with respect to the partial
order ≤. The existence of a unique infimum is guaranteed by
[6, Th. 4.7.5]. We use the symbol ∨ analogously to ∧ but we
represent maxima and suprema with it, rather than minima and
infima.

II. PRELIMINARIES

We commence our discussion by defining the mean measure
and analyzing it, first as a function of the order for a given
prior then as a function of the prior for a given order. After
that we define the Rényi information using the mean measure
and analyze it as a function of the order and the prior
using the analysis of the mean measure. Then we define the
Rényi divergence and review those features of it that will be
needed in our analysis. We conclude the current section by
defining the Rényi mean and deriving an alternative expression
for the Rényi information in terms of the Rényi divergence
using the Rényi mean.

A. The Mean Measure

The weighted power means are generalizations of the
weighted arithmetic mean. For any positive real number α
and p.m.f. p on non-negative real numbers, the order α mean
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for the prior p is (
	

x p(x)xα)1/α. For any prior p, the order α
weighted mean is a nondecreasing and continuously differen-
tiable function of α on �+ . Hence we can calculate its limit
as α approaches zero, or infinity, using the L’Hospital’s rule
[57, Th. 5.13]:

limα↓0

��

x
p(x)xα

�1/α =
�

x
xp(x)

limα↑∞
��

x
p(x)xα

�1/α = maxx:p(x)>0 x.

The order α mean of measures for the prior p is defined
via the pointwise order α mean of their Radon-Nikodym
derivatives for the prior p. In the following, we confine our
discussion to the means of probability measure.

Definition 1: Let p be a p.m.f. on P(Y) and ν be a reference
measure for w’s with positive p(w). Then the order α mean
of the Radon-Nikodym derivatives for the prior p is

dμα,p
dν �

⎧

⎪⎪⎨

⎪⎪⎩

�

w:p(w)>0

� dw
dν

�p(w)
if α = 0

�
	

w p(w)
� dw

dν

�α
� 1

α
if α ∈ �+

maxw:p(w)>0
dw
dν if α = ∞

ν-a.e. (7)

The order α mean measure for the prior p is defined as

μα,p(E) �
�

E

dμα,p
dν ν(dy) ∀E ∈ Y. (8)

In (7) and throughout this section sums of the form
	

w
stands for sums of the form

	

w:p(w)>0. In (7), w is a dummy
variable used to express the elements of P(Y), i.e. probability
measures on (Y,Y). The probability mass assigned to each w
by p is denoted by p(w). The reference measure ν is absent
from the symbol for the mean measure because mean measure
does not depend on the choice of the reference measure: Let
�μα,p be the mean measure obtained using a reference measure
�ν instead of ν; then

μα,p(E) = �μα,p(E) ∀α ∈ [0,∞] and ∀E ∈ Y.

This follows from a standard application of the Lebesgue
decomposition theorem [17, Th. 5.5.3] and the Radon-
Nikodym theorem [17, Th. 5.5.4].

We are interested in the mean measure primarily as a
tool to define and analyze the Rényi information. Augustin
[5, §26] introduced the mean measure and derived some of the
observations we present in Lemmas 1-4, albeit for different
parameterizations of the order. Augustin, however, did not
define or analyze the Rényi information in [5]. Proofs of
Lemmas 1-4 can be found in [48, Appendix D].

Lemma 1: Let p be a p.m.f. on P(Y).

(a) μα,p ∼ μ1,p and |supp(p)|− 1
α ≤ 



μα,p



 ≤ |supp(p)|

for any α ∈ (0,∞]. Furthermore,



μ1,p




 = 1.

(b) μ0,p≺w for any w ∈ supp(p) and



μ0,p




 ≤ 1.

The main consequence of Lemma 1 is that μα,p≺μ1,p for
all α ∈ [0,∞]. Hence, we can describe and analyze the mean
measures via their Radon-Nikodym derivatives with respect to
the order one mean measure. We build our analysis of the mean
measure as a function of the order around this observation.
First, we analyze dμα,p

dμ1,p
as a function the order α in Lemma 2;

then use the dominated convergence theorem to obtain the
corresponding results for μα,p in Lemma 3.

Definition 2: Let p be a p.m.f. on P(Y) and α be in [0,∞].
Then the order α density for the prior p is

πα,p � dμα,p
dμ1,p

. (9)

Note that for any p.m.f. p on P(Y), the order α density for
the prior p is a Y-measurable function from Y to � by the
Radon-Nikodym theorem [17, Th. 5.5.4].

The order α posteriors defined in the following provides us
an alternative way to express πα,p and its derivatives.

Definition 3: Let p be a p.m.f. on P(Y) and α be a positive
real number. Then for each y ∈ Y the order α posterior p[α]
is a p.m.f. on P(Y) given by

p[α](w|y) �
�

p(w)
�

dw
dμα,p

�α
if p(w) > 0

0 else.
(10)

The order α posterior p.m.f. p[α] is a Y-measurable function
for each w. The order one posterior p.m.f. p[1] is also called
the posterior p.m.f., in accordance with the usual terminology.

Lemma 2: For any p.m.f. p on P(Y) the following state-
ments hold for μ1,p-almost every y.

(a) δ
1−α
α ≤ πα,p ≤ 1 for α ∈ (0, 1] and 1 ≤ πα,p ≤ δ

1−α
α for

α ∈ [1,∞) where δ = minw:p(w)>0 p(w). Furthermore,

πα,p(y) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�

w:p(w)>0

�
p[1](w|y)

p(w)

�p(w)
α = 0

�
	

w
p[1](w|y)αp(w)1−α

�1/α

α ∈ �+

maxw:p(w)>0
p[1](w|y)

p(w) α = ∞.

p[α](w|y) =
�

p[1](w|y)αp(w)1−α

πα,pα if p(w) > 0

0 else.

(b) πα,p is a smooth function of α on �+ . Furthermore,
the first two derivatives of πα,p are given by

d
dα πα,p = πα,p

α2

�

w
p[α](w|y) ln p[α](w|y)

p(w) .

d2

dα2 πα,p = 1−α
πα,p

� d
dαπα,p

�2 − 2
α

d
dα πα,p

+ πα,p

α3

�

w
p[α](w|y)

�

ln p[α](w|y)
p(w)

�2
.

(c) (πα,p)
α is log-convex in α on �+ , i.e. for any β ∈ (0, 1)

and α0, α1 ∈ �+

(παβ,p)
αβ ≤ (πα1,p)

βα1(πα0,p)
(1−β)α0

where αβ = βα1 + (1−β)α0. Furthermore, for α1 �= α0
the inequality is strict iff there exist w, w̃ ∈ supp(p)

such that p[1](w|y)
p(w) > p(w̃|y)

p(w̃) > 0.
(d) If there exists a w such that p[1](w|y) > p(w), then

πα,p(y) is bounded, continuous, and monotone increas-
ing in α on [0,∞], else πα,p(y) = 1 for all α in [0,∞].

Lemma 2 establishes the density πα,p as a smooth function
μ1,p-a.e. and provides expressions for its first two derivatives.
These derivatives are Y-measurable functions because πα,p
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and p[α] are Y-measurable. Then using their μ1,p-integrals we
can define two mappings:

μ�
α,p(E) �

�

E
(π �

α,p)μ1,p(dy) ∀E ∈ Y, (11)

μ��
α,p(E) �

�

E
(π ��

α,p)μ1,p(dy) ∀E ∈ Y (12)

where π �
α,p and π ��

α,p are shorthands for d
dαπα,p and d2

dα2 πα,p.
Note that we have not claimed that either of these mappings

is defining a measure for each α. Lemma 3 given in the
following establishes that fact and analyzes the mean measure
μα,p as a function of the order α.

Lemma 3: For any p.m.f. p on P(Y).
(a) μα,p is a continuous function of α from [0,∞] with

its usual topology to M+
0(Y) with the total variation

topology.
(b) μ�

α,p is a continuous function of α from (0,∞) with

its usual topology to M+
0(Y) with the total variation

topology. Furthermore, d
dαμα,p = μ�

α,p in the sense that

d
dαμα,p(E)

�
�
α=φ

= μ�
φ,p(E) ∀E ∈ Y, ∀φ ∈ (0,∞).

(c) μ��
α,p is a continuous function of α from (0,∞) with

its usual topology to M(Y) with the total variation
topology. Furthermore, d

dαμ�
α,p = μ��

α,p in the sense that

d
dαμ�

α,p(E)
�
�
�
α=φ

= μ��
φ,p(E) ∀E ∈ Y, ∀φ ∈ (0,∞).

(d)



μα,p






α
is a log-convex function of α on (0,∞) such

that

limα↓0



μα,p




α = ess supμ1,p

�

w:p[1](w|y)>0
p(w).

The log-convexity is strict everywhere on (0,∞), unless
there exists a γ ≥ 1 satisfying μ1,p(A(p, γ )) = 1 for
A(p, γ ) = {y : p[1](w|y)

p(w) = γ, ∀w : p[1](w|y) > 0}. If

there exists such a γ , then



μα,p




 = γ

α−1
α .

(e)



μα,p




 is a continuous and nondecreasing function of

α from [0,∞] to [0, |supp(p)|]. If there exist w, �w in
supp(p) such that w �= �w, then




μα,p




 is monotone

increasing everywhere on (0,∞), else



μα,p




 = 1 for

all α in [0,∞].
Lemma 3 described the properties of the mean measure as

a function of the order for a fixed prior. Lemma 4, given in
the following, describes the properties of the mean measure
as a function of the prior for a fixed order.

Lemma 4: Let (Y,Y) be a measurable space.
(a) If α ∈ [0, 1], then μα,p and




μα,p




 are convex functions

of p from P(P(Y)) to M+
0(Y) and [0, 1], respectively.

(b) If α∈[1,∞], then μα,p and



μα,p




are concave functions

of p from P(P(Y)) to M+
(Y) and [1,∞), respectively.

(c) For any p1, p2 ∈ P(P(Y)) such that p1 �= p2, let s∧,
s1 and s2 be s∧ � 2 p1∧p2

2−�p1−p2� , s1 � 2 p1−p1∧p2�p1−p2� , and

s2 � 2 p2−p1∧p2�p1−p2� . Then s∧, s1, s2 ∈ P(P(Y)) and

p1 = (1 − �p1−p2�
2 )s∧ + �p1−p2�

2 s1,

p2 = (1 − �p1−p2�
2 )s∧ + �p1−p2�

2 s2,

s1 ⊥ s2.

(d) If α ∈ (0, 1], then for any p1, p2 ∈ P(P(Y)) we have



μα,p1 − μα,p2




 ≤ 1

α
�p1 − p2�.

Hence μα,p is a Lipschitz continuous function of p for
the total variation topology for α ∈ (0, 1].

(e) If α ∈ [1,∞), then for any p1, p2 ∈ P(P(Y)) we have




μα,p1 − μα,p2




 ≤ ( 1

2�p1 − p2�)
1
α



μα,s1 − μα,s2




.

B. The Rényi Information

Definition 4: Let W be a subset of P(Y) and p be a p.m.f.
on W. Then the order α Rényi information for the prior p is

Iα(p;W) �

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ess inf
μ1,p

ln 1	

w
1{p[1](w|y)>0}p(w)

α = 0

α
α−1 ln




μα,p




 α ∈ �+ \ {1}

Eμ1,p

�
	

w
p[1](w|y) ln p[1](w|y)

p(w)

�

α = 1

ln



μ∞,p




 α = ∞

(13)

Sibson [68] introduced this quantity using the works of
Rényi [56] and Csiszár [9], [10]. However, prior to [68]
Gallager [20] had introduced E0(ρ, p), which is nothing but
a scaled version of the Rényi information, see (3) and (4).

Note that Iα(p;W) has the same value for all W’s for which p
is in P(W). Hence, in principle, one can use Iα(p) rather than
Iα(p;W) to denote the Rényi information. Although this uncon-
ventional symbol would be more coherent with the one we use
for the mean measure, we refrain from using it for the fear of
alienating readers who prefer the customary symbol. Another
justification for using the conventional notation is the effect
of the richness of W — as measured by supp∈P(W) Iα(p;W)—
on the continuity of Iα(p;W) as a function of p, see
Lemma 16-(e).

Properties of the Rényi information as a function of the
order for fixed prior and as a function of the prior for fixed
order are presented in Lemmas 5 and 6, respectively. Proofs of
Lemmas 5 and 6 can be found in [48, Appendix E].

Lemma 5: For any subset W of P(Y) and p.m.f. p on W,
I∞(p;W) ≤ ln |supp(p)| and Iα(p;W) is a non-negative contin-
uously differentiable nondecreasing function of α on �+ such
that

I0(p;W) = limα↓0 Iα(p;W) , (14)

I∞(p;W) = limα↑∞ Iα(p;W) , (15)

d
dα Iα(p;W) =

⎧

⎪⎨

⎪⎩

α
α−1






μ�

α,p








�μα,p� − ln�μα,p�
(α−1)2 α ∈ �+ \ {1}

μ��
1,p(Y)+2






μ�

1,p






−






μ�

1,p








2

2 α = 1.

(16)

If μ1,p(A(p, γ )) = 1 for some γ ≥ 1, then Iα(p;W) = ln γ
for all α ∈ [0,∞], else d

dα Iα(p;W) > 0 for all α ∈ �+ , where

A(p, γ ) � {y : p[1](w|y)
p(w) = γ ∀w with positive p[1](w|y)}.

Using the definitions of μ�
α,p and μ��

α,p, given in (11)
and (12), together with Lemma 2-(b), we get the following
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two alternative expressions for the derivative of Iα(p;W) with
respect to the order on �+

d
dα Iα(p;W)

=

⎧

⎪⎨

⎪⎩

1
(α−1)α E
α

�

ln p[α](w|y)
p(w) − Iα(p;W)

�

α �= 1

1
2 E
1

��

ln p[1](w|y)
p(w) − I1(p;W)

�2
�

α = 1
(17)

=

⎧

⎪⎨

⎪⎩

1
(α−1)2 E
α

�

ln p[α](w|y)πα,p

p[1](w|y)�μα,p�
�

α �= 1

1
2 E
1

��

ln p[1](w|y)
p(w) − I1(p;W)

�2
�

α = 1
(18)

where 
α is a probability measure on Y ⊗ 2supp(p) whose Y

marginal is μα,p

�μα,p� and whose conditional distribution is p[α].
The continuity and the convexity properties of the

Rényi information in the prior follow from the corresponding
properties of the mean measure described in Lemma 4.

Lemma 6: Let W be a subset of P(Y).

(a) If α ∈ [0, 1), then Iα(p;W) is a non-negative quasi-
concave function of p on P(W) that is continuous for
the total variation topology on P(W).

(b) If α ∈ [1,∞], then Iα(p;W) is a non-negative concave
function of p on P(W).

Gallager [20, p. 18] and Csiszár [11, Lemma 3.2] estab-
lished the continuity of Iα(p;W) in p on P(W), for finite W’s.
For arbitrary W’s, however, Iα(p;W) is continuous only for
orders in (0, 1); for orders in [1,∞], Iα(p;W) is continuous in p
on P(W) iff supp∈P(W) Iα(p;W) is finite, see Lemma 16-(d).
The finiteness of supp∈P(W) Iα(p;W) also implies the uniform
equicontinuity of the Rényi information, see Lemma 16-(e,f).
The discontinuity of various Shannon information measures
for countably infinite output sets have previously been pointed
out by Ho and Yeung in [35].

C. The Rényi Divergence

Definition 5: Let w and q be two non-zero finite measures
on the measurable space (Y,Y); then the order α Rényi diver-
gence between w and q is

Dα(w� q) �

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− ln q
� dw

dν > 0
�

α = 0
1

α−1 ln
� � dw

dν

�α
�

dq
dν

�1−α
ν(dy) α ∈ �+ \ {1}

� dw
dν

�

ln dw
dν − ln dq

dν

�

ν(dy) α = 1

ln ess supν
dw
dν / dq

dν α = ∞
(19)

where ν is any measure satisfying w≺ν and q≺ν.
The Rényi divergence is usually defined for probability

measures; the inclusion of finite measures allows us to express
certain observations, such as Lemma 8 given in the follow-
ing, more succinctly.6 Nonetheless, the propositions derived
for the usual definition with probability measures suffice
for our purposes most of the time. We appropriate all the
propositions we need for our analysis, except Lemma 8,
from the recent paper of van Erven and Harremoës [18].

6It is also convenient while studying the concept of the Rényi -Gallager
information and capacity, see [47] and [52].

The equivalence of Definition 5 and the one used by van
Erven and Harremoës [18] for probability measures follows
from [18, Ths. 4–6].

Lemma 7 [18, Ths. 3 and 7]: For all w, q ∈ P(Y),
Dα(w� q) is a nondecreasing and lower semicontinuous func-
tion of α on [0,∞] that is continuous on [0, (1∨χw,q)] where
χw,q � sup{α : Dα(w� q) < ∞}.

Lemma 8 is evident from the definition of Rényi divergence.
Lemma 8: Let w, q, v be non-zero finite measures on (Y,Y)

and α be an order in [0,∞].
• If v ≤ q, then Dα(w� q) ≤ Dα(w� v).
• If q=γ v for a γ ∈�+ , then Dα(w� q) = Dα(w� v)− ln γ .
Let w and q be two probability measures on the measurable

space (Y,Y) and G be a sub-ξ -algebra of Y . Then the
identities w|G(E) = w(E) for all E ∈ G and q|G(E) = q(E)
for all E ∈ G uniquely define probability measures w|G and
q|G on (Y,G). In the following, we denote Dα

�

w|G



 q|G

�

by
DG

α (w� q).
Lemma 9 [18, Th. 9]: For any α ∈ [0,∞], probability

measures w and q on (Y,Y) and sub-ξ -algebra G ⊂ Y
Dα(w� q) ≥ DG

α (w� q) .

Lemma 10 [18, Ths. 3 and 31]: For any α ∈ [0,∞],
probability measures w and q on (Y,Y)

Dα(w� q) ≥ 1∧α
2 �w − q�2. (20)

For orders in (0, 1], the bound given in (20) is called
the Pinsker’s inequality; it has been proved by Csiszár [9]
for α = 1 case and by Augustin [5, Lemma 26.5a] and
Gilardoni [26] for α ∈ (0, 1) case. Furthermore the constant
α/2 is the best possible: for any γ < α/2 there are proba-
bility measures w and q such that γ �w − q�2 > Dα(w� q).
Determination of best lower bound on the Rényi divergence
in terms of the total variation is an interesting and impor-
tant problem but it is beyond the scope of the current
manuscript.

Remark 1: Kullback [40], [41] bounded D1(w� q) from
below by �w − q�2/2 + �w − q�4/36. Hence, Pinsker’s
inequality is tight only for �w − q� ≈ 0. Vajda [73] established
D1(w� q) ≥ ln( 2+�w−q�

2−�w−q� ) − 2�w−q�
2+�w−q� . Vajda’s inequality is

tight not only for �w − q� ≈ 0 but also for �w − q� ≈ 2.
Fedotov et al. [19] determined the tight lower bound
on D1(w� q) in terms of �w − q� in a parametric form.
Gilardoni [24], [25] proved an equivalent result for
f -divergences for twice differentiable f ’s. Gilardoni’s result
implies tight bounds for Rényi divergences, which are recently
derived in a more explicit form by Sason [59, Proposition 1].
The core observation in the derivation of tight Vajda’s inequal-
ities is the sufficiency of the probability measures on binary
alphabets. Guntuboyina et al. [27] have recently generalized
this observation considerably and explained how one can
determine tight bounds on an f -divergence when its arguments
are constrained in terms of other f -divergences. Recall that the
total variation distance is the f -divergence for f (x) = |x − 1|.

Lemma 11 [18, Th. 12]: For any order α ∈ [0,∞], the
order α Rényi divergence is convex in its second argument
for probability measures, i.e. for all w, q0, q1 ∈ P(Y) and
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β ∈ (0, 1) we have

Dα

�

w� qβ

� ≤ βDα(w� q1) + (1 − β)Dα(w� q0)

where qβ = βq1 + (1 − β)q0.
Lemma 12 [18, Th. 13]: For any order α ∈ [0,∞],

the order α Rényi divergence is jointly quasi-convex in its
arguments for probability measures, i.e. for all w0, w1, q0, q1
in P(Y) and β ∈ (0, 1) we have

Dα

�

wβ




 qβ

� ≤ Dα(w1� q1) ∨ Dα(w0� q0)

where wβ = βw1 + (1 − β)w0 and qβ = βq1 + (1 − β)q0.
Lemma 13 [18, Th. 15]: For any order α ∈ (0,∞],

Dα(w� q) is a lower semicontinuous function of the pair
of probability measures (w, q) in the topology of setwise
convergence.

The preceding lemmas discuss only the aspects of the
Rényi divergence that are useful for our discussion. A more
comprehensive discussion can be found in [18].

D. The Rényi Mean

We have defined the Rényi information using a closed
form expression. However, the original definition of the Rényi
information by Sibson is in terms of an optimization of the
Rényi divergence over a set of probability measures. These
two definitions are equivalent, as it has already been shown
by Sibson [68, Th. 2.2]. In the following, we establish this
equivalence and briefly discuss an alternative definition of the
Rényi information related to the aforementioned characteriza-
tion in terms of the Rényi divergence.

Definition 6: Let p be a p.m.f. on P(Y); then the order α
Rényi mean for prior p is

qα,p �

⎧

⎪⎨

⎪⎩

e−D1(p[0]�p[1])1{ϑp(y)=ϑ̄p}μ1,p
�

e−D1(p[0]�p[1])1{ϑp(y)=ϑ̄p}μ1,p(dy)
α = 0

μα,p

�μα,p� α ∈ (0,∞]
(21)

where ϑp(y)�
	

w p(w)1{p[1](w|y)>0}, ϑ̄p � ess supμ1,p
ϑp, and

p[0](w|y)� p(w)1{p[1](w|y)>0}
	

u p(u)1{p(u|y)>0} .
Then the following identity can be confirmed by substitution

using (19): For any α in (0,∞], p in P(W), and q in P(Y),

Dα(p�W� p ⊗ q) = Dα

�

p�W� p ⊗ qα,p
� + Dα

�

qα,p



 q

�

.

(22)

This identity was first pointed out by Sibson in [68, p. 153],
then by others [13, eq. (12)], [33, eq. (43)], [54, eq. (38)],
[65, Lemma 3], and [74, eq. (52)]. For α = 1 case, it had been
used by Topsøe [71], even before Sibson [68] and Topsøe [72].

On the other hand, one can also confirm by substitution that
Iα(p;W) = Dα

�

p�W� p ⊗ qα,p
�

for all positive values of α.
These two observations lead to the alternative characterization
of the order α Rényi information in terms of the order α
Rényi divergence presented in the following lemma, which
is valid for all non-negative orders.

Lemma 14: Let W be a subset of P(Y), p be a p.m.f. on W,
and α be an order in [0,∞]; then

Iα(p;W) = Dα

�

p�W� p ⊗ qα,p
�

(23)

= inf
q∈P(Y)

Dα(p�W� p ⊗ q) (24)

= inf
q∈P(Y)

Dα

�

μα,p



 q

�

α ∈ (0,∞] \ {1} (25)

where p�W is the probability measure on 2supp(p) ⊗Y whose
marginal distribution on supp(p) is p and whose conditional
distribution is w.

Proof of Lemma 14 is presented in [48, Appendix F].
For any positive order α and prior p, the only probability
measure q satisfying Dα(p�W� p ⊗ q) = Iα(p;W) is qα,p as a
result of (22) and Lemmas 10, 14. In other words, the order
α Rényi mean for prior p is the unique minimizer for the
infimum given in (24) for positive orders α. For α = 0,
the order zero Rényi mean is still a minimizer by Lemma 14
but it is not necessarily the unique minimizer. Any probability
measure q that is absolutely continuous in the q0,p satisfies
D0(p�W� p ⊗ q) = I0(p;W).

The definition of Rényi information we have adopted is
not the only definition of Rényi information. The following
definition is first proposed by Augustin [5, §34] and later
popularized by Csiszár [13]

Ic
α (p; W) � inf

q∈P(Y)

�

w
p(w)Dα(w� q) . (26)

Unlike the definition we have adopted, the one given in (26)
does not have an equivalent closed form expression. But for
any finite positive order α, the infimum in (26) has a unique
minimizer, which is a fixed point of an operator defined
using α and p, [47]. These properties were first proved by
Augustin for orders between zero and one in [5]. Thus we
have called the quantity defined in (26), the order α Augustin
information in [52]. We present a more detailed discussion of
the properties of the Augustin information and its relation to
the Rényi information in [47].

Arimoto [3] proposed a third definition for the Rényi infor-
mation. Recently, Verdú [74] has provided a discussion of the
Rényi entropy and these three definitions of the Rényi infor-
mation.

III. THE RÉNYI CAPACITY

Definition 7: Let α be an order in [0,∞] and W be a subset
of P(Y); then the order α Rényi capacity of W is

Cα,W � supp∈P(W) Iα(p;W) . (27)

Unlike the Rényi information, the Rényi capacity is not a
quantity that is introduced or discussed by Sibson [68]. In the
spirit of his earlier work on f -divergences [11], Csiszár intro-
duced it in [13]. Shannon, Gallager, and Berlekamp had
introduced a ‘capacity’, i.e. E0(ρ,W), using E0 (ρ, p) in [63],
prior to either work. E0(ρ,W) is a scaled version of the Rényi
capacity; in particular E0(ρ,W) = ρC 1

1+ρ ,W for all ρ > −1.
Using the alternative characterization of the Rényi informa-

tion given in (24), we get the following expression for the
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order α Rényi capacity for all α in [0,∞]
Cα,W = supp∈P(W) infq∈P(Y) Dα(p�W� p ⊗ q) . (28)

For finite orders the Rényi capacity does not have a
closed form expression. The supremum given in the def-
inition of the Rényi capacity need not to be finite, see
[48, Examples 6 and 7]. Even when the supremum is finite it
might not be achieved by any prior, i.e. there are W’s for which
Iα(p;W) < Cα,W for all p ∈ P(W), see [48, Examples 2 and 4].
When the supremum is achieved, the optimal prior might
not be unique, i.e. there are W’s for which Iα(p1;W) =
Iα(p2;W) = Cα,W for p1 �= p2 both of which are in P(W), see
[48, Example 3]. These subtleties, however, do not constitute
a serious impediment for analyzing the Rényi capacity.

In §III-A, we analyze the Rényi capacity as a function of the
order. In §III-B, we determine necessary and sufficient condi-
tions for the finiteness of the Rényi capacity and investigate
the implications of the finiteness of the Rényi capacity on the
continuity of the mean measure and the Rényi information.

A. The Rényi Capacity as a Function of the Order

We are interested in characterizing the behavior of the
Rényi capacity as a function of the order because the oper-
ational significance of the Rényi capacity —at least for the
channel coding problem and the sphere packing bound— is not
through its value at a specific order but through its behavior
as a function of the order. Parts (a,c,d,e,f) of Lemma 15 char-
acterize the behavior of the Rényi capacity for an arbitrary W

as a function of the order. In our analysis relying on the
Rényi capacity some of our results might be valid only for
countable or finite W’s rather than arbitrary W’s. Parts (b,g)
of Lemma 15 are useful in such situations.7 See the proof of
[50, Corollary 2] for such a situation for the Augustin capacity.

Lemma 15: Let W be a subset of P(Y).
(a) Cα,W is nondecreasing and lower semicontinuous in α

on [0,∞].
(b) There exists a countable subset W� of W satisfying

Cα,W� = Cα,W for all α ∈ [0,∞].
(c) 1−α

α Cα,W is nonincreasing and continuous in α on (0, 1)
and Cα,W is continuous in α on (0, 1].

(d) (α − 1)Cα,W is convex in α on (1,∞).
(e) If Cη,W < ∞ for an η ∈ (0, 1), then Cα,W is finite for

all α ∈ [0, 1).
(f) If Cη,W < ∞ for an η ∈ (0,∞], then Cα,W is

nondecreasing and continuous8 in α on (0, η].
(g) If Cη,W < ∞ for an η ∈ (0,∞], then ∀� > 0, ∃ a finite

subset W� of W such that Cα,W� > Cα,W − � for all
α ∈ [�, η].

The Rényi information Iα(p;W) is continuous in α for any
p in P(W) by Lemma 5, however the Rényi capacity Cα,W

is not necessarily continuous in α. Yet, if the Rényi capacity

7As pointwise statements, i.e. as statements for a given order,
Lemma 15-(b,g) follow trivially from the definition of the Rényi capacity.
They are non-trivial only because their assertions hold for all orders for the
same W�.

8We are unable to establish the continuity of Cα,W at α = 0 for arbitrary W.
For finite W, Sion’s minimax theorem implies the continuity of Cα,W at
α = 0, see Lemma 16-(g).

Cα,W is not continuous in α on (0,∞], then it has a very
specific shape as a result of Lemma 15: there exists a φ ∈
[1,∞) such that Cα,W is bounded and continuous on (0, φ]
and infinite on (φ,∞]. In order to see why, first note that
if C1/2,W = ∞, then Cα,W = ∞ for all α in (0,∞] by
Lemma 15-(a,e) and Cα,W is continuous on (0,∞]. On the
other hand, if C∞,W < ∞, then Cα,W is continuous on (0,∞]
by Lemma 15-(f). Hence, Cα,W can fail to be continuous on
(0,∞] only when C1/2,W < ∞ and C∞,W = ∞. Let χW be
the set of all orders α for which Cα,W is finite, i.e.

χW � {α ∈ �+ : Cα,W < ∞}.
χW is either of the form (0, φ) for a φ ∈ [1,∞] or of the
form (0, φ] for a φ ∈ [1,∞) because Cα,W is nondecreasing
by Lemma 15-(a) and finite on (0, 1) by Lemma 15-(e).
If χW = (0, φ) for some φ ∈ [1,∞], then Cα,W is continuous
on (0, φ] by Lemma 15-(a,f), Cα,W is infinite on [φ,∞] by the
hypothesis, and hence Cα,W is continuous on (0,∞] by the
pasting lemma [46, Th. 18.3]. — [48, Example 6] provides a
W for each φ ∈ (1,∞) such that χW = (0, φ).— Thus unless
χW = (0, φ] for some φ ∈ [1,∞), Cα,W is continuous on
(0,∞]. If χW = (0, φ], then Cα,W is bounded and continuous
on (0, φ] and infinite on (φ,∞]. Hence the Rényi capacity
has a unique discontinuity on (0,∞], which is at φ. —
[48, Example 7] provides a W for each φ ∈ [1,∞) such that
Cα,W has its unique discontinuity at φ.—

Proof of Lemma 15:

(a) The pointwise supremum of a family of nondecreas-
ing (lower semicontinuous) functions is nondecreasing
(lower semicontinuous). Then Cα,W is nondecreasing
and lower semicontinuous in α on [0,∞] because Cα,W

is the pointwise supremum of the family {Iα(p;W)}p∈P(W)

and Iα(p;W) is nondecreasing and continuous in α for
each p∈P(W) by Lemma 5.

(b) The Rényi capacity is a nondecreasing and lower semi-
continuous function of the order by part (a). Then

Cη,W = supα∈(0,η)∩Q Cα,W ∀η ∈ (0,∞].
Consequently, Cα,W� = Cα,W for all α in [0,∞] if
Cα,W� = Cα,W for all α ∈ Q≥0 . Choose a sequence of
p.m.f. ’s {p(α,ı)}ı∈Z+ satisfying Iα

�

p(α,ı);W� ↑ Cα,W for
each α ∈ Q≥0 . Let W� be ∪α∈Q≥0 ∪ı∈Z+ supp(p(α,ı)).
Then Cα,W� = Cα,W for all α ∈ Q≥0 ; hence for all α
in [0,∞]. W� is countable because countable union of
countable sets is countable.

(c)



μα,p




 is nondecreasing and continuous in α,

by Lemma 3-(e). Furthermore, the definitions of Iα(p;W)
and Cα,W imply

1−α
α Cα,W = supp∈P(W) ln 1�μα,p� ∀α ∈ (0, 1).

Then 1−α
α Cα,W is nonincreasing and lower semicontin-

uous in α on (0, 1) because the pointwise supremum
of a family of nonincreasing (lower semicontinuous)
functions is nonincreasing (lower semicontinuous). Thus
1−α
α Cα,W and Cα,W are both continuous from the right

on (0, 1). On the other hand Cα,W and 1−α
α Cα,W are

both continuous from the left on (0, 1) because Cα,W is
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nondecreasing and lower semicontinuous on (0, 1) by
part (a). Consequently, Cα,W and 1−α

α Cα,W are both
continuous on (0, 1). Furthermore, Cα,W is continuous
on (0, 1] because Cα,W is nondecreasing and lower
semicontinuous by part (a).

(d)



μα,p






α is log-convex in α by Lemma 3-(d). On the
other hand, by the definitions of Iα(p;W) and Cα,W we
have

(α − 1)Cα,W = supp∈P(W) α ln



μα,p




 ∀α ∈ (1,∞).

Then (α−1)Cα,W is convex in α because the pointwise
supremum of a family of convex functions is convex.

(e) If Cη,W is finite, then so is Cα,W for all α in [0, η]
because Cα,W is nondecreasing in α by part (a). Fur-
thermore, if Cη,W is finite, then so is Cα,W for all α in
[η, 1) because 1−α

α Cα,W is nonincreasing in α on (0, 1)
by part (c).

(f) Cα,W is continuous in α on (0, 1] by part (c). Thus we
only need to prove the claim for the case when η > 1
on [1, η]. We prove the continuity of Cα,W in α first
on (1, η], and then from the right at α = 1. If Cη,W
is finite for an η in (1,∞), then (α − 1)Cα,W is finite
and convex in α on [1, η] by parts (a) and (d). Then the
continuity of (α − 1)Cα,W, and hence the continuity of
Cα,W, in α on (1, η) follows from [17, Th. 6.3.3]. On
the other hand Cα,W is continuous from the left because
Cα,W is nondecreasing and lower semicontinuous in α
by part (a). Hence, Cα,W is continuous in α on (1, η].
If C∞,W is finite, then Cη,W is finite for all η ∈ �+
by part (a) and Cα,W is continuous in α on �+ because
the continuity of a function on a collection of open set
implies its continuity on their union, [46, Th. 18.2]. This
implies the continuity of Cα,W on (0,∞] because Cα,W
is nondecreasing and lower semicontinuous in α by
part (a).
For proving the continuity of Cα,W from the right
at α=1, we first prove that {Iα(p;W)}p∈P(W) is equicon-
tinuous from the right at α =1. The definitions of μ�

α,p
and Iα(p;W) given in (11) and (13) and Lemma 2-(b)
imply

Iα(p;W) − I1(p;W) = α ln �μα,p�−(α−1)





μ�

1,p








α−1

for all α in (1, η] and p in P(W). The expression in the
numerator is differentiable in α because




μα,p




 is dif-

ferentiable by Lemma 3-(b). Furthermore, d
dα




μα,p




 =






μ�

α,p






 by Lemma 3-(b) and the numerator is zero at

α = 1. Then by the mean value theorem [57, Th. 5.10],
there exists a φ ∈ (1, α) such that

Iα(p;W) − I1(p;W) = ln



μφ,p




 + φ






μ�

φ,p








�μφ,p� −





μ�

1,p






.

The expression on the right hand side is differentiable
in φ because d

dφ




μφ,p




 =






μ�

φ,p






 and d

dφ






μ�

φ,p






 =

μ��
φ,p(Y) by Lemma 3-(b,c). On the other hand,




μφ,p




 >

0 for φ ∈ �+ and



μ1,p




 = 1 by Lemma 1-(a). Then

the expression on the right hand side is zero at φ = 1.

Hence, using the mean value theorem [57, Th. 5.10] once
again we can conclude that there exists a β ∈ (1, φ) such
that

Iα(p;W)−I1(p;W)
φ−1 = 2






μ�

β,p








�μβ,p� + β
μ��

β,p(Y)

�μβ,p� − β






μ�

β,p








2

�μβ,p�2 . (29)

On the other hand using the definition of μ��
α,p given in

(12) together with Lemma 2-(b) and β > 1 we get,

μ��
β,p(Y)

�μβ,p� ≤ Eqβ,p

��

w

p[β](w|y)
β3 ln2 p[β](w|y)

p(w)

�

− 2





μ�

β,p








β�μβ,p�
Then using Lemma 2-(a) and (29) we get

Iα(p;W)−I1(p;W)
φ−1 ≤ Eqβ,p

��

w

p[β](w|y)
β2 ln2 p[β](w|y)

p(w)

�

= Eqβ,p

�
�

w
p(w)

�
p[1](w|y)
p(w)πβ,p

�β
ln2 p[1](w|y)

p(w)πβ,p

�

.

Recall that xβ ln2 x ≤ ( 2
βe )2 for all x ∈ [0, 1] and

β > 0 and ln2 x ≤ ( 2
�e )2x� for all x ≥ 1 and � > 0.

Thus

Iα(p;W)−I1(p;W)
φ−1 ≤ Eqβ,p

�

( 2
βe )2 + ( 2

�e )2(
πβ+�,p
πβ,p

)β+�
�

.

Since (πα,p)
α is log-convex in α by Lemma 2-(c),

(πβ+�,p)
β+� ≤ (πβ,p)

β+�−1π β
1−� ,p ∀� ∈ (0, 1), β > 1.

Then using the fact that



μβ,p




 ≥ 



μ1,p



 = 1 we get

Iα(p;W)−I1(p;W)
φ−1 ≤

�

( 2
βe )2 + ( 2

�e )2





μ β

1−� ,p








�

.

Note that



μβ/1−�,p




 ≤ 



μα/1−�,p



 because




μα,p




 is

nondecreasing in α by Lemma 3-(e). Then the definition
of Rényi information, β > 1, and φ ∈ (1, α) imply for
any � ∈ (0, η−1

η ), α ∈ [1, (1 − �)η] and p ∈ P(W)
that

Iα(p;W) − I1(p;W) ≤ 8(α−1)
�2e2 e

α−1+�
α I α

1−�
(p;W)

≤ 8(α−1)
�2e2 e

η−1
η Iη(p;W). (30)

Then for any � ∈ (0, η−1
η ) and α ∈ [1, (1 − �)η] we can

bound Cα,W as follows

Cα,W ≤ supp∈P(W) I1(p;W) + 8(α−1)
�2e2 e

η−1
η Iη(p;W)

≤ C1,W + 8(α−1)
�2e2 e

η−1
η Cη,W .

Hence, Cα,W is continuous from the right at α = 1 if
Cη,W < ∞ for an η > 1.

(g) Let us first consider η ∈ �+ case and construct a
sequence {Wı }ı∈Z+ of finite subset of W, such that
Cα,Wı ↑Cα,W for all α ∈ (0, η]. Choose a p(ı,j) in P(W)
such that Ij2−ı

�

p(ı,j);W� ≥ Cj2−ı ,W − 2−ı for each ı ∈
Z+ and non-negative integer j not exceeding 2ıη. Let
W0 be the empty set and Wı be Wı−1∪�2ı η�

j=0 supp(p(ı,j))
for each ı ∈ Z+ . Then

Cα,Wı ≥ Cα,Wı−1 ∀α ∈ [0,∞], ı ∈ Z+

Cα,Wı ≥ Cα,W − 2−ı ∀α ∈ { 0
2ı , . . . ,

�η2ı�
2ı }, ı ∈ Z+ .
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Then Cα,Wı ↑ Cα,W for all dyadic rational numbers α
less than η. Therefore Cα,Wı ↑ Cα,W for all α ∈ [0, η]
because the Rényi capacity is nondecreasing and
lower semicontinuous. Since Cη,Wı ≤ Cη,W < ∞,
Cα,Wı ’s and Cα,W are continuous in α on (0, η]
by part (f). Then as a result of Dini’s theorem
[17, Th. 2.4.10], {Cα,Wı }ı∈Z+ converges to Cα,W uni-
formly on [�, η], i.e. for all ε > 0, there exists an ı such
that supα∈[�,η]

�
�
�Cα,W − Cα,Wj

�
�
� < ε for all j > ı .

For η = ∞ case, let κı be the smallest integer satisfying
C∞,W ≤ Cκı 2−ı ,W + 2−ı for each ı ∈ Z+ . We employ
the construction described above for j ’s not exceeding
κı rather than j ’s not exceeding �2ıη�.

�

B. Finiteness of the Rényi Capacity

If W is a finite set, then P(W) is compact for the total
variation topology and various results relying on the compact-
ness can be invoked while analyzing the Rényi information.
For example, if W is finite, then the compactness of P(W)
and Sion’s minimax theorem imply the continuity of the
Rényi capacity in the order on [0,∞], see Lemma 16-(g).
When W is an infinite set, however, P(W) is not com-
pact. The finiteness of the Rényi capacity emerges as a
shrewd substitute for the compactness of P(W) that allows
us to assert the continuity of the Rényi information, see
Lemma 16-(e,f).

Lemma 16-(a-d) characterize the finiteness of the order α
Rényi capacity in terms of the properties of the order α mean
measure or Rényi information. These equivalent conditions
might be easier to confirm or reject for certain W’s. The
equicontinuity results given in Lemma 16-(e,f) imply that if
γ1 ≤ Iα(p;W) ≤ γ2 for all p ∈ A for some α in (0, η) and
γ1 and γ2 in [0, Cη,W], then for any � > 0 there exists a
δ > 0 such that γ1 − � ≤ Iφ(s;W) ≤ γ2 + � for all φ in
[α − δ, α + δ] and s in P(W) satisfying infp∈A�p − s� ≤ δ.
This observation (or its variants, which can be obtained by
employing either part (e) or (f) on its own) might be helpful
when we are trying to bound the Rényi information or a
related function uniformly over the orders and priors through
a case by case analysis on a subset of P(W) or on its
neighborhoods.

Lemma 16: Let W be a subset of P(Y).

(a) For α ∈ (0, 1), Cα,W = ∞ iff there exists a sequence
{pı }ı∈Z+ ⊂ P(W) such that limı→∞




μα,pı




 = 0.

(b) For α ∈ (1,∞], Cα,W = ∞ iff there exists a sequence
{pı }ı∈Z+ ⊂ P(W) such that limı→∞




μα,pı




 = ∞.

(c) For α ∈ (1,∞), Cα,W < ∞ iff μα,p is uniformly
continuous in p for the total variation topology.9

(d) For α ∈ [1,∞], Cα,W< ∞ iff Iα(p;W) is continuous in
p on P(W) for the total variation topology.

(e) For η ∈ �≥0 , if Cη,W < ∞, then {Iα(p;W)}α∈[0,η] is
uniformly equicontinuous,10 in p on P(W).

9For α ∈ (0, 1], μα,p is uniformly continuous in p, even when Cα,W = ∞,
because μα,p is Lipschitz continuous on P(P(Y)) by Lemma 4-(d).

10For α ∈ (0, 1), Lemma 6-(a) has established the continuity of Iα(p;W) in
p without assuming Cα,W to be finite; but the continuity is not uniform.

(f) For η ∈ �+ , if Cη,W < ∞, then {Iα(p;W)}p∈P(W) is
uniformly equicontinuous in α on every compact subset
of (0, η).11

(g) If |W| < ∞, then Cα,W is nondecreasing and continu-
ous in α on [0,∞].

Proof of Lemma 16 is presented in [48, Appendix C].
For W’s with infinite Cα,W, the proof of part (d) establishes
the discontinuity at every p in P(W). For order one the
discontinuity of I1(p;W) was observed by Ho and Yeung
[35, Th. 3] for a different topology for some W. For the same
topology they established the continuity of I1(p;W) whenever Y

is finite [35, Corollary 8]. They, however, did not characterize
the conditions for the continuity of I1(p;W) in their framework.

IV. THE RÉNYI CENTER

The primary focus of this section is Theorem 1, given
in the following, and its applications. In §IV-A we prove
Theorem 1 and discuss alternative proofs based on Sion’s
minimax theorem. In §IV-B we first prove a lower bound on
Sα,W(q), i.e. the van Erven-Harremoës bound, then we use
this bound to establish the continuity of the Rényi center as a
function of the order. §IV-C is composed of various applica-
tions of Theorem 1 and the van Erven-Harremoës bound.

Theorem 1: For any α ∈ (0,∞] and W ⊂ P(Y)

Cα,W = supp∈P(W) infq∈P(Y) Dα(p�W� p ⊗ q) (31)

= infq∈P(Y) supp∈P(W) Dα(p�W� p ⊗ q) (32)

= infq∈P(Y) supw∈WDα(w� q) . (33)

If Cα,W < ∞, then there exists a unique qα,W in P(Y), called
the order α Rényi center, such that

Cα,W = supp∈P(W) Dα

�

p�W� p ⊗ qα,W
�

(34)

= supw∈WDα

�

w� qα,W
�

. (35)

Furthermore, for every sequence of priors {pı }ı∈Z+ satisfying
limı→∞ Iα(pı ;W) = Cα,W, the corresponding sequence of
order α Rényi means {qα,pı }ı∈Z+ is a Cauchy sequence for
the total variation metric on P(Y) and qα,W is the unique
limit point of that Cauchy sequence.

Theorem 1 is stated for p’s that are probability mass
functions on W. However, the interpretation of the capacity
as the radius implicit in (33) and (35) can be used to extend
Theorem 1 to the case when p’s are appropriately defined
probability measures, see Theorem 3 in Appendix B.

For finite orders, neither the Rényi capacity nor the
Rényi center has a closed form expression; this, however,
is not the case for order infinity. The following expressions
can be confirmed using the observation described in (39) by
the interested reader.

C∞,W = ln







�

w∈W
w






, (36)

q∞,W =
��

w∈W
w

�

e−C∞,W . (37)

11In order to prove the uniform equicontinuity on compact subsets of (0, η),
we prove the following stronger statement: On every compact subset of (0, η),
{Iα(p;W)}p∈P(W) is a family of Lipschitz continuous functions of α with a
common Lipschitz constant, see [48, eq. (A.24)].
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Before presenting the proof and applications of Theorem 1,
let us make a brief digression and discuss what is achieved by
Theorem 1 itself.

The expression in (33) is nothing but the definition of the
order α Rényi radius Sα,W. Hence, Theorem 1 establishes
the equality of the order α Rényi capacity and the order α
Rényi radius. We prefer to express the equality of Cα,W and
Sα,W as a minimax equality because unlike the equality of
Cα,W and Sα,W itself, the minimax equality continues to hold
in the constrained variant of the problem, see Theorem 2 of
Appendix A.

Theorem 1 strengthens this minimax equality by assert-
ing the existence of a unique Rényi center that is achiev-
ing the infimum in (32). Recall that we have already
established, in Lemma 14, the existence of a unique
Rényi mean qα,p achieving the infimum in (31) for any p
in P(W). The suprema in (31) and (32), however, cannot
be replaced by maxima in general. [48, Example 4] provides
a W for which infq∈P(Y) Dα(p�W� p ⊗ q) < Cα,W and
Dα

�

p�W� p ⊗ qα,W
�

< Cα,W for all p in P(W). Evidently,
this subtlety exists only for infinite W’s; for finite W’s the
compactness of P(W) and the extreme value theorem guaran-
tees the existence of a p achieving the supremum.

The last assertion of Theorem 1, relating the problem of
determining the Rényi capacity to the problem of determining
the Rényi center, is important because of its potential in
simplifying the problem of determining the Rényi center —
defined as the unique qα,W satisfying (35).

In addition, Theorem 1 provides a necessary and sufficient
condition for a prior p to satisfy Iα(p;W) = Cα,W. That is
important because we do not have a closed form expression for
the order α Rényi capacity, yet occasionally the symmetries of
the elements of W or numerical calculations suggest a prior p
that might satisfy Iα(p;W) = Cα,W.

Iα(p;W) = Cα,W iff Sα,W(qα,p) ≤ Iα(p;W) . (38)

In order to see why (38) holds, note that if Iα(p;W) = Cα,W
then considering the sequence {pı}ı∈Z+ where pı = p we can
conclude that qα,p = qα,W. Then Sα,W(qα,p) ≤ Iα(p;W) by
(35). On the other hand, if Sα,W(qα,p) ≤ Iα(p;W) for some p in
P(W), then Iα(p;W) = Cα,W by (33) because Iα(p;W) ≤ Cα,W
and Sα,W ≤ Sα,W(qα,p) by the definitions of Rényi capacity
and center.

Following a similar reasoning one can show that {pı }ı∈Z+
is optimal iff Sα,W(limı→∞ qα,pı ) ≤ limı→∞ Iα(pı ;W). We
chose the following less explicit characterization over the
aforementioned one in order to avoid ensuring the convergence
of probability measures formally.

lim
ı→∞ Iα(pı ;W)=Cα,W iff ∃q : Sα,W(q)≤ lim

ı→∞ Iα(pı ;W) (39)

where q ∈ P(Y) is implicit for the latter statement. The
Rényi capacity is determined in [48, Examples 1, 3, and 4]
using (38) and in [48, Examples 2 and 9, Appendix G]
using (39).

(34) of Theorem 1 and (22) imply that

Dα

�

qα,p



 qα,W

� ≤ Cα,W − Iα(p;W) ∀p ∈ P(W). (40)

Consequently, Dα

�

qα,p



 qα,W

�

is close to zero whenever
Iα(p;W) is close to Cα,W.

A. Minimax Theorems and the Relative Compactness

We start by proving Theorem 1 for finite W case. In this case
Theorem 1 can be strengthened slightly because the existence
of an optimal prior is guaranteed. The optimal prior, however,
is not necessarily unique, see [48, Example 3]; even then,
all such p’s have exactly the same Rényi mean. For finite Y

case, Lemma 17 is well-known, though in a slightly different
form, see [22, Th. 4.5.1], [14, p. 128] for α = 1 case and
[22, Th. 5.6.5], [14, p. 172] for α ∈ (0, 1) case.
[11, Thm. 3.2] of Csiszár implies Lemma 17 for α’s
in �+ .

Lemma 17: For any α in [0,∞] and finite subset W of
P(Y), ∃�p ∈ P(W) such that Iα(�p;W) = Cα,W. If α is in
(0,∞], then ∃!qα,W ∈ P(Y) such that,

Dα

�

qα,p



 qα,W

� ≤ Cα,W − Iα(p;W) ∀p ∈ P(W). (41)

Hence, qα,�p = qα,W for all �p such that Iα(�p;W) = Cα,W.
Proof:

(i) ∃�p ∈ P(W) such that Iα(�p;W) = Cα,W: Since
|supp(p)| ≤ |W| for all p ∈ P(W), Cα,W ≤ ln |W|
by Lemma 5. Then Iα(p;W) is continuous on P(W)
by Lemmas 6-(a) and 16-(d). Then there exists a �p
achieving the supremum by the extreme value theorem,
[46, Th. 27.4] because P(W) is compact for finite W.

(ii) If Iα(�p;W) = Cα,W for an α ∈ (0,∞], then
Dα

�

qα,p



 qα,�p

� ≤ Cα,W − Iα(p;W) for all p ∈ P(W):
Let �p ∈ P(W) be such that Iα(�p;W) = Cα,W, p be any
member of P(W) and pı be pı = ı−1

ı �p + 1
ı p for ı ∈ Z+ .

For α = ∞ using Lemma 14 we get

I∞(pı ;W) = �

I∞(�p;W) + D∞
�

q∞,�p



 q∞,pı

�


∨ �

I∞(p;W) + D∞
�

q∞,p



 q∞,pı

�


.

Then D∞
�

q∞,�p



 q∞,pı

� = 0 because I∞(pı ;W) ≤ C∞,W

and I∞(�p;W) = C∞,W. Consequently q∞,�p = q∞,pı and
I∞(pı ;W) = C∞,W. Thus

I∞(p;W) + D∞
�

q∞,p



 q∞,�p

� ≤ C∞,W. (42)

For α = 1 and α ∈ �+ \ {1} we have

I1(pı ;W) = ı−1
ı

�

I1(�p;W) + D1
�

q1,�p



 q1,pı

�


+ 1
ı

�

I1(p;W) + D1
�

q1,p



 q1,pı

�


,

Iα(pı ;W) = 1
α−1 ln

�
ı−1

ı e(α−1)(Iα(�p;W)+Dα(qα,�p�qα,pı ))

+ 1
ı e(α−1)(Iα(p;W)+Dα(qα,p�qα,pı ))

�

.

Then using Iα(pı;W) ≤ Cα,W, Iα(�p;W) = Cα,W, and
Dα

�

qα,�p



 qα,pı

�≥0 we get the following identity

Iα(p;W) + Dα

�

qα,p



 qα,pı

� ≤ Cα,W.

Similarly, using Iα(pı;W) ≤ Cα,W, Iα(�p;W) = Cα,W,
Iα(p;W) ≥ 0, and Dα

�

qα,p



 qα,pı

� ≥ 0 we get

Dα

�

qα,�p



 qα,pı

� ≤
�

1
α−1 ln ı−e(1−α)Cα,W

ı−1 α ∈ �+ \ {1}
Cα,W

ı−1 α = 1.

Then qα,pı → qα,�p in the total variation topology by
Lemma 10. Thus

Dα

�

qα,p



 qα,�p

� ≤ lim inf ı→∞ Dα

�

qα,p



 qα,pı

�
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by Lemma 13. Then

Iα(p;W) + Dα

�

qα,p



 qα,p̃

� ≤ Cα,W ∀α ∈ �+ . (43)

(iii) If α ∈ (0,∞], then ∃!qα,W ∈ P(Y) satisfying (41) such
that qα,p = qα,W for all p with Iα(p;W) = Cα,W: (42),
(43) and Lemma 10 implies that

Iα(p;W) + α∧1
2




qα,p − qα,p̃






2 ≤ Cα,W.

Then qα,p̃ = qα,p for any p satisfying Iα(p;W) = Cα,W.
�

When W is not a finite but an arbitrary subset of P(Y),
we cannot invoke the extreme value theorem to establish
the existence an optimal prior p satisfying Iα(p;W) = Cα,W

because P(W) is not compact. Assuming Cα,W to be finite,
Theorem 1 recovers all assertions of Lemma 17, but the
existence of an optimal prior, albeit in a weaker form.

Proof of Theorem 1: For all p∈P(W) and q∈P(Y), (19)
implies Dα(p�W� p ⊗ q) ≤ maxw∈supp(p) Dα(w� q). Then
considering p’s satisfying p(w) = 1 for a w in W we get

supw∈WDα(w� q) = supp∈P(W) Dα(p�W� p ⊗ q) (44)

for all q∈P(Y). Note that (32) implies (33) and (34) implies
(35) because of (44). Furthermore, (31) is nothing but (28)
and expression on the right hand side of (31) is bounded
from above by the expression in (32) as a result of max-min
inequality. Thus when Cα,W is infinite, (32) holds trivially.
When Cα,W is finite, the converse of max-min inequality, and
hence (32), follows from (34). Thus, we can assume Cα,W

to be finite and prove the claims about qα,W for proving
Theorem 1.

(i) If Cα,W < ∞ and limı→∞Iα(pı ;W) = Cα,W, then
{qα,pı }ı∈Z+ is a Cauchy sequence in P(Y) for the
total variation metric: For any sequence {pı}ı∈Z+ of
members of P(W) satisfying limı→∞ Iα(pı ;W) = Cα,W,
let {Wı }ı∈Z+ be a nested sequence of finite subsets of
W defined as follows,

Wı � ∪ı
j=1 supp(pj ).

Then for any ı ∈ Z+ , there exists a unique qα,Wı

satisfying (41) by Lemma 17. Furthermore, P(Wj ) ⊂
P(Wı ) for any ı, j ∈ Z+ such that j ≤ ı . In order to
bound




qα,pj − qα,pı




 for positive integers j < ı , we use

the triangle inequality for qα,pj , qα,pı , and qα,Wı :



qα,pj − qα,pı




 ≤ 



qα,pj − qα,Wı




 + 



qα,pı − qα,Wı




.

(45)

Let us proceed with bounding



qα,pj − qα,Wı




.




qα,pj − qα,Wı




2 ≤(a) 2

α∧1 Dα

�

qα,pj




 qα,Wı

�

≤(b) 2
α∧1

�

Cα,Wı − Iα
�

pj ;Wı
�


≤(c) 2
α∧1

�

Cα,W − Iα
�

pj ;W
�


.

where (a) follows from Lemma 10, (b) follows from
Lemma 17 because �pj ∈ P(Wı ), and (c) follows from
the identities Iα

�

pj ;Wı
� = Iα

�

pj ;W
�

and Cα,Wı ≤ Cα,W.

We can obtain a similar bound on



qα,pı − qα,Wı




2.

Then {qα,pı } is a Cauchy sequence by (45).

(ii) If Cα,W < ∞, then ∃! qα,W in P(Y) satisfying
limı→∞




qα,W − qα,pı




 = 0 for all {pı }ı∈Z+ satisfy-

ing limı→∞ Iα(pı ;W) = Cα,W: Note that M(Y) is a
complete metric space for the total variation metric,
i.e. every Cauchy sequence has a unique limit point in
M(Y), because M(Y) is a Banach space for the total
variation topology [6, Th. 4.6.1]. Then {qα,pı }ı∈Z+ has
a unique limit point qα,W in M(Y). Since P(Y) is a
closed set for the total variation topology and qα,pı ∈
P(Y) for all ı ∈ Z+ , the limit point qα,W is in P(Y)
by [46, Th. 2.1.3].
We have established the existence of a unique limit
point for any {pı}ı∈Z+ satisfying limı→∞ Iα(pı ;W) =
Cα,W. However, we have not ruled out the possibility of
distinct limit points for different sequences satisfying the
constraint. Let {pı }ı∈Z+ and {p̃ı}ı∈Z+ be two sequences
satisfying limı→∞ Iα(pı;W) = limı→∞ Iα(̃pı ;W) =
Cα,W, with limit points qα,W and q̃α,W. Let {p̂ı }ı∈Z+
be a sequence whose elements for the odd indices
are the elements of {pı }ı∈Z+ and whose elements for
the even indices are the elements of {p̃ı}ı∈Z+ . Then
limı→∞ Iα

�

p̂ı ;W
� = Cα,W; consequently the sequence

{qα,p̂ı }ı∈Z+ is Cauchy. Thus {qα,p̂ı }ı∈Z+ and all of its
subsequences has the same unique limit point q̂α,W.
Then qα,W = q̂α,W = q̃α,W.

(iii) qα,W satisfies the equality given in (34): For any p in
P(W), let us consider a sequence {pı }ı∈Z+ satisfying
both p1 = p and limı→∞ Iα(pı ;W) = Cα,W. Then p ∈
P(Wı ) for all ı ∈ Z+ . Then using the inequality given
in (41) of Lemma 17 together with (22) we get

Dα

�

p�W� p ⊗ qα,Wı

� ≤ Cα,Wı ∀ı. (46)

Since Wı is a finite set, ∃�pı ∈ P(Wı ) satisfying
Iα(�pı ;Wı) = Cα,Wı and qα,�pı = qα,Wı by Lemma 17.
Then Iα(�pı ;Wı) ≥ Iα(pı ;Wı) because pı ∈ P(Wı ) by
construction. Consequently limı→∞ Iα(�pı ;W) = Cα,W.
We have already established that for such a sequence
qα,�pı → qα,W in the total variation topology, and hence
in the topology of setwise convergence. Then the lower
semicontinuity of the Rényi divergence, i.e. Lemma 13,
the identity Cα,Wı ≤ Cα,W, and (46) imply

Dα

�

p�W� p ⊗ qα,W
� ≤ Cα,W.

Thus using (24) we get

Iα(p;W) ≤ Dα

�

p�W� p ⊗ qα,W
� ≤ Cα,W ∀p ∈ P(W).

Then (34) follows the definition of Cα,W.

�
Theorem 1 is not just a minimax theorem, the assertions

about the Rényi center are crucial. But those assertions can be
derived separately, if need be. Leaving them aside, we discuss
in the rest of this subsection when (32) can be proved using
Sion’s minimax theorem [38], [69].

Note that P(W) is compact iff W is a finite set and P(Y)
is compact iff Y is a finite set. Consequently, when either
W or Y is finite (32) is an immediate consequence of Sion’s
minimax theorem [38], [69]. When W and Y are both infinite
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sets, however, neither P(W) nor P(Y) is compact —for the
total variation topology— and we cannot directly apply Sion’s
minimax theorem. Yet, it is possible to recover partial results
using the concept of relative compactness. Recall that a set of
points in a topological space is called relatively compact if it
has a compact closure.

First note that as a result of Lemma 14

Iα(p;W) = infq∈clQα,W
Dα(p�W� p ⊗ q) (47)

for all p’s in P(W) and α’s in �+ where Qα,W is the convex
hull of the set of all order α Rényi means:

Qα,W � ch{qα,p : p ∈ P(W)}.
If Qα,W is relatively compact in the topology of setwise
convergence, Sion’s minimax theorem imply that

supp∈P(W) infq∈clQα,W
Dα(p�W� p ⊗ q)

= infq∈clQα,W
supp∈P(W) Dα(p�W� p ⊗ q) . (48)

We can replace clQα,W by P(Y) in the expression on the
left hand side without changing its value as a result of (47).
However, that operation can decrease the value of the right
hand side because clQα,W ⊂ P(Y). Thus we get,

supp∈P(W) infq∈P(Y) Dα(p�W� p ⊗ q)

≥ infq∈P(Y) supp∈P(W) Dα(p�W� p ⊗ q) .

The reverse inequality is the max-min inequality, which is
always valid. Thus (32) holds.

A set of finite measures W is relatively compact in the
topology of setwise convergence iff there exists a ν ∈ P(Y)
such that W≺uniν by a version of the Dunford-Pettis theorem
[6, Th. 4.7.25]. Using de la Vallée Poussin’s characterization
of the uniform integrability [6, Th. 4.5.9] and monotonicity of
the order α mean measure μα,p in the order, i.e. Lemma 3-(b),
we can obtain sufficient conditions for the relative compact-
ness of Qα,W in the topology of setwise convergence for any
α ∈ �+ . As a result we get the following partial result:

Lemma 18: Let W be subset of P(Y).

(i) If ∃ν ∈ P(Y) such that W≺uniν and Sη,W < ∞ for an
η ∈ (0, 1), then (32) holds ∀α ∈ (0, 1).

(ii) If Sη,W < ∞ for an η ∈ [1,∞], then (32) holds ∀α ∈
(0, η].

B. The Rényi Center as a Function of the Order

Sα,W is defined as the greatest lower bound of Sα,W(q).
Then Theorem 1 implies, by establishing Cα,W = Sα,W, that

Sα,W(q) ≥ Cα,W ∀q ∈ P(Y).

Van Erven and Harremoës have conjectured that a better lower
bound on Sα,W(q) should hold, [18, Conjecture 1]. Van Erven
and Harremoës proved their claim for α = ∞ case assuming
that Y is countable, [18, Thm. 37]. Lemma 19 establishes
the van Erven-Harremoës bound for any positive order α and
W satisfying Cα,W < ∞, using Theorem 1. A constrained
generalization, i.e. Lemma 25, can be found in Appendix A.

Lemma 19: For any α ∈ (0,∞], W ⊂ P(Y) satisfying
Cα,W < ∞, and q ∈ P(Y),

supw∈WDα(w� q) ≥ Cα,W + Dα

�

qα,W




 q

�

. (49)

Lemma 19 quantifies how loose Sα,W(q) —defined in (1)—
is as an upper bound to Cα,W, as surmised by van Erven and
Harremoës in [18].

Proof of Lemma 19: As a result of (22) and (23) we have,

sup
p̃∈P(W)

Dα(p̃�W� p̃ ⊗ q) ≥ Dα(p�W� p ⊗ q)

= Iα(p;W) + Dα

�

qα,p



 q

�

(50)

for all p ∈ P(W). Let {pı}ı∈Z+ be a sequence of elements
of P(W) such that limı→∞ Iα(pı ;W) = Cα,W. Then the
sequence {qα,pı }ı∈Z+ is a Cauchy sequence with the unique
limit point qα,W by Theorem 1. Since {qα,pı } → qα,W in total
variation topology, same convergence holds in the topology
of setwise convergence because every open neighborhood in
the latter includes an open neighborhood in the former by the
definitions of these topologies. On the other hand, the order
α Rényi divergence is lower semicontinuous for the topology
of setwise convergence by Lemma 13. Thus we have

lim inf
ı→∞

�

Iα(pı ;W) + Dα

�

qα,pı




 q

�
 ≥ Cα,W + Dα

�

qα,W




 q

�

.

Then (49) follows from (44) and (50). �
The van Erven-Harremoës bound allows us to use the

continuity of Cα,W in α and Pinsker’s inequality to establish
the continuity of qα,W in α for the total variation topology.

Lemma 20: For any W ⊂ P(Y) and η ∈ (0,∞] such that
Cη,W < ∞,

Cφ,W − Cα,W ≥ Dα

�

qα,W




 qφ,W

�

(51)

for all α and φ satisfying 0 < α < φ ≤ η. Furthermore, qα,W
is a continuous function of α on (0, η] for the total variation
topology on P(Y).

The continuity of the Rényi center as a function of the
order is important because it allows us to the interpret the
Rényi centers as a transition probability from the interval
on which the Rényi capacity is finite to (Y,Y) and apply
Augustin’s method, see [51, §III-A] for a more detailed
discussion.

Proof of Lemma 20: For q = qφ,W, Lemma 19 implies

supw∈WDα

�

w� qφ,W
� ≥ Cα,W + Dα

�

qα,W




 qφ,W

�

. (52)

Since Dα

�

w� qφ,W
�

is nondecreasing in α by Lemma 7,

Dφ

�

w� qφ,W
� ≥ Dα

�

w� qφ,W
� ∀w ∈ W, φ ∈ [α, η]. (53)

On the other hand by (35) of Theorem 1 we have

Cφ,W = supw∈WDφ

�

w� qφ,W
� ∀φ ∈ (0, η]. (54)

(51) follows from (52), (53), and (54).
Using Lemma 10 and (51) we get

�
2

φ∧1 (Cφ,W − Cα,W) ≥ 


qφ,W − qα,W




. (55)

Then, for the total variation topology on P(Y), the continuity
of qα,W in α follows from the continuity Cα,W in α on (0, η],
i.e. Lemma 15-(f). �
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Lemma 19 established the continuity of the Rényi center in
the order for the total variation topology. We suspect a much
stronger statement is true.

Conjecture 1: For any W ⊂ P(Y) and η ∈ (0,∞].
satisfying Cη,W < ∞,

μφ,W ≤ μη,W ∀φ ∈ (0, η] (56)

where μφ,W � e
φ−1
φ Cφ,W qφ,W for all φ ∈ (0, η].

For any W using the continuity of the Rényi center in
the order, one can prove that there exists a ν in P(Y) such
that {qα,W : Cα,W < ∞}≺ν. However, the continuity of the
Rényi center as a function of the order for the total variation
topology does not imply the continuity of corresponding
Radon-Nikodym derivative dqα,W

dν as a function of α for ν-
almost everywhere. If Conjecture 1 is correct, then it will
imply the continuity of Radon-Nikodym derivative dqα,W

dν as a
function of α for ν-almost everywhere.

Remark 2: The continuity in the total variation topology
does not imply the continuity of the corresponding Radon-
Nikodym derivative: Let the output space be the real numbers
between −1 and 2, and the Radon-Nikodym derivative of qα

with respect to the Lebesgue measure l be
dqα
dl = 1{sin( 1

t−α )≤y≤sin( 1
t−α )+|α−t|} + 1{0≤y≤1}(1 − |α − t|)

for a t ∈ (0, 1). Evidently limη→α




qα − qη




 = 0 for all α in

(0, 1). But dqα
dl is not continuous in α for any y ∈ (0, 1) at t.

C. The Unions, Cartesian Products, Closures, and More

This subsection is composed of applications of Theorem 1
and Lemma 19. Lemma 21, in the following, bounds from
below and from above the Rényi capacity of a union of sets
in terms of the Rényi capacities of the sets in the union.
Lemma 22 establishes that the Rényi capacity of a Cartesian
product is equal to the sum of the Rényi capacities of its
components. Lemma 23 shows that for any positive � the
order α Rényi capacity of the set of w’s in W satisfying
Dα

�

w� qα,W
� ≥ Cα,W − � is equal to Cα,W. Lemma 24

establishes the invariance of Cα,W under the closure and
convexification operations on W and characterizes the relative
compactness of W in terms of its Rényi capacity. Proofs of
these lemmas are presented in [48, Appendix C].

Lemma 21: For any α ∈ (0,∞] and W ⊂ P(Y) satisfying
W = ∪ı∈TWı for some Wı ⊂ P(Y) with finite Cα,Wı ’s,

supı∈T Cα,Wı ≤ Cα,W ≤ ln
�

ı∈T
eCα,Wı . (57)

Furthermore,
• Cα,Wı = Cα,W iff Sα,W(qα,Wı ) ≤ Cα,Wı .
• If Cα,Wı = Cα,W, then qα,W = qα,Wı .
• Cα,W = ln

	

ı∈T eCα,Wı and Cα,W is finite iff T is finite
and qα,Wı ⊥ qα,Wj

for all ı �= j in T.
• If T is finite and qα,Wı ⊥ qα,Wj

for all ı �= j in T, then

qα,W = (
	

j∈T eCα,Wj )−1 	

ı∈T eCα,Wı qα,Wı .
One might think that qα,Wı ⊥ qα,Wj

iff Wı ⊥ Wj . This,
however, is true only for α’s in [1,∞]. For α’s in (0, 1),
Wı ⊥ Wj is a sufficient condition for qα,Wı ⊥ qα,Wj

, but
it is not a necessary condition, see [48, Examples 1 and 2].

Augustin [5] is the first one to point out this subtlety and
to present necessary and sufficient conditions for Cα,W =
ln

	

ı∈T eCα,Wı , to the best of our knowledge. Bounds given
in (57) is well known [22, p. 535, Example 5.17]. We use
the van Erven-Harremoës bound in order to characterize the
necessary and sufficient conditions for supı∈T Cα,Wı = Cα,W
and Cα,W = ln

	

ı∈T eCα,Wı .
Let T be a finite set. For each t ∈ T, let (Yt,Yt) be a

measurable space and wt be a probability measure on (Yt,Yt).
Then there exists a unique product measure ⊗t∈Twt on the
measurable space (×t∈TYt ,⊗t∈TYt) by [17, Th. 8.2.2]. Let Wt

be a subset of P(Yt) for each t ∈ T. Then using the existence
of a unique product measure we can map the Cartesian product
of the sets Wt uniquely to a subset of P(⊗t∈TYt), called the
product of Wt’s. Then the Rényi capacity of the product is
equal to the sum of the Rényi capacities of its components and
the Rényi center of the product, whenever it exists, is equal to
the product of the Rényi centers of its components. Lemma 22
asserts these observations formally.

Lemma 22: For any finite index set T, if Y = ×t∈TYt ,
Y = ⊗t∈TYt , and W = {w : w = ⊗t∈Twt : wt ∈ Wt} for some
Wt ⊂ P(Yt), then

Cα,W =
�

t∈T
Cα,Wt ∀α ∈ (0,∞]. (58)

Furthermore, if Cα,W < ∞, then qα,W = ⊗t∈Tqα,Wt .
Quite frequently, the information transmission problems are

analyzed on the product W’s. Lemma 22 is instrumental when
that is the case. The derivation of the sphere packing bound
presented in [51, §IV] is a case in point. The additivity of
the Rényi capacity for products was first reported by Gallager
—in a slightly different form and for finite W and Y case—
in his seminal paper [20, Th. 5], see also [22, pp. 149–150,
eq. (5.6.59)]. Later, Augustin proved [5, Lemma 26.7a], which
implies Lemma 22; see [4, Lemma 3.6] for finite W case.

One curious question is whether or not one can give a class
of priors for which the lower bound given in (40) is not too
loose. Lemma 23 answers this question in the affirmative.

Lemma 23: For any α ∈ (0,∞], W ⊂ P(Y) with finite
Cα,W, and � ≥ 0, let Wα,� be

Wα,� �
�

w ∈ W : Dα

�

w� qα,W
� ≥ Cα,W − �

�

. (59)

Then for any � > 0, we have Cα,Wα,�
= Cα,W and

0 ≤ Cα,W − Iα(p;W) − Dα

�

qα,p



 qα,W

� ≤ � (60)

for all p in P(Wα,�). Furthermore, if W is a finite set, then
Cα,Wα,0 = Cα,W and (60) holds for � = 0.

The main conclusion of Lemma 23 is the equality Cα,Wα,�
=

Cα,W for positive �’s. This is expected for a general W and
evident, even for � = 0 case, for a finite W because of the
existence of an optimal p in P(W) for finite W’s. One might
be tempted to assume the validity of the assertions for � = 0
case for arbitrary W’s. This, however, is not true; see [48,
Example 4] for a W for which Cα,W > 0 and Cα,Wα,0 = 0.
Thus finiteness of W is not a superficial hypothesis for
extending the claims to � = 0 case.

In order to apply certain technical tools, we occasion-
ally need a given set to be closed, convex, or compact.
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The observations presented in Lemma 24, given in the fol-
lowing, can be helpful in such situations. For example, if we
can prove a statement about Rényi capacity assuming W to
be convex, then we can assert that statement for non-convex
W’s using Lemma 24-(a). Furthermore, in certain situations,
calculating the Rényi capacity might be easier for the convex
hull or the closure of W when compared to W itself, see
[48, Example 4]. Lemma 24-(a,b) is helpful in such situations.
Note that Lemma 24-(a,b) when considered together with
Lemma 21 imply the equality of the Rényi centers of W, chW,
and clW whenever one of them exists.

Lemma 24: Let W be a subset of P(Y).

(a) Cα,chW = Cα,W for all α ∈ (0,∞] where chW is the
convex hull of W given by chW � {μ1,p : p ∈ P(W)}.

(b) Cα,clW = Cα,W for all α ∈ (0,∞] where clW is the
closure of W in the topology of setwise convergence or a
stronger topology on P(Y).

(c) If Cη,W<∞ for an η≥1, then {μα,p :α∈[0, η], p∈P(W)}
is uniformly absolutely continuous with respect to qη,W
and relatively compact in both the topology of setwise
convergence and the weak topology.

(d) The following four statements are equivalent:

(i) limα↑1
1−α
α Cα,W = 0.

(ii) ∃μ ∈ P(Y) such that W≺uniμ.
(iii) W has compact closure in the topology of setwise

convergence.
(iv) W has compact closure in the weak topology.

Each assertion of Lemma 24 is proved using Theorem 1
together with some other observations. The invariance of Cα,W
under the closure and the convexification operations on W,
presented in Lemma 24-(a,b), follow from the lower semicon-
tinuity and the quasi-convexity of the Rényi divergence in its
first argument. Lemma 24-(c) follows from the monotonicity
of μα,p in α and de la Vallée Poussin’s characterization of the
uniform integrability, i.e. [6, Th. 4.5.9].

Arguably, the most interesting observation of Lemma 24 is
the following: limα↑1

α−1
α Cα,W = 0 iff there exists a μ in

P(Y) satisfying W≺uniμ. This characterization is important
because W is relatively compact, i.e. has a compact closure,
in the topology of setwise convergence iff there exists a μ
in P(Y) satisfying W≺uniμ by [6, Th. 4.7.25]. Since the
topology of set wise convergence and the weak topology have
exactly the same family of sets as their compact sets by
[6, Th. 4.7.25], the uniform absolute continuity also charac-
terizes the relative compactness in the weak topology.

Remark 3: The weak topology on M(Y) is the topology
generated by all continuous linear functions from M(Y) with
the total variation topology to � with its usual topology. Then
the weak topology is weaker than the total variation topology,
i.e. the initial topology. On the other hand, the topology of
setwise convergence on M(Y) is the topology generated by
the functions {fE : E ∈ Y} where fE(μ) = �

Eμ(dy) for E in Y
and μ in M(Y). Since fE : M(Y) → � is a continuous linear
function for any E ∈ Y , the weak topology is stronger than
the topology of setwise convergence. Nevertheless, the weak
topology and the topology of setwise convergence have exactly
the same class of compact sets, [6, Th. 4.7.25].

Our use of the term weak topology is consistent
with the convention used in functional analysis, see
[6, pp. 281 and 291]. While discussing the convergence of
measures, however, the term weak topology is commonly
used to describe another topology. If there is a topology on
Y and Y is the resulting Baire ξ−algebra [6, p. 12] of the
subsets of Y, then one can interpret the space of measures as
a space of linear functionals on the space of continuous and
bounded functions on Y. The weak* topology on the space
of measures in this setting is often called the weak topology
[6, Definition 8.1.2]. Although it is a very important and useful
concept in general, the weak topology in this second sense is
not relevant in our discussion because we have not assumed
any topological structure on Y.

V. DISCUSSION

In this paper, we define and analyze the order α
Rényi capacity Cα,W and the order α Rényi radius Sα,W for
an arbitrary set of probability measures W on an arbitrary
measurable space. Our most important contributions are prov-
ing the van Erven-Harremoës conjecture, i.e. Lemma 19, and
two uniform equicontinuity results on the Rényi information,
i.e. Lemma 16-(e,f). We also prove a minimax theorem, i.e.
Theorem 1, which has been previously reported by Augustin
in [5] in a different form and for orders between zero and
two. Theorem 1 establishes not only the equality of Cα,W and
Sα,W for any α and W but also the existence of a unique order
α Rényi center whenever Cα,W is finite. Our analysis leads
to certain immediate consequences for two generalizations:
Cα,W,A defined for A ⊂ P(W) and Cα,W defined for transition
probability W . We introduce those generalizations formally
and discuss the implications of our analysis on them in
Appendices A and B.

Results of our analysis, also, encourage one to consider
certain related problems:

• We do not assume any topological structure on the
output space Y. Although this is a strength because
of the generality of our results, it is also a weakness
because of the obliviousness of our analysis towards the
interactions between Rényi ’s information measures and
the topological structure of the output space. In almost
all of the applications, Y is a Borel or Baire ξ -algebra
of the topological space (Y, τ ); usually there is an even
more specific structure. In most of the applications, Y is
the Borel ξ -algebra of a complete separable metric space
(Y, d). Thus one can define metrics other than the total
variation metric on W and P(W) using the metric d and
analyze the behavior of Rényi ’s information measures
on the resulting topologies. Such models have already
been considered in the context of the arbitrarily varying
channels [12], [70] and the typicality [36], [42], [55].

• It is easy to confirm that continuity of the order α
Rényi capacity as a function of the order α implies the
continuity of the corresponding f -capacity Cfα,W as a
function of α where fα(x) = xα−1

α−1 . The existence of
similar, but more general, continuity results for richer
classes of f -divergences with appropriate topologies is
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expected. What is plausible, but not evident, to us is the
existence of a topology on the set of all convex f ’s that
ensures the continuity of the corresponding f -capacities
in f for all W on the region that f -capacities are finite.
The interaction of topologies on the space of convex
functions and corresponding f -capacities seems to be a
fertile subject of inquiry.

• We use the definition of the Rényi information proposed
by Sibson [68]. In (26) we provide the expression for the
alternative definition of the Rényi information proposed
by Augustin [5] and Csiszár [13]. We call this quantity the
Augustin information. Theorems 1, 2, 3, and many of the
other propositions have their analogues for the Augustin
information, see [47], [52]. The Augustin capacity and
center are of interest to us because they are better suited
than the Rényi capacity and center for deriving the sphere
packing bound for memoryless channels, see [50], [52].

We have avoided using information theoretic concepts such as
code, channel, or rate in our discussion because we believe
Rényi ’s information measures can and should be defined
and understood on their own as measure theoretic concepts
first. Rényi’s information measures, however, do have opera-
tional meaning in various information transmission problems.
We discuss the case of channel coding problem in [51].

APPENDIX

A. The Constrained Rényi Capacity

Definition 8: For any α ∈ [0,∞], W ⊂ P(Y), A ⊂ P(W),
the order α Rényi capacity of W for constraint set A is

Cα,W,A � supp∈A Iα(p;W) . (A.1)

Cα,W,P(W) = Cα,W and Cα,W,{p} = Iα(p;W) for any W and
p ∈ P(W).

If we replace P(W) with a convex A, the proof of Theo-
rem 1 works as is. Thus the minimax theorem continues to
hold for Cα,W,A; but the alternative expression for Cα,W,A is
no longer (guaranteed to be) equal to the Rényi radius.

Theorem 2: For any α ∈ (0,∞], W ⊂ P(Y), and convex
A ⊂ P(W),

Cα,W,A = supp∈A infq∈P(Y) Dα(p�W� p ⊗ q) (A.2)

= infq∈P(Y) supp∈A Dα(p�W� p ⊗ q) . (A.3)

If Cα,W,A < ∞, then there exists a unique qα,W,A in P(Y),
called the order α Rényi center for constraint set A, such that

Cα,W,A = supp∈A Dα

�

p�W� p ⊗ qα,W,A
�

. (A.4)

Furthermore, for every sequence of priors {pı}ı∈Z+ ⊂ A

satisfying limı→∞ Iα(pı ;W) = Cα,W,A, the corresponding
sequence of order α Rényi means {qα,pı }ı∈Z+ is a Cauchy
sequence for the total variation metric on P(Y) and qα,W,A
is the unique limit point of that Cauchy sequence.

A similar modification is needed for the van Erven-
Harremoës bound, i.e. for Lemma 19, as well.

Lemma 25: For any α ∈ (0,∞], W ⊂ P(Y), convex A ⊂
P(W) satisfying Cα,W,A < ∞, and q ∈ P(Y)

Cα,W,A + Dα

�

qα,W,A




 q

� ≤ supp∈A Dα(p�W� p ⊗ q) .

Lemma 20 establishing the continuity of the Rényi centers
in the order holds for the constrained Rényi centers. We prove
it using Theorem 2 and Lemma 25 instead of Theorem 1 and
Lemma 19.

B. The Rényi Capacity of Transition Probabilities

We have defined the order α Rényi information Iα(p;W) for
any p.m.f. p on a set of probability measures W. We show
in the following —using the concept of transition probability
and the expression for Iα(p;W) given in (24)— that for appro-
priately chosen ξ -algebra W , one can extend the definition
of Iα(p;W) to p’s that are probability measures on (W,W).
Furthermore, we show that if W is countably separated, then
Theorem 1 holds for this more general case, see Theorem 3.

Definition 9: Let (X,X ) and (Y,Y) be measurable spaces.
Then a function W : X × Y → [0, 1] is called a transition
probability (a stochastic kernel / a Markov kernel) from (X,X )
to (Y,Y) if it satisfies the following two conditions:

(i) For all x ∈ X, the function W(·|x) : Y → [0, 1] is a
probability measure on (Y,Y).

(ii) For all E ∈ Y , the function W(E|·) : X → [0, 1] is a
X -measurable function.

By [6, Th. 10.7.2.], for any transition probability W and
probability measure p on (X,X ) there exists a unique proba-
bility measure p�W on (X × Y,X ⊗ Y) satisfying

p�W(Ex × Ey) =
�

Ex

W(Ey|x)p(dx)

for all Ex ∈ X and Ey ∈ Y . Now, we can define the order α
Rényi information for p on the transition probability W .

Definition 10: For any α ∈ [0,∞], transition probability
W from (X,X ) to (Y,Y), and p ∈ P(X ), the order α
Rényi information for prior p is defined as

Iα(p;W) � infq∈P(Y) Dα(p�W� p ⊗ q) . (A.5)

Definitions 4 and 10 are equivalent because of Lemma 14.
Using the definition of Iα(p;W) we can define the order α
Rényi capacity of a transition probability W .

Definition 11: For any α ∈ [0,∞] and transition probabil-
ity W from (X,X ) to (Y,Y), the order α Rényi capacity is

Cα,W � supp∈P(X ) Iα(p;W) . (A.6)

The analysis of the Rényi capacity for an arbitrary transition
probability W is beyond the scope of this paper. However,
if the ξ -algebra X is countably separated, then we can use
Theorem 1 to show that Cα,W = Cα,W for a W ⊂ P(Y).

Theorem 3: For any α ∈ (0,∞] and transition probability
W from (X,X ) to (Y,Y) for a countably separated ξ -
algebra X

Cα,W = supp∈P(X ) infq∈P(Y) Dα(p�W� p ⊗ q) (A.7)

= infq∈P(Y) supp∈P(X ) Dα(p�W� p ⊗ q) (A.8)

= infq∈P(Y) supw∈WDα(w� q) (A.9)

where W � {W(·|x) : x ∈ X}. If Cα,W < ∞, then there exists
a unique qα,W in P(Y), called the order α Rényi center, such
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that

Cα,W = supp∈P(X ) Dα

�

p�W� p ⊗ qα,W
�

(A.10)

= supw∈WDα

�

w� qα,W
�

. (A.11)

Proof of Theorem 3: Since X is countably separated, all
singletons are in X by [6, Th. 6.5.7] and P(X) ⊂ P(X ).
Consequently, using max-min inequality we get

supp∈P(W) infq∈P(Y) Dα(p�W� p ⊗ q)

≤ supp∈P(X ) infq∈P(Y) Dα(p�W� p ⊗ q)

≤ infq∈P(Y) supp∈P(X ) Dα(p�W� p ⊗ q) (A.12)

On the other hand, for any α ∈ (0,∞] as a result of
Tonelli-Fubini theorem [17, Th. 4.4.5] and the definition of
the Rényi divergence given in (19) we have

Dα(p�W� p ⊗ q) ≤ supx∈X Dα(W(·|x)� q)

= supw∈WDα(w� q) . (A.13)

Hence,

infq∈P(Y) supp∈P(X ) Dα(p�W� p ⊗ q)

≤ infq∈P(Y) supw∈WDα(w� q) . (A.14)

Theorem 1 and the inequalities given in (A.12), (A.13), and
(A.14) imply Cα,W = Cα,W and Theorem 3 for qα,W = qα,W.

�
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