
ISSN 0032-9460, Problems of Information Transmission, 2020, Vol. 56, No. 3, pp. 201–244. c© Pleiades Publishing, Inc., 2020.
Russian Text c© The Author(s), 2020, published in Problemy Peredachi Informatsii, 2020, Vol. 56, No. 3, pp. 3–49.

INFORMATION THEORY

The Sphere Packing Bound

for Memoryless Channels

B. Nakiboğlu
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Abstract—Sphere packing bounds (SPBs)—with prefactors that are polynomial in the block
length—are derived for codes on two families of memoryless channels using Augustin’s method:
(possibly nonstationary) memoryless channels with (possibly multiple) additive cost constraints
and stationary memoryless channels with convex constraints on the composition (i.e., empirical
distribution, type) of the input codewords. A variant of Gallager’s bound is derived in order to
show that these sphere packing bounds are tight in terms of the exponential decay rate of the
error probability with the block length under mild hypotheses.
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1. INTRODUCTION

Most proofs of the sphere packing bound (SPB) have been either for the stationary channels
with finite input sets [2–14] or for the stationary channels with a specific noise structure, e.g.,
Poisson or Gaussian [15–22]. Proofs of the SPB based on Augustin’s method are exceptions to this
observation: [23–25] do not assume either the finiteness of the input set or a specific noise structure,
nor do they assume the stationarity of the channel. However, [23; 24, Section 31; 25] establish the
SPB for the product channels rather than the memoryless channels; hence, proofs of the SPB for the
composition constrained codes1 on the stationary channels [9–20] —which include the important
special case of the cost constrained ones [15–20]—are not subsumed by [23; 24, Section 31; 25].
In [24, Section 36], Augustin proved the SPB for the cost constrained (possibly nonstationary)
memoryless channels assuming a bounded cost function. The framework of [24, Theorem 36.6]
subsumes all previously considered models [2–22] except the Gaussian ones [17–20].

Theorem 2, presented in Section 3, establishes the SPB for a framework that subsumes all of the
models considered in [2–25] by employing [26], which analyzes Augustin’s information measures.
Our use of [26] and Augustin’s information measures is similar to the use of [27] and Rényi’s infor-
mation measures in [25]. For the product channels, [25, Theorem 2] improved the previous results
by Augustin in [23; 24, Section 31] by establishing the SPB with a prefactor that is polynomial in
the block length n for the hypothesis that the order 1/2 Rényi capacity of the component chan-
nels are O(lnn). For the cost constrained memoryless channels, Theorem 2 enhances the prefactor
of [24, Theorem 36.6] in an analogous way, from e−O(

√
n) to e−O(lnn). The prefactor of Theorem 2,

however, is inferior to the prefactors reported in [3–6] for various symmetric channels, in [13] for
the constant composition codes on discrete stationary product channels, in [17] for the stationary

1 According to [12, p. 183], the SPB for the constant composition codes appears in [9] with an incomplete
proof. The first complete proof of the SPB for the constant composition codes is provided in [10].
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Gaussian channel, and in [21, 22] for certain noncoherent fading channels. Determination of the
optimal prefactor, in the spirit of [3–5], remains an open problem for the general case.2 Similarly
to [24, Theorem 36.6], Theorem 2 holds for nonstationary channels as well. Unlike [24, Theo-
rem 36.6], Theorem 2 does not assume the cost functions to be bounded.

The stationarity is assumed in most of the previous derivations of the SPB [2–22]. Given
a stationary product channel, one can obtain a stationary memoryless channel by imposing
composition—i.e., type, empirical distribution—constraints on the input codewords. The cost con-
straints can be interpreted as a particular convex case of this more general composition constraints.
This interpretation, considered together with the composition based expurgations, is one of the
main motivating factors behind the study of constant composition codes. The composition-based
expurgations, however, are useful only when the input set of the channel is finite. Nevertheless,
if the constraint set for the composition of the codewords is convex, then one can derive an SPB
with a polynomial prefactor using Augustin’s information measures; see Theorem 1 in Section 3.
The derivation of Theorem 1 relies on the Augustin center of the constraint set rather than the
Augustin mean of the most populous composition of the code. Note that the most populous com-
position of the code might not even have more than one codeword when the input set is infinite.
The framework of Theorem 1 is general enough to subsume the frameworks of all previous proofs
of the SPB for the memoryless channels that we are aware of, except the frameworks of the proofs
based on Augustin’s method [23–25]. Theorems 1 and 2 are asymptotic SPBs; but they are proved
using nonasymptotic SPBs presented in Lemmas 9 and 10.

The SPB implies that exponential decay rate of the optimal error probability with the block
length—i.e., the reliability function, the error exponent—is bounded from above by the sphere
packing exponent (SPE). For the memoryless channels in consideration, Augustin’s variant of Gal-
lager’s bound implies that the SPE bounds the reliability function from below as well, provided
that the list decoding is allowed. Augustin’s variant of Gallager’s bound is presented in Section 2.4.
One can use standard results such as [29,30] with minor modifications in order to establish the SPE
as a lower bound to the reliability function for the list decoding as well. Thus, Augustin’s variant
is of interest to us not because of what it implies about the reliability function but because of how
it implies it. What is unique about Augustin’s variant is that it establishes an achievability result
in terms of the Augustin information rather than the Rényi information used in the standard form
of the Gallager’s bound [29]. Augustin’s variant relies on the fixed point property of the Augustin
mean described in (7) to do that. It is worth mentioning that [30] implicitly employs the same
fixed point property but in a different way.

Before starting our discussion in earnest, let us point out a subtlety about the derivations of
the SPB that is usually overlooked. [31] claimed to prove the SPB for arbitrary stationary product
channels, without using any constant composition arguments.3 The derivation of [31, Theorem 19],
however, establishes an upper bound on the reliability function that is strictly greater than the
SPE in many channels. This has been demonstrated numerically in [13, p. 1594 and Appendix A].
An analytic confirmation of this observation is presented in Appendix A. The problematic step
in [31] is the application of Lagrange multiplier techniques; see [13, footnote 8]. The proof of [31,
Theorem 19] invokes [31, Theorem 16], which is valid for the Lagrange multiplier s associated with
the input distribution p satisfying Esp(R,W ) = Esp(R,W, p). For an arbitrary input distribution p,
however, the associated Lagrange multiplier may or may not be equal to the one for the optimal
input distribution p. This is the reason why the upper bound to the reliability function established

2 In [28], we have derived refined SPBs (which are optimal in terms of the prefactor for nonsingular cases)
for all of the cases considered in [3–6, 13, 17, 21, 22] using Augustin information measures via [26].

3 [31, p. 413] reads “An important feature of the lower bound, which will be derived, is that no assumption
of constant-composition codewords is made, not even as an intermediate step.”
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in [31, Theorem 19] is not equal to the SPE in general, contrary to the claim repeated in [32,
Lemma 1] and [33, Theorem 10.1.4]. In a nutshell, the proof of [31, Theorem 19] tacitly asserts
a minimax equality that does not hold in general. For stationary memoryless channels with finite
input alphabets, one can avoid this issue using the constant composition arguments. However,
in that case, the proof presented in [31] becomes a mere reproduction of the one in [10]. More
recently, [34] proposed a derivation of the SPB for stationary channels with a single cost constraint
using the approach presented in [31]. Similar to [31], however, the proof in [34] asserts a minimax
equality that does not hold in general. In particular, it is claimed that Qn does not depend on xm

in [34, equation (26)]. To assert that, one has to include an additional supremum over xm as the
innermost optimization in both [34, equations (25) and (26)]. With the additional supremum, the
explanation provided on [34, p. 931] is no longer valid. Considering Appendix A, we do not believe
that the proof in [34] can be salvaged without introducing major new ideas, such as composition
based expurgations similar to [10] or codeword cost based expurgations similar to [18]. In short,
neither [31] nor [34] successfully proved the SPB for stationary memoryless channels even for the
finite input set case.

In the rest of this section, we introduce our notation and channel model and define the channel
codes with list decoding. In Section 2, we first present a brief review of the Rényi divergence,
Augustin information measures, and the SPE; then, we derive Augustin’s variant of Gallager’s
bound. In Section 3, we first state our main asymptotic results—i.e., SPBs given in Theorem 1
and Theorem 2—and then derive the nonasymptotic SPBs implying them. In Section 4, we derive
the SPE for particular Gaussian and Poisson channels and confirm the equivalence of the definition
invoked in Section 2 to the ones derived for these channels previously. In Section 5, we discuss
why Augustin’s method works briefly and compare our results with Augustin’s in [24] and discuss
applications of Augustin’s method and use of Augustin’s information measures in related problems.

1.1. Notational Conventions

For any two vectors μ and q in R
� their inner product, denoted by μ · q, is

�∑

i=1
μiqi. For any

� ∈ Z+, the �-dimensional vector whose all entries are one is denoted by 1, the dimension � will be
clear from the context. We denote the closure, interior, and convex hull of a set S by cl S, int S, and
ch S, respectively; the relevant topology or vector space structure will be evident from the context.

For any set Y, we denote the set of all probability mass functions that are nonzero only on
finitely many members of Y by P(Y). For any p ∈ P(Y), we call the set of all y in Y for which
p(y) > 0 the support of p and denote it by supp p. For any measurable space (Y,Y), we denote the
set of all probability measures on it by P(Y) and set of all finite measures by M+(Y). We denote
the integral of a measurable function f with respect to the measure μ by

∫
f μ(dy) or

∫
f(y)μ(dy).

If the integral is on the real line and if it is with respect to the Lebesgue measure, we denote it by
∫
f dy or

∫
f(y) dy as well. If μ is a probability measure, then we also call the integral of f with

respect μ the expectation of f or the expected value of f and denote it by Eμ[f ] or Eμ[f(Y )].

Our notation will be overloaded for certain symbols; however, the relations represented by these
symbols will be clear from the context. We denote the Cartesian product of sets [35, p. 38] by ×. We
use | · | to denote the absolute value of real numbers and the size of sets. The sign ≤ stands for the
usual less than or equal to relation for real numbers and the corresponding point-wise inequity for
functions and vectors. For two measures μ and q on the measurable space (Y,Y), μ ≤ q if and only
if μ(E) ≤ q(E) for all E ∈ Y. We denote the product of topologies [35, p. 38], σ-algebras [35, p. 118],
and measures [35, Theorem 4.4.4] by ⊗. We use the shorthand Xn

1 for the Cartesian product of
sets X1, . . . ,Xn and Yn

1 for the product of the σ-algebras Y1, . . . ,Yn.
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1.2. Channel Model

A channel W is a function from the input set X to the set of all probability measures on the
output space (Y,Y):

W : X → P(Y). (1)

Y is called the output set, and Y is called the σ-algebra of the output events. We denote the set of
all channels from the input set X to the output space (Y,Y) by P(Y |X). For any p ∈ P(X) and
W ∈ P(Y |X), p � W is the probability measure whose marginal on X is p and whose conditional
distribution given x is W (x). The structure described in (1) is not sufficient on its own to ensure
the existence of a unique p � W with the desired properties for all p ∈ P(X ) in general. The
existence of a unique p � W is guaranteed for all p ∈ P(X ) if W is a transition probability from
(X,X ) to (Y,Y), i.e., a member of P(Y |X ) rather than P(Y |X).

A channel W is called a discrete channel if both X and Y are finite sets. For any n ∈ Z+ and
channels Wt : Xt → P(Yt) for t ∈ {1, . . . , n}, the length n product channel W[1,n] : X

n
1 → P(Yn

1 ) is
defined via the following relation:

W[1,n](x
n
1 ) =

n⊗

t=1

Wt(xt), ∀xn1 ∈ Xn
1 .

A channel U : Z → P(Yn
1 ) is called a length n memoryless channel if and only if there exists a

product channel W[1,n] satisfying U(z) = W[1,n](z) for all z ∈ Z and Z ⊂ Xn
1 . A product channel is

stationary if and only if Wt = W for all t ∈ {1, . . . , n} for some W : X → P(Y). For such a channel,
we denote the composition (i.e., the empirical distribution, type) of each xn1 ∈ Xn

1 by Υ (x), where
Υ (x) ∈ P(X).

For any � ∈ Z+, an �-dimensional cost function ρ is a function from the input set to R
� that is

bounded from below, i.e., that is of the form ρ : X → R
�
≥z for some z ∈ R. We assume without loss

of generality that4

inf
x∈X

ρi(x) ≥ 0, ∀i ∈ {1, . . . , �}.

We denote the set of all cost constraints that can be satisfied by some member of X by Γex
ρ and the

set of all cost constraints that can be satisfied by some member of P(X) by Γρ:

Γex
ρ � {� ∈ R

�
≥0 : ∃x ∈ X such that ρ(x) ≤ �},

Γρ � {� ∈ R
�
≥0 : ∃p ∈ P(X) such that Ep[ρ] ≤ �}.

Then both Γex
ρ and Γρ have nonempty interiors and Γρ is the convex hull of Γex

ρ , i.e., Γρ = chΓex
ρ .

A cost function on a product channel is said to be additive if and only if it can be written
as the sum of cost functions defined on the component channels. Given Wt : Xt → P(Yt) and
ρt : Xt → R

�
≥0 for t ∈ {1, . . . , n}, we denote the resulting additive cost function on Xn

1 for the
channel W[1,n] by ρ[1,n], i.e.,

ρ[1,n](x
n
1 ) =

n∑

t=1

ρt(xt), ∀xn1 ∈ Xn
1 .

1.3. Codes With List Decoding

The pair (Ψ,Θ) is an (M,L) channel code on W : X → P(Y) if and only if

4 Augustin [24, Section 33] has an additional hypothesis,
∨

x∈X

ρ(x) ≤ 1, which excludes certain important
cases such as the Gaussian channels.
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• The encoding function Ψ is a function from the message set M � {1, 2, . . . ,M} to the input
set X;

• The decoding function Θ is a measurable function from the output space (Y,Y) to the set

M̂ � {L : L ⊂ M and |L| ≤ L}.

Given an (M,L) channel code (Ψ,Θ) on W : X → P(Y), the conditional error probability Pm
e for

m ∈ M and the average error probability Pe are defined as

Pm
e � EW (Ψ(m))[1{m/∈Θ(y)}],

Pe � 1

M

∑

m∈M
Pm
e .

An encoding function Ψ , hence the corresponding code, is said to satisfy the cost constraint � if and
only if

∨

m∈M
ρ(Ψ(m)) ≤ �. An encoding function Ψ , hence the corresponding code, on a stationary

product channel is said to satisfy an empirical distribution constraint A ⊂ P(X) if and only if the
composition of all of the codewords are in A, i.e., if and only if Υ (Ψ(m)) ∈ A for all m ∈ M.

2. PRELIMINARIES

The Rényi divergence, tilting, and Augustin’s information measures are central to the analysis
that we present in the following sections. We introduce these concepts in Sections 2.1 and 2.2;
a more detailed discussion can be found in [26, 36]. In Section 2.3 we define the SPE and derive
widely known properties of it for our general channel model. In Section 2.4 we derive Augustin’s
variant of Gallager’s bound.

2.1. The Rényi Divergence and Tilting

Definition 1. For any α ∈ R+ and w, q ∈ M+(Y), the order α Rényi divergence between w
and q is

Dα(w ‖q) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

α− 1
ln

∫ (
dw

dν

)α (dq

dν

)1−α

ν(dy), α �= 1,

∫
dw

dν

[

ln
dw

dν
− ln

dq

dν

]

ν(dy), α = 1,

where ν is any measure satisfying w ≺ ν and q ≺ ν.

For properties of the Rényi divergence, throughout the manuscript, we will refer to the compre-
hensive study provided by van Erven and Harremoës [36]. Note that the order one Rényi divergence
is the Kullback–Leibler divergence. For other orders, the Rényi divergence can be characterized in
terms of the Kullback–Leibler divergence as well; see [36, Theorem 30]. That characterization is
related to another key concept for our analysis: the tilted probability measure.

Definition 2. For any α ∈ R+ and w, q ∈ P(Y) satisfying Dα(w ‖q) < ∞, the order α tilted
probability measure wq

α is

dwq
α

dν
� e(1−α)Dα(w‖q)

(
dw

dν

)α(dq

dν

)1−α

. (2)

The conditional Rényi divergence and the tilted channel are straightforward generalizations
of the Rényi divergence and the tilted probability measure that will allow us to express certain
relations succinctly throughout our analysis.
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206 NAKİBOĞLU

Definition 3. For any α ∈ R+, W : X → P(Y), Q : X → P(Y), and p ∈ P(X) the order α
conditional Rényi divergence for the input distribution p is

Dα(W ‖Q |p) �
∑

x∈X
p(x)Dα(W (x)‖Q(x)).

If ∃q ∈ P(Y) such that Q(x) = q for all x ∈ X, then we denote Dα(W ‖Q |p) by Dα(W ‖q |p).
Definition 4. For any α ∈ R+, W : X → P(Y) and Q : X → P(Y), the order α tilted channel

WQ
α is a function from {x : Dα(W (x)‖Q(x)) < ∞} to P(Y) given by

dWQ
α (x)

dν
� e(1−α)Dα(W (x)‖Q(x))

(
dW (x)

dν

)α(dQ(x)

dν

)1−α

. (3)

If ∃q ∈ P(Y) such that Q(x) = q for all x ∈ X, then we denote WQ
α by W q

α.

The following operator Tα,p(·) was considered implicitly by Fano [9, ch. 9], Haroutunian [10],
and Polytrev [30] and explicitly by Augustin [24, Section 34], but only for orders less than one in
all four manuscripts.

Definition 5. For any α ∈ R+, W : X → P(Y), and p ∈ P(X), the order α Augustin operator
for the input distribution p, i.e., Tα,p(·) : Qα,p → P(Y), is given by

Tα,p(q) �
∑

x

p(x)W q
α(x), ∀q ∈ Qα,p, (4)

where Qα,p � {q ∈ P(Y) : Dα(W ‖q |p) < ∞} and the tilted channel W q
α is defined in (3).

2.2. Augustin’s Information Measures

Definition 6. For any α ∈ R+, W : X → P(Y), and p ∈ P(X) the order α Augustin information
for the input distribution p is

Iα(p;W ) � inf
q∈P(Y)

Dα(W ‖q |p). (5)

The infimum in (5) is achieved by a unique probability measure denoted by qα,p and called the
order α Augustin mean for the input distribution p. Furthermore, the order α Augustin mean
satisfies the following identities:

D1∨α(qα,p ‖q) ≥ Dα(W ‖q |p)− Iα(p;W ) ≥ D1∧α(qα,p ‖q), ∀q ∈ P(Y), α ∈ R+, (6)

Tα,p(qα,p) = qα,p, ∀α ∈ R+. (7)

These observations are established in [26, Lemma 13(b)–(d)]; previously they were reported by
Augustin [24, Lemma 34.2] for orders less than one. Throughout the manuscript, we refer to [26]
for propositions about Augustin’s information measures. A more detailed account of the previous
work on Augustin’s information measures can be found in [26] as well.

Definition 7. For any α ∈ R+, W : X → P(Y), and A ⊂ P(X), the order α Augustin capacity
of W for the constraint set A is

Cα,W,A � sup
p∈A

Iα(p;W ).

When the constraint set A is the whole P(X), we denote the order α Augustin capacity by Cα,W ;
i.e., Cα,W � Cα,W,P(X).
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Using the definitions of the Augustin information and capacity, we get the following expression
for Cα,W,A:

Cα,W,A = sup
p∈A

inf
q∈P(Y)

Dα(W ‖q |p).

If A is convex, then the order of the supremum and the infimum can be changed as a result
of [26, Theorem 1]:

sup
p∈A

inf
q∈P(Y)

Dα(W ‖q |p) = inf
q∈P(Y)

sup
p∈A

Dα(W ‖q |p). (8)

If in addition Cα,W,A is finite, then [26, Theorem 1] implies that there exists a unique probability
measure qα,W,A, called the order α Augustin center of W for the constraint set A, satisfying

Cα,W,A = sup
p∈A

Dα(W ‖qα,W,A |p).

We denote the set of all probability mass functions satisfying a cost constraint � by A(�); i.e.,

A(�) � {p ∈ P(X) : Ep[ρ] ≤ �}.

For the constraint sets defined through cost constraints, we use the symbol Cα,W,� rather than
Cα,W,A(�) with a slight abuse of notation. In order to be able to apply convex conjugation techniques
without any significant modifications, we extend the definition of the Augustin capacity to the
infeasible cost constraints, i.e., to � outside Γρ, as follows:

Cα,W,� �

⎧
⎪⎨

⎪⎩

sup
p∈A(�)

Iα(p;W ) if � ∈ Γρ,

−∞ if � ∈ R
�
≥0 \ Γρ,

∀α ∈ R+.

In order to characterize Cα,W,� through convex conjugation techniques, we first define Augustin–
Legendre (A-L) information and capacity. These concepts are first introduced in [1, Section III-A]
and [26, Section 5.2] as an extension of the analogous concepts in [12, ch. 8].

Definition 8. For any α ∈ R+, channel W of the form W : X → P(Y) with a cost function
ρ : X → R

�
≥0, p ∈ P(X), and λ ∈ R

�
≥0, the order α Augustin–Legendre information for the input

distribution p and the Lagrange multiplier λ is

Iλα(p;W ) � Iα(p;W )− λ · Ep[ρ].

Definition 9. For any α ∈ R+, channel W of the form W : X → P(Y) with a cost function
ρ : X → R

�
≥0, and λ ∈ R

�
≥0 the order α Augustin–Legendre (A-L) capacity for the Lagrange multi-

plier λ is

Cλ
α,W � sup

p∈P(X)
Iλα(p;W ).

Except for certain sign changes, Cλ
α,W is the convex conjugate of Cα,W,� because of an analogous

relation between Iλα(p;W ) and Iα(p;W ), see [26, equations (72)–(74) and (76)]:

Cλ
α,W = sup

�≥0
Cα,W,� − λ · �, ∀λ ∈ R

�
≥0.

Then Cα,W,� can be expressed in terms of Cλ
α,W at least for the interior points of Γρ:

Cα,W,� = inf
λ≥0

Cλ
α,W + λ · �.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 56 No. 3 2020
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Furthermore, there exists a nonempty convex compact set of λα,W,� satisfying Cα,W,� = C
λα,W,�

α,W +
λα,W,� · � provided that Cα,W,� is finite, by [26, Lemma 29].

On the other hand, using the definitions of Iα(p;W ), Iλα(p;W ), and Cλ
α,W we get the following

expression for Cλ
α,W :

Cλ
α,W = sup

p∈P(X)
inf

q∈P(Y)
Dα(W ‖q |p)− λ ·Ep[ρ].

Cλ
α,W satisfies a minimax relation similar to the one given in (8); see [26, Theorem 2]. That minimax

relation, however, is better understood via the concept of Augustin–Legendre radius defined as
follows.

Definition 10. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0, and

λ ∈ R
�
≥0, the order α Augustin–Legendre radius of W for the Lagrange multiplier λ is

Sλ
α,W � inf

q∈P(Y)
sup
x∈X

Dα(W (x)‖q) − λ · ρ(x).

Then, as a result of [26, Theorem 2], for any α ∈ R+, W : X → P(Y) with ρ : X → R
�
≥0, and

λ ∈ R
�
≥0 we have

Cλ
α,W = Sλ

α,W . (9)

If in addition Cλ
α,W is finite, then there exists a unique qλα,W ∈ P(Y), called the order α Augustin–

Legendre center of W for the Lagrange multiplier λ, satisfying

Cλ
α,W = sup

x∈X
Dα(W (x)‖qλα,W )− λ · ρ(x).

The A-L information measures are defined through a standard application of the convex con-
jugation techniques. However, starting with [29, Theorems 8 and 10]—i.e., the cost constrained
variants of Gallager’s bound—the Rényi–Gallager (R-G) information measures rather than the A-L
information measures have been the customary tools for applying convex conjugation techniques in
the error exponent calculations; see, for example, [18–20]. A brief discussion of the R-G information
measures can be found in Appendix B; for a more detailed discussion, see [26].

2.3. The Sphere Packing Exponent

Definition 11. For any W : X → P(Y), A ⊂ P(X), and R ∈ R≥0, the SPE is

Esp(R,W,A) � sup
α∈(0,1)

1− α

α

(
Cα,W,A −R

)
. (10)

We denote the A = P(X) case by Esp(R,W ). Furthermore, with a slight abuse of notation, we
denote the A = {p} case by Esp(R,W, p), and the A = {p : Ep[ρ] ≤ �} case by Esp(R,W, �).

Lemma 1. For any W : X → P(Y) and A ⊂ P(X), Esp(R,W,A) is nonincreasing and convex
in R on R≥0, finite on (C0+,W,A,∞), and continuous on [C0+,W,A,∞), where C0+,W,A = lim

α↓0
Cα,W,A.

In particular,

Esp(R,W,A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, R < C0+,W,A,

sup
α∈(0,1)

1− α

α

(
Cα,W,A −R

)
, R = C0+,W,A,

sup
α∈[φ,1)

1− α

α

(
Cα,W,A −R

)
, R = Cφ,W,A for some φ ∈ (0, 1),

0, R ≥ C1,W,A.

(11)
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Lemma 1 follows from the continuity and the monotonicity properties of Cα,W,A established
in [26, Lemma 23]; a proof can be found in Appendix C. The proof of Lemma 1 is analogous to
that of [25, Lemma 13], which relies on [25, Lemma 8] instead of [26, Lemma 23].

One can express Esp(R,W,A) in terms of Esp(R,W, p) using the definitions of Cα,W,A,
Esp(R,W,A), and Esp(R,W, p):

Esp(R,W,A) = sup
α∈(0,1)

sup
p∈A

1− α

α
(Iα(p;W )−R)

= sup
p∈A

sup
α∈(0,1)

1− α

α
(Iα(p;W )−R)

= sup
p∈A

Esp(R,W, p). (12)

Lemma 1 holds for Esp(R,W, p) by definition, but it can be strengthened significantly for R in
(lim
α↓0

Iα(p;W ), I1(p;W )] using the elementary properties of the Augustin information.

Lemma 2. Let W : X → P(Y) and p ∈ P(X) be such that I0+(p;W ) �= I1(p;W ), where
I0+(p;W ) � lim

α↓0
Iα(p;W ). Then for any rate R ∈ (I0+(p;W ), I1(p;W )] there exists a unique

order α∗ ∈ (0, 1] satisfying

R = I1(p;W
qα∗,p
α∗ ). (13)

The orders α∗ determined by (13) form an increasing continuous bijective function of rate R, from
(I0+(p;W ), I1(p;W )] to (0, 1] satisfying

Esp(R,W, p) = D1(W
qα∗,p
α∗ ‖W |p), (14)

∂

∂R
Esp(R,W, p) =

α∗ − 1

α∗ . (15)

Thus, Esp(R,W, p) is finite, convex, continuously differentiable, and decreasing in R on the interval
(I0+(p;W ), I1(p;W )), and it satisfies

Esp(I0+(p;W ),W, p) = lim
α↓0

D1(W
qα,p
α ‖W |p). (16)

Furthermore, if Esp(I0+(p;W ),W, p) is finite, then there exists a V : X → P(Y) satisfying both
I1(p;V ) = I0+(p;W ) and D1(V ‖W |p) = Esp(I0+(p;W ),W, p).

Proof. Note that I1(p;W
qα,p
α ) is an increasing and continuous function of the order α by [26,

Lemma 17(a),(f)], because I0+(p;W ) �= I1(p;W ) by the hypothesis. In addition, lim
α↓0

I1(p;W
qα,p
α ) =

I0+(p;W ) by [26, Lemma 17(g)]. Then there exists a unique α∗ satisfying (13) by the intermediate
value theorem [37, Theorem 4.23]. The function defined by (13) is an increasing continuous bijective
function of the rate R from (I0+(p;W ), I1(p;W )] to (0, 1], because it is the inverse of an increasing
continuous bijective function from (0, 1] to (I0+(p;W ), I1(p;W )], i.e., α � I1(p;W

qα,p
α ).

On the other hand, Iα(p;W ) is continuously differentiable in α by [26, Lemma 17(e)]; then [26,
equations (35) and (46)] imply

∂

∂α

1− α

α
(Iα(p;W )−R) =

1

α2

(
R− I1(p;W

qα,p
α )
)
. (17)

Hence, for any R ∈ (I0+(p;W ), I1(p;W )], the supremum in the definition of Esp(R,W, p) is achieved
at the order α∗ satisfying (13). Then (14) follows from [26, equation (35)]. Furthermore, for any
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R ∈ (I0+(p;W ), I1(p;W )) and R ≥ 0 we have

Esp(R,W, p) ≥ 1− α∗(R)

α∗(R)
(Iα∗(p;W )−R)

= Esp(R,W, p) +
1− α∗(R)

α∗(R)
(R −R). (18)

For any R ∈ (I0+(p;W ), I1(p;W )) and R ≥ 0, following a similar analysis and reversing the roles
of R and R, we obtain

Esp(R,W, p) ≥ Esp(R,W, p) +
1− α∗(R)

α∗(R)
(R −R). (19)

Since α∗ is increasing and continuous in the rate, (18) and (19) imply (15) for all R in the interval
(I0+(p;W ), I1(p;W )].

For the R = I0+(p;W ) case, note that
1− α

α
(Iα(p;W )−R) is decreasing in α on (0, 1) by (17)

and [26, Lemma 17(f),(g)]. Thus,

Esp(I0+(p;W ),W, p) = lim
α↓0

1− α

α
(Iα(p;W )− I0+(p;W )).

Then (16) follows from the mean value theorem [37, Theorem 5.10] and [26, equation (46)]. Fur-

thermore, if Esp(I0+(p;W ),W, p) = γ for a γ ∈ R+, then D1(W
qα,p
α (x)‖W (x)) ≤ γ

p(x)
as a result

of nonnegativity of the Rényi divergence. Hence,

∫

G

(
dW

qα,p
α (x)

dW (x)

)

W (dy |x) ≤ γ

p(x)
+

1

e
+ 1

for G(τ) = τ1{0≤τ<e} + τ ln τ1{τ≥e}, because τ ln τ ≥ −1/e. Then
{dW

qα,p
α (x)

dW (x)

}

α∈(0,1)
are uni-

formly W (x)-integrable by [38, Theorem 4.5.9], i.e., by the necessary and sufficient condition for
the uniform integrability determined by de la Vallée Poussin. Thus, any sequence of members of
{
W

qα,p
α (x)

}
α∈(0,1) has a convergent subsequence for the topology of setwise convergence by [38, The-

orem 4.7.25]. For each x ∈ supp p, let V (x) be the limit point for the aforementioned subsequence
for the sequence

{
W

q1/κ,p
1/κ (x)

}

κ∈Z+
. Then (13), (14), and the lower semicontinuity of the Rényi

divergence in its arguments for the topology of setwise convergence, i.e., [36, Theorem 15], imply
I1(p;V ) ≤ I0+(p;W ) and D1(V ‖W |p) ≤ γ. On the other hand, as a result of the definition of
Esp(R,W, p) and [26, Lemma 13(e)], we have

Esp(R,W, p) = sup
α∈(0,1)

inf
V ∈P(Y |X)

D1(V ‖W |p) + 1− α

α
(I1(p;V )−R)

≤ sup
α∈(0,1)

D1(V ‖W |p) + 1− α

α
(I1(p;V )−R)

=

{
D1(V ‖W |p), R ≥ I1(p;V ),

∞, R < I1(p;V ).

Thus, I1(p;V ) cannot be less than I0+(p;W ), because Esp(R,W, p) is infinite for all R < I0+(p;W ).
Hence, I1(p;V ) = I0+(p;W ). Consequently, D1(V ‖W |p) cannot be less than γ, because
Esp(I0+(p;W ),W, p) = γ. Hence, D1(V ‖W |p) = γ. �

Lemma 2 provides a simple confirmation of the alternative expression for Esp(R,W, p), which is
commonly known as Haroutunian’s form [10].
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Lemma 3. For any W : X → P(Y), p ∈ P(X), and R ∈ R+,

Esp(R,W, p) = inf
V : I1(p;V )≤R

D1(V ‖W |p). (20)

Proof. If R ∈ [I1(p;W ),∞), then (20) holds, because the expression on the right-hand side
of (20) is zero as a result of the substitution V = W and the nonnegativity of the Rényi divergence.

On the other hand, as a result of the definition of Esp(R,W, p), [26, Lemma 13(e)], and the
max-min inequality we have

Esp(R,W, p) = sup
α∈(0,1)

inf
V ∈P(Y |X)

D1(V ‖W |p) + 1− α

α
(I1(p;V )−R)

≤ inf
V ∈P(Y |X)

sup
α∈(0,1)

D1(V ‖W |p) + 1− α

α
(I1(p;V )−R)

= inf
V : I1(p;V )≤R

D1(V ‖W |p).

Then (20) holds whenever Esp(R,W, p) is infinite, i.e., for all R ∈ [0, I0+(p;W )) and possibly for
R = I0+(p;W ), trivially and whenever Esp(R,W, p) is finite as a result of Lemma 2. �

Haroutunian’s form implies the following sufficient condition for the optimality of an order α in
the definition of the SPE given in (10).

Lemma 4. For any W : X → P(Y), A ⊂ P(X), and R ∈ (C0+,W,A, C1,W,A) if there exists an
α ∈ (0, 1) and a function Vp of p from A to P(Y |X) satisfying the two inequalities

D1(Vp ‖qα,W,A |p) ≤ R, ∀p ∈ A, (21)

D1(Vp ‖W |p) ≤ 1− α

α
(Cα,W,A −R), ∀p ∈ A, (22)

then Esp(R,W,A) =
1− α

α
(Cα,W,A −R).

For some channels, Vp = W
qα,W,A
α satisfies both (21) and (22); for these channels, the value

of SPE can be determined using Lemma 4. However, for an arbitrary channel, rate, and the
corresponding optimal order α in (10), a Vp satisfying both (21) and (22) might not exist, e.g.,
for the Z-channel discussed in Appendix A. Had the sufficient condition for the optimality of the
order α given in (21) and (22) been also necessary, Blahut’s proof in [31] would have been correct;
this, however, is not the case in general as we demonstrate in Appendix A. It is worth mentioning
that for the channels satisfying the necessary conditions given (21) and (22), one can derive the
SPB using the approach presented in [31].

Proof of Lemma 4. Note that as a result of (6) we have

D1(Vp ‖qα,W,A |p) = I1(p;Vp) +D1

(∑

x

p(x)Vp(x)‖qα,W,A

)

.

Thus, I1(p;Vp) ≤ R for all p ∈ A, because the Rényi divergence is nonnegative. Then Esp(R,W, p) ≤
1− α

α
(Cα,W,A −R) for all p ∈ A by Lemma 3. Then Esp(R,W,A) ≤ 1− α

α
(Cα,W,A −R) by (12).

On the other hand, Esp(R,W,A) ≥ 1− α

α
(Cα,W,A −R) by the definition. Thus, Esp(R,W,A) =

1− α

α
(Cα,W,A −R). �

2.4. Augustin’s Variant of Gallager’s Bound

The SPE is an upper bound on the exponential decay rate of the optimal error probability
with block length, i.e., on the reliability function, for memoryless channels satisfying rather mild
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hypotheses, with or without the list decoding, as a result of the SPBs given in Theorems 1 and 2
of Section 3. For the list decoding, the SPE is also a lower bound on the exponential decay
rate of the optimal error probability with block length [8, Exercise 5.20; 12, Exercise 10.28; 39].
The latter observation can be confirmed using standard results such as [29, 30], albeit with minor
modifications, as well. In the following, we confirm this observation using a variant of Gallager’s
bound in terms of the Augustin information. Recall that Gallager’s bound is derived, customarily,
for the Rényi information rather than the Augustin information. The fixed point property described
in (7) plays a critical role in the proof. We name this variant of Gallager’s bound after Augustin,
because [24, Lemma 36.1] of Augustin is the first achievability result making use of the fixed point
property described in (7), to the best of our knowledge.

Lemma 5. For any M,L ∈ Z+ such that L < M , W : X → P(Y), p ∈ P(X), B ⊂ X, and

α ∈
[ 1

1 + L
, 1
)
there exists an (M,L) channel code with an encoding function of the form Ψ : M → B

satisfying

lnPe ≤
α− 1

α

[

τ − ln
(M − 1)e

L

]

− ln p(B)

α

where τ = inf
x∈B

Dα(W (x)‖qα,p).

We do not present a separate proof for Lemma 5, because Lemma 5 is a zero Lagrange mul-
tiplier special case of Lemma 6 presented in the following. Before stating Lemma 6, let us point
out an immediate consequence of Lemma 5 for the constant composition codes on the stationary
memoryless channels. Recall that for any composition p for the block length n, the probability of
the set of all composition p sequences (i.e., the probability of Tp,n) for i.i.d. samples (i.e., pt = p for
all t) satisfies the following identity for some ξ ∈ [0, 1] by [12, p. 26]:

(
n⊗

t=1

pt

)

(Tp,n) = e−ξ
|suppp|
12 ln 2 (2πn)−

|supp p|−1
2

√
√
√
√
∏

x: p(x)>0

1

p(x)
.

Then using q
α,

n⊗

t=1

pt
=

n⊗

t=1
qα,pt, established in [26, Lemma 14], we get the following corollary by

setting B to Tp,n.
Corollary 1. For any n ∈ Z+, φ ∈ (0, 1), {Wt}t∈Z+

satisfying Wt = W for some W : X → P(Y),
p ∈ P(X) satisfying np(x) ∈ Z≥0 for all x ∈ X, and integers M,L satisfying both

1

L+ 1
< η and

1

n
ln

M

L
= Iη(p;W ) for some η ∈ [φ, 1), there exists an (M,L) channel code on

n⊗

t=1
Wt with an

encoding function of the form Ψ : M → Tp,n satisfying

lnPe ≤ −nEsp

( 1

n
ln

M

L
,W, p

)

+
1

η

[

1− η +
|supp p|
12 ln 2

+
|supp p| − 1

2
ln(2πn) +

1

2

∑

x: p(x)>0

ln p(x)

]

.

Lemma 6. For any �,M,L ∈ Z+ such that L < M , W : X → P(Y), ρ : X → R
�
≥0, p ∈ P(X),

B ⊂ X, and α ∈
[ 1

1 + L
, 1
)
there exists an (M,L) channel code with an encoding function of the

form Ψ : M → B such that

lnPe ≤
α− 1

α

[

τ +
(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

− ln p(B)

α
, (23)

where τ = inf
x∈B

Dα(W (x)‖qα,p)− λ · ρ(x).
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It is worth mentioning that one can obtain a similar bound in terms of the R-G information; see
Lemma 12 in Appendix B. Before presenting the proof of Lemma 6, let us discuss its consequences
briefly. For the cost constrained memoryless channels with additive cost functions one can apply
Lemma 6 for λ = 0 and for the product input distributions satisfying the cost constraint �−ε. Then
using the weak law of large numbers together with [26, Lemmas 14, 27, and 28] one can conclude
that the reliability function is bounded from below by the SPE, under rather mild hypotheses.
This observation can be strengthened for � = 1 case by invoking the Berry–Esseen theorem via [25,
Lemma 19], under appropriate hypotheses. The following corollary can be generalized to the � > 1
case in a straightforward way once a result analogous to [25, Lemma 19] for sums of random vectors
is obtained.

Corollary 2. Let n ∈ Z+ such that n ≥ 21, φ ∈ (0, 1), W[1,n] : X
n
1 → P(Yn

1 ) be a length n
product channel with an additive cost function ρ[1,n] : X

n
1 → R≥0 satisfying inf

xt∈Xt

ρt(xt) = 0 for all
t ∈ [1, n] and

C
α,W̃[1,n],n�

≥ Cα,W[1,n],n� − ε, ∀α ∈ [φ, 1), � ∈
[
�̃, �̃+

9ς

n

]
, (24)

for some �̃ ∈ R+, ς ∈ R≥0, ε ∈ R≥0, and product channel W̃[1,n] : X̃
n
1 → P(Yn

1 ) with the input

sets X̃t = {xt ∈ Xt : ρt(xt) ≤ ς} satisfying W̃[1,n](x
n
1 ) = W[1,n](x

n
1 ) for all xn1 ∈ X̃n

1 . Then for any

δ ∈ (0, �̃), � ∈
(
�̃+

3eς

n
, �̃+

9ς

n

)
, and integers M,L satisfying both

1

L+ 1
< η and ln

M

L
= Cη,W[1,n],n�

for some η ∈ [φ, 1), there exists an (M,L) channel code with an encoding function of the form
Ψ : M →

{
xn1 ∈ X̃n

1 : ρ[1,n](x
n
1 ) ≤ n�

}
such that

lnPe ≤ −Esp

(
ln

M

L
,W[1,n], n�

)
+

1− η

η

(
Cη,W[1,n],n�

n

6ςe

δ
+ 2ε+ 1

)

+
ln 4n

2η
+

1

n
. (25)

Note that if the region for � had not depended on ς in (24) and the interval for α had been
a compact subset of (0, 1), then one could have found a ς for any positive ε by invoking Dini’s
theorem [35, Theorem 2.4.10] through a construction similar to the one used in the proof of [27,
Lemma 15(g)], because Cα,W,� is continuous in (α, �) on (0, 1) × R+ by [26, Lemma 27(c)]. This,
however, is not the case, and there might be product channels for which (24) is not satisfied
for some �̃ values by small enough ε values for any ς. Furthermore, even when the hypotheses
of Corollary 2 are satisfied, the tightness of the bound given in (25) depends on the values of
the constants satisfying the hypotheses. Nevertheless, it is easy to see that if either the cost
functions of the component channels are all bounded or Cφ,W[1,n],n� is Θ(n)—i.e., scaling linearly
with n—and (24) is satisfied for ε and ς that are O(lnn)—i.e., scaling no faster than linearly with
lnn—then (25) has a prefactor that is e−O(lnn), i.e., vanishing polynomially with n. The proof of
Corollary 2 is presented in Appendix C.

Proof of Lemma 6. We establish the existence of the code with the desired properties through
a random coding argument. For any p ∈ P(X) and B ⊂ X satisfying p(B) > 0, let pB ∈ P(X) be

pB(x) �
1{x∈B}p(x)

p(B)
, ∀x ∈ X. (26)

Let us consider an ensemble of codes in which the assignments of the messages to the elements of B
are jointly independent and Ψ(m) = x with probability pB(x) for all m in the message set. The

decoder chooses L messages with the greatest
fΨ(m)

hΨ(m)
for fx and hx defined as

fx(y) � dW (x)

dq
(y), ∀x ∈ X, y ∈ Y, (27)

hx � e
α−1
α

λ·ρ(x), ∀x ∈ X, (28)
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where q ∈ P(Y) to be chosen later satisfies qα,p ≺ q. When there is a tie, the decoder prefers
the message or messages with the lower index among the tied messages. In order to bound the
expected value of the error probability of the code over the ensemble, let us consider the expected
value of the conditional error probability of the message with the greatest index. An error occurs

only when
f

h
associated with L or more other messages are at least as large as

f

h
associated with the

transmitted message. We can bound this probability using a y-dependent auxiliary threshold γ(y)
and obtain the following bound on the expected value of Pe over the ensemble5:

E[Pe] ≤
∑

x

pB(x)Eq

[
1{ fx

hx
≤γ}fx

]

+

(
M − 1

L

)
∑

x

pB(x)Eq

[

1{ fx
hx

>γ}

[∑

z

pB(z)1{ fz
hz

≥ fx
hx

}

]L

fx

]

. (29)

We invoke α ≤ 1 to bound the first term in the above sum, and α ≥ 1

1 + L
to bound the second

term:

Eq

[
1{ fx

hx
≤γ}fx

]
≤ hx Eq

[

1{ fx
hx

≤γ}

(
fx
hx

)α

γ1−α
]

,

Eq

[

1{ fx
hx

>γ}

[∑

z

pB(z)1{ fz
hz

≥ fx
hx

}

]L

fx

]

≤ hx Eq

[

1{ fx
hx

>γ}

[∑

z

pB(z)

(
fz
hz

)α ]L( fx
hx

)1−Lα
]

≤ hx Eq

[

1{ fx
hx

>γ}

[∑

z

pB(z)

(
fz
hz

)α ]L( fx
hx

)α

γ1−α−Lα

]

.

If we set γ =

[
∑

x
pB(x)

( fx
hx

)α ]
1
α
[(

M − 1

L

)] 1
Lα

, we get

E[Pe] ≤
∑

x

pB(x)hx Eq

[(
fx
hx

)α
γ1−α

]

= Eq

⎡

⎣

[
∑

x

pB(x)

(
fx
hx

)α
] 1

α

⎤

⎦
(
sup
x∈B

hx
)
[(

M − 1

L

)] 1−α
Lα

.

On the other hand, Stirling’s approximation for the factorials, i.e.,
√
2πn(n/e)n ≤ n! ≤ e

√
n(n/e)n,

and the identity ln z ≤ z − 1 imply that

1

L
ln

(
M − 1

L

)

≤ 1

L
ln

e
√
M − 1

2π
√
L(M − 1− L)

+ ln
M − 1

L
+

M − 1− L

L
ln

(

1 +
L

M − 1− L

)

≤ ln
M − 1

L
+ 1.

Then we get the following bound on the expected value of Pe over the ensemble:

lnE[Pe] ≤ lnEq

⎡

⎣

(
∑

x

pB(x)e
(1−α)λ·ρ(x)

(
dW (x)

dq

)α)
1
α

⎤

⎦

+
α− 1

α

[(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

. (30)

5 Note that
M∑

t=L

(M
t

)
st(1− s)M−t =

(M
L

)
sL

M−L∑

t=0

L! (M − L)!

(L+ t)! (M − L− t)!
st(1− s)M−L−t ≤

(M
L

)
sL for all s ∈ [0, 1].
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If we set q = qα,p, using first the definition of the tilted channel given in (3) and then the definition
of τ , we get

lnE[Pe] ≤ lnEqα,p

⎡

⎣

(
∑

x

pB(x)e
(α−1)[Dα(W (x)‖qα,p)−λ·ρ(x)] dW

qα,p
α (x)

dqα,p

)1
α

⎤

⎦

+
α− 1

α

[(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

≤ lnEqα,p

⎡

⎣

(
∑

x

pB(x)
dW

qα,p
α (x)

dqα,p

)1
α

⎤

⎦+
α− 1

α

[

τ +
(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

.

Since there exists a code with Pe less than or equal to E[Pe], the existence of a code satisfying (23)
with an encoding function of the form Ψ : M → B follows from (4), (7), and (26). �

3. SPHERE PACKING BOUNDS FOR MEMORYLESS CHANNELS

Assumption 1. The maximum C
1/2,U

(t)
A

for integers t less than or equal to n is O(lnn), i.e.,

∃n0 ∈ Z+, K ∈ R+ such that max
t: t≤n

C
1/2,U

(t)
A

≤ K ln(n), ∀n ≥ n0,

where U
(t)
A : X

(t)
A → P(Y) satisfies U

(t)
A (x) = W (x) for all x ∈ X

(t)
A and X

(t)
A is defined for any

t ∈ Z+ and A ⊂ P(X) as

X
(t)
A � {x ∈ X : ∃p ∈ A such that p(z)t ∈ Z, ∀z ∈ X for which p(x) > 0}.

Theorem 1. Let {Wt}t∈Z+
be a stationary sequence of channels satisfying Wt = W for all

t ∈ Z+, A ⊂ P(X) be a convex constraint set satisfying Assumption 1, and ε, α0, α1 be positive
parameters satisfying 0 < α0 < α1 < 1. Then for any sequence of codes

{
(Ψ (n), Θ(n))

}

n∈Z+
on the

product channels
{
W[1,n]

}

n∈Z+
satisfying

Cα1,W,A ≥ 1

n
ln

Mn

Ln
≥ Cα0,W,A +

lnn

n
[ln(lnn)]ε, ∀n ≥ n0, (31)

and Υ (Ψ (n)(m)) ∈ A for all m ∈ M(n), there exists a τ ∈ R+ and an n1 ≥ n0 such that

P (n)
e ≥ n−τe−nEsp

(
1
n
ln Mn

Ln
,W,A
)

, ∀n ≥ n1. (32)

It is worth mentioning that the hypotheses of Theorem 1 are satisfied by the Gaussian and Pois-
son models considered in [15–22]; thus, Theorem 1 implies an asymptotic SPB for these channels.
The nonasymptotic counterpart of this implication is presented in Section 3.3, between Lemma 9
and Corollary 3.

For codes on the cost constrained memoryless channels, one can remove the stationarity hypoth-
esis using the convex conjugation techniques [24, Theorem 36.6]. Theorem 2 strengthens [24, The-
orem 36.6] by removing the bounded cost function hypothesis and by establishing the SPB with
a prefactor that is polynomial in the block length n rather than a prefactor of the form e−O(

√
n).

Assumption 2. The maximum C1/2,Wt,n� for integers t less than or equal to n is O(ln n).

∃n0 ∈ Z+, K ∈ R+ such that max
t: t≤n

C1/2,Wt,n� ≤ K ln(n), ∀n ≥ n0.
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Theorem 2. Let {(Wt, ρt)}t∈Z+
be a sequence of channels with associated cost functions satisfy-

ing Assumption 2, ε, α0, α1 be positive parameters satisfying 0 < α0 < α1 < 1. Then on the product

channels
{
W[1,n]

}

n∈Z+

with additive cost functions
{
ρ[1,n]

}

n∈Z+

of the form ρ[1,n](x
n
1 ) =

n∑

t=1
ρt(xt),

for any sequence of codes
{
(Ψ (n), Θ(n))

}

n∈Z+

satisfying

Cα1,W[1,n],n� ≥ ln
Mn

Ln
≥ Cα0,W[1,n],n� + ε(ln n)2, ∀n ≥ n0, (33)

and ρ[1,n](Ψ
(n)(m)) ≤ n� for all m ∈ M(n) for a per channel use cost constraint � satisfying

n� ∈ int Γρ[1,n]
, there exists a τ ∈ R+ and an n1 ≥ n0 such that

P (n)
e ≥ n−τe−Esp

(
ln Mn

Ln
,W[1,n],n�

)

, ∀n ≥ n1. (34)

In order to establish the asymptotic SPB with a polynomial prefactor in Theorem 2, we have
assumed that the order 1/2 cost constrained Augustin capacity is scaling no faster than logarith-
mically with the cost. Although this hypothesis is true for most cases of interest, including various
Gaussian and Poisson channels considered in [15–22] and many of their nonstationary variants,
there do exist channels violating it; see [26, Example 1]. Thus, one might want to remove the
logarithmic growth with the cost constraint hypothesis. One can do so by using Lemma 11 instead
of Lemma 10 in the proof of Theorem 2.

Our ultimate aim in this section is to prove the two asymptotic SPBs given in Theorems 1 and 2,
which constitute the main contribution of this article. To that end, we first provide an impossibility
result for the hypothesis testing problem with independent samples using the Berry–Esseen theorem
in Section 3.1. Then we introduce the concepts of averaged Augustin capacity and averaged SPE in
Section 3.2. We derive nonasymptotic—but parametric—SPBs in terms of these averaged quantities
for the composition constrained codes on stationary memoryless channels in Section 3.3 and for
the cost constrained codes on (possibly nonstationary) memoryless channels in Section 3.4. The
derivations of the asymptotic SPBs using the nonasymptotic ones and the proof of Lemma 8 of
Section 3.2, which are rather straightforward, are presented in Appendix C.

3.1. An Impossibility Result For Hypothesis Testing

Lemma 7. For any κ ≥ 3, α ∈ (0, 1), n ∈ Z+, and product measures w, q ∈ P(Yn
1 ) of the form

w =
n⊗

t=1
wt and q =

n⊗

t=1
qt, let ξt � ln

dwt,ac

dqt
− Ewq

α

[
ln

dwt,ac

dqt

]
, where wt,ac is the component of wt

that is absolutely continuous in qt and

gκ �
(

n∑

t=1

Ewq
α
[|ξt|κ]

)1/κ

.

Then any E ∈ Y satisfying q(E) ≤ 1

4
√
n
e−D1(w

q
α‖q)−α3gκ also satisfies

w(Yn
1 \ E) ≥ 1

4
√
n
e−D1(w

q
α‖w)−(1−α)3gκ . (35)

Lemma 7 provides an impossibility result for the hypothesis testing problem with independent
samples in the spirit of [7, Theorem 5]. It, however, relies on the Berry–Esseen theorem via [25,
Lemma 19] rather than the Chebyshev inequality.
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Proof of Lemma 7. Let E0 =
{
y :
∣
∣
∣
n∑

t=1
ξt
∣
∣
∣ ≤ 3gκ

}
; then

∣
∣
∣
∣ln

dwq
α

dq
(yn1 )−D1(w

q
α ‖q)

∣
∣
∣
∣ ≤ α3gκ, ∀yn1 ∈ E0,

∣
∣
∣
∣ln

dwq
α

dw
(yn1 )−D1(w

q
α ‖w)

∣
∣
∣
∣ ≤ (1− α)3gκ, ∀yn1 ∈ E0.

Hence,

wq
α(E ∩ E0) ≤ q(E ∩ E0)e

D1(w
q
α‖q)+α3gκ , (36)

wq
α(E ∩ E0) ≤ w(E ∩ E0)e

D1(w
q
α‖w)+(1−α)3gκ . (37)

On the other hand, as a result of the definition of E0 and [25, Lemma 19] we have

Pwq
α
[E0] ≥

1

2
√
n
. (38)

Now (35) follows from (36)–(38). �

3.2. Augustin’s Averaging

Our nonasymptotic SPBs are expressed in terms of the averaged Augustin capacity and averaged
SPE defined in the following for all ε ∈ (0, 1) and R ∈ R≥0:

C̃ε
α,W,A � 1

ε

α+ε(1−α)∫

α−εα

[

1 ∨
(

α

1− α

1− η

η

)]

Cη,W,A dη, (39)

Ẽε
sp(R,W,A) � sup

α∈(0,1)

1− α

α

(
C̃ε
α,W,A −R

)
. (40)

Note that lim
ε↓0

C̃ε
α,W,A = Cα,W,A for all α ∈ (0, 1), because Cα,W,A is continuous in α on (0, 1)

by [26, Lemma 23(d)]. Furthermore, one can show that the convergence is uniform on compact

subsets of (0, 1) using the monotonicity of Cα,W,A and
1− α

α
Cα,W,A in α, i.e., [26, Lemma 23(a),(b)].

Nevertheless, Cα,W,A cannot be approximated by C̃ε
α,W,A uniformly on (0, 1) itself, because

lim
α↑1

C̃ε
α,W,A = ∞ for all positive ε whenever C1/2,W,A is positive, even if C1,W,A is finite. The latter

observation follows from the monotonicity of Cα,W,A and
1− α

α
Cα,W,A in α:

C̃ε
α,W,A ≥ 1

ε

α− ε
2
α∫

α−εα

α

1− α

1− η

η
Cη,W,A dη

≥ α

2− ε

(

1 +
αε

2(1 − α)

)

Cα−εα,W,A.

As a function of the rate, the averaged SPE converges uniformly to the SPE on any compact
set of rates less than the order one Augustin capacity, as is demonstrated by the following lemma.

Lemma 8. For any W : X → P(Y), A ⊂ P(X) satisfying C1/2,W,A ∈ R+, φ ∈ (0, 1), R ∈
[Cφ,W,A,∞), and ε ∈ (0, φ),

0 ≤ Ẽε
sp(R,W,A) − Esp(R,W,A) ≤ ε

1− ε

R ∨Esp(R,W,A)

φ
(41)

≤ ε

1− ε

R

φ2
. (42)
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Lemma 8 follows from the monotonicity of Cα,W,A and
1− α

α
Cα,W,A in α established in [26,

Lemma 23(a),(b)]; a proof can be found in Appendix C. The proof of Lemma 8 is nearly identical
to the proof of [25, Lemma 15], establishing the very same result for A = P(X) case.

3.3. Nonasymptotic Sphere Packing Bounds for the Composition Constrained Codes

The composition constrained codes on the stationary memoryless channels have been analyzed
extensively, but only for the finite input set case. It is often assumed that all codewords of the
code have precisely the same composition. If that is not the case, one usually invokes an expurga-
tion based on the compositions of the codewords and focuses on the most populous composition.
However, such an expurgation leads to a nontrivial result only when the input set is finite. Bounds
derived through the analysis of the most populous composition in such cases can be derived using
the Augustin information and mean. The following lemma, on the other hand, use the concepts of
the Augustin capacity and center together with Augustin’s averaging in order to avoid assuming
a finite input set or a composition that has a fraction of the codewords that is no smaller than
a polynomial function of the block length.

Lemma 9. Let n ∈ Z+; W : X → P(Y); A be a convex subset of P(X); κ, φ, ε be positive
parameters satisfying κ ≥ 3, φ < 1, ε < 1; and γ be

γ � 3
κ
√
3n

([

C
1/2,U

(n)
A

+ (1− φ) ln(1 + n)

]

∨ κ

)

. (43)

If Wt = W for all t ≤ n and M,L ∈ Z+ are such that ln
M

L
> nC̃ε

φ,W,A +
γ

1− φ
+ ln

8e3n1.5

ε
, then

any (M,L) channel code on W[1,n] satisfying Υ (Ψ(m)) ∈ A for all m ∈ M satisfies

Pe ≥
(

εe−2γ

8e3n1.5

)1/φ

e−nẼε
sp( 1

n
ln M

L
,W,A). (44)

The absence of a back-off term for the rate in (44) can be interpreted as an advantage; but this
is possible only with a prefactor that makes the bound trivial, i.e., zero, as φ converges to zero. By
changing the analysis slightly it is possible to obtain the following alternative bound:

Pe ≥
εe−2γ

8n1.5
e−nẼε

sp(R,W,A), R =
1

n
ln

M

L
− 1

n
ln

8e3n1.5

εe−2γ
. (45)

When considered together with the identity C
α,U

(n)

A(�)

≤ Cα,W,n�, Lemma 9 and (45) imply Corollary 3
and (46) given in the following.

Corollary 3. Let n, � ∈ Z+; W : X → P(Y); ρ : X → R
�
≥0; � ∈ Γρ; κ, φ, ε be positive parameters

satisfying κ ≥ 3, φ < 1, ε < 1; and γ be

γ � 3
κ
√
3n
([
C1/2,W,n� + (1− φ) ln(1 + n)

]
∨ κ
)
.

If Wt = W for all t ≤ n and M,L ∈ Z+ are such that ln
M

L
> nC̃ε

φ,W,� +
γ

1− φ
+ ln

8e3n1.5

ε
, then

any (M,L) channel code on W[1,n] satisfying
n∑

t=1
ρ(Ψt(m)) ≤ n� for all m ∈ M satisfies

Pe ≥
(

εe−2γ

8e3n1.5

)1/φ

e−nẼε
sp( 1

n
ln M

L
,W,�).
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By changing the the analysis slightly it is possible to obtain the following alternative bound:

Pe ≥
εe−2γ

8n1.5
e−nẼε

sp(R,W,�), R =
1

n
ln

M

L
− 1

n
ln

8e3n1.5

εe−2γ
. (46)

Proof of Lemma 9 and equation (45). The constrained Augustin center qα,W,A is continu-
ous in α on (0, 1) for the total variation topology on P(Y) by [26, Lemmas 23(d) and 24]. Thus,
q ·,W,A is a transition probability from ((0, 1),B((0, 1))) to (Y,Y). For each t ≤ n, we define the
averaged center qεα,t as the Y marginal of the probability measure uα,ε � q ·,W,A, where uα,ε is the
uniform probability distribution on (α− εα, α + ε(1− α)):

qεα,t � 1

ε

α+(1−α)ε∫

α−αε

qη,W,A dη, ∀t ∈ {1, . . . , n}. (47)

Let qα,t ∈ P(Yt) and qα ∈ P(Yn
1 ) be

qα,t � n

n+ 1
qεα,t +

1

n+ 1
q
1/2,U

(n)
A

, ∀t ∈ {1, . . . , n},

qα �
n⊗

t=1

qα,t.

Let us denote the probability measure generated by Ψ(m), i.e.,
n⊗

t=1
W (Ψt(m)), by wm for brevity.

We have

Dα(w
m ‖qα)

(a)
=

n∑

t=1

Dα
(
W (Ψt(m))‖qα,t

)

(b)

≤
n∑

t=1

(

ln
n+ 1

n
+Dα(W (Ψt(m))‖qεα,t)

)

(c)
≤ 1 +

n∑

t=1

Dα
(
W (Ψt(m))‖qεα,t

)

(d)
≤ 1 +

n∑

t=1

1

ε

α+(1−α)ε∫

α(1−ε)

Dα
(
W (Ψt(m))‖qη,W,A

)
dη

(e)
= 1 +

n

ε

α+(1−α)ε∫

α(1−ε)

Dα
(
W ‖qη,W,A |Υ (Ψ(m))

)
dη

(f)

≤ 1 +
n

ε

α+(1−α)ε∫

α(1−ε)

(

1 ∨ 1− η

η

α

1− α

)

Dη

(
W ‖qη,W,A |Υ (Ψ(m))

)

(g)

≤ 1 +
n

ε

α+(1−α)ε∫

α(1−ε)

(

1 ∨ 1− η

η

α

1− α

)

Cη,W,A dη

(h)
= 1 + nC̃ε

α,W,A, (48)

where (a) is by [36, Theorem 28]; (b) by [26, Lemma 1], because
n

n+ 1
qεα,t ≤ qα,t; (c) by ln τ ≤ τ−1;

(d) by the Jensen’s inequality and [36, Theorem 12]; (e) by Definition 3 and the definition of Υ ;
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(f) by [36, Theorem 3 and Proposition 2]; (g) by [26, Theorem 1], because Υ (Ψ(m)) ∈ A; and (h) by
the definition of C̃ε

α,W,A. Let the probability measure vmα be the order α tilted probability measure

between wm and qα defined in (2). Then vmα is of the form vmα =
n⊗

t=1
W

qα,t
α (Ψt(m)) as a result of

product structure of wm and qα. Let the random variables ξmα,t and ξmα be

ξmα,t � ln
d[W (Ψt(m))]ac

dqα,t
−Evmα

[

ln
d[W (Ψt(m))]ac

dqα,t

]

,

ξmα �
n∑

t=1

ξmα,t,

where [W (Ψt(m))]ac is the component of W (Ψt(m)) that is absolutely continuous in qα,t. Then for
all κ ∈ R+ and α ∈ (0, 1)

Evmα

[
|ξmα,t|κ

]1/κ (a)

≤ 31/κ

[
(1− α)Dα(W (Ψt(m))‖qα,t)

]
∨ κ

α(1 − α)

(b)

≤ 31/κ

[
(1− α)Dα

(
W (Ψt(m))‖q

1/2,U
(n)
A

)
+ (1− α) ln(1 + n)

]
∨ κ

α(1− α)

(c)

≤ 31/κ

[
D1/2

(
W (Ψt(m))‖q

1/2,U
(n)
A

)
+ (1− α) ln(1 + n)

]
∨ κ

α(1 − α)

(d)

≤ 31/κ

[
C
1/2,U

(n)
A

+ (1− α) ln(1 + n)
]
∨ κ

α(1− α)
,

where (a) is by [25, Lemma 17]; (b) by [26, Lemma 1], because
q
1/2,U

(n)
A

n+ 1
≤ qα,t; (c) by [36, Theorem 3

and Proposition 2]; and (d) by [26, Theorem 1], because Ψt(m) ∈ X
(n)
A . Then, using the definition

of γ given in (43), we get
[

n∑

t=1

Evmα

[
|ξmα,t|κ

]
]1/κ

≤ γ

3α(1 − α)
, ∀α ∈ [φ, 1). (49)

On the other hand, [36, Theorem 30] implies

D1(v
m
α ‖qα) = Dα(w

m ‖qα)−
α

1− α
D1(v

m
α ‖wm), ∀m ∈ M, α ∈ (0, 1). (50)

Thus, we can bound D1(v
m
α ‖qα) using the nonnegativity of the Rényi divergence, i.e., [36, Theo-

rem 8], and (48):
0 ≤ D1(v

m
α ‖qα) ≤ 1 + nC̃ε

α,W,A.

Hence,

lim
α↓φ

D1(v
m
α ‖qα) +

γ

1− α
< ln

M

L

ε

8e2n1.5
,

lim
α↑1

D1(v
m
α ‖qα) +

γ

1− α
= ∞.

D1(v
m
α ‖qα) is continuous in α by [25, Lemma 16], because qα is continuous in α for the total vari-

ation topology6 on P(Y). Then, as a result of the intermediate value theorem [37, Theorem 4.23],

6 In particular, ‖qα − qη‖ ≤
√

8 ln
ε

ε− (1− ε)|α− η|
, because ‖qα − qη‖ ≤

√
4D1/2(qα ‖ qη) by [36, Theo-

rem 31], D1/2(qα ‖ qη) = nD1/2(qα,t ‖ qη,t) by [36, Theorem 28] and the definition of qα, D1/2(qα,t ‖ qη,t) ≤
2 ln

2

2− ‖qα,t − qη,t‖
by [26, equation (9)], and ‖qα,t − qη,t‖ ≤ 2

1− ε

ε
|η − α| by the definition of qα.
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for each m ∈ M there exists an αm in (φ, 1) satisfying
(

D1(v
m
α ‖qα) +

γ

1− α

)∣
∣
∣
∣
α=αm

= ln
M

L

ε

8e2n1.5
. (51)

For any K ∈ Z+, there exists a 1/K long closed subinterval of (0, 1) with
⌈M

K

⌉
or more of these αm.

Let [η, η + 1/K] be this interval and q̃ and q̃t be

q̃ �
n⊗

t=1

q̃t, q̃t =
n

n+ 1
qε̃
α̃,t

+
1

n+ 1
q
1/2,U

(n)
A

,

where ε̃ and α̃ are given by

ε̃ =
1

K
+ ε
(
1− 1

K

)
, α̃ =

1− ε

1− ε̃
η.

Then for all α in
[
η, η +

1

K

]
, using the definition of the averaged center qεα,t given in (47), we get

qα,t ≤
ε̃

ε
q̃t, qα ≤

( ε̃

ε

)n
q̃.

At least half of the messages with αm in [η, η + 1/K], i.e., at least
⌈1

2

⌈M

K

⌉⌉
messages, satisfy

q̃(Em) ≤ 2
L

�M/K� as a result of Markov’s inequality, because
∑

m∈M̃
q̃(Em) ≤ L by the definition of

list decoding, where M̃ = {m : αm ∈ [η, η + 1/K]}. Then at least
⌈1

2

⌈M

K

⌉⌉
messages with αm in

[η, η + 1/K] satisfy

qαm(Em) ≤ 2LK

M

(

1 +
1

K

1− ε

ε

)n

≤ 2LK

M

(

1 +
1

Kε

)n
.

Note that
n

ε
> 1, because we have assumed that ε < 1 and n ≥ 1. If we set K to be K =

⌊n

ε

⌋
and

use the identity (1 + τ)1/τ < e together with (51), we get

qαm(Em) ≤ 2LK

M

(

1 +
1

Kε

)Ke n
Ke

≤ 2L

M

n

ε
e2

≤ 1

4
√
n
e−D1(vmαm

‖qαm)− γ
1−αm .

Then (49) and Lemma 7 imply

Pm
e ≥ 1

4
√
n
e−D1(vmαm

‖wm)− γ
αm . (52)

Using (48) and (50)–(52), we get

Pm
e ≥ 1

4
√
n

(
ε

8e2n1.5

M

L

)1−αm
αm

e−
1−αm
αm

(
1+nC̃ε

αm,W

)
− 2γ

αm . (53)

Hence, for all m satisfying (51), as a result of the definition of Ẽε
sp(R,W,A) given in (40), we have

Pm
e ≥ e−2γ/φ

4
√
n

(
ε

8e3n1.5

) 1−φ
φ

e−nẼε
sp(R,W,A), R =

1

n
ln

M

L
.
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Since there are at least
⌈1

2

⌈M

K

⌉⌉
such messages and

⌈1

2

⌈M

K

⌉⌉
≥ Mε

2n
by the construction, we get

the lower bound given in (44).

Note that
εe−2γ

8e3n1.5
< 1, because ε ∈ (0, 1), n ≥ 1, and γ ≥ 0. Thus, the prefactor in (44)

converges to zero as φ goes to zero. In order to avoid this phenomena, one can change the analysis
after (53) and introduce an approximation error term to the rate of the averaged SPE term: For
all for all m satisfying (51), as a result of the definition of Ẽε

sp(R,W, �) given in (40) and (53) we
have

Pm
e ≥ e−2γ

4
√
n
e−nẼε

sp(R,W ), R =
1

n
ln

M

L
− 2γ

n
− 1

n
ln

8e3n1.5

ε
.

Since there are at least
⌈1

2

⌈M

K

⌉⌉
such messages and

⌈1

2

⌈M

K

⌉⌉
≥ Mε

2n
by the construction, we get

the lower bound given in (45). �

3.4. Nonasymptotic Sphere Packing Bounds for the Cost Constrained Codes

In Section 3.3, we were primarily interested in the stationary memoryless channels with convex
composition constraints; the cost constrained memoryless channels, considered in Corollary 3, were
merely an afterthought. For the cost constrained memoryless channels it is possible to establish
the SPB even for the nonstationary channels using the convex-conjugation techniques, as we will
demonstrate in the following. The only drawback of using the convex-conjugation techniques is
that we will be able to establish the SPB for the cost constraints in int Γρ, rather than the cost
constraints in Γρ.

Lemma 10. Let n ∈ Z+; W[1,n] : X
n
1 → P(Yn

1 ) be a length n product channel with an additive

cost function ρ[1,n] : X
n
1 → R

�
≥0 satisfying ρ[1,n](x

n
1 ) =

n∑

t=1
ρt(xt) for some ρt : Xt → R

�
≥0; � be

a per channel use cost constraint satisfying n� ∈ int Γρ[1,n]
; κ, φ, ε be arbitrary positive parameters

satisfying κ ≥ 3, φ < 1, ε < 1; and γ be

γ � 3

[

3
n∑

t=1

([
C1/2,Wt,n� + (1− φ) ln(1 + n)

]
∨ κ
)κ
]1/κ

. (54)

If M and L are integers such that ln
M

L
> C̃ε

φ,W[1,n],n�
+

γ

1− φ
+ln

8e3n1.5

ε
, then any (M,L) channel

code on W[1,n] satisfying
M∨

m=1
ρ[1,n](Ψ(m)) ≤ n� satisfies

Pe ≥
(

εe−2γ

8e3n1.5

)1/φ

e−Ẽε
sp(ln M

L
,W[1,n],n�). (55)

The bound given in (55) does not have a back-off term for the rate in the averaged SPE but it
becomes trivial, i.e., zero, as φ converges to zero. By changing the analysis slightly it is possible to
obtain the following alternative bound:

Pe ≥
εe−2γ

8n1.5
e−Ẽε

sp(R,W[1,n],n�), R = ln
M

L
− ln

8e3n1.5

εe−2γ
. (56)

The bounds in Lemma 10 and (56) are good enough for proving the asymptotic SPB given in
Theorem 2. However, the γ term can be improved by a more careful calculation. The resulting
expression, however, includes an additional optimization.
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Lemma 11. Lemma 10 and (56) are valid as they are if the definition of γ given in (54) is
replaced by the following one:

γ � max
{�t}: �t≥0 ∀t,

n∑

t=1

�t≤n�

3

[

3
n∑

t=1

([
Cλ
1/2,Wt

+ λ · �t + (1− φ) ln(1 + n)
]
∨ κ
)κ
]1/κ

, (57)

where λ = λ1/2,W[1,n],n�. If Wt = W and ρt = ρ for all t ∈ [1, n], then γ defined in (57) satisfies

γ = max
{�t}: �t≥0 ∀t,

n∑

t=1

�t≤n�

3

[

3
n∑

t=1

([
C1/2,W,� + λ · (�t − �) + (1− φ) ln(1 + n)

]
∨ κ
)κ
]1/κ

. (58)

Proof of Lemma 10 and equation (56). For each α ∈ (0, 1) there exists a λα ∈ R
�
≥0 satis-

fying

Cα,W[1,n],n� = Cλα
α,W[1,n]

+ λα · �n (59)

by [26, Lemma 29(c)], because n� ∈ int Γρ[1,n]
. Hence, qα,W[1,n],n� = qλα

α,W[1,n]
by [26, Lemma 31].

Furthermore, qλα
α,W[1,n]

is of the form qλα
α,W[1,n]

=
n⊗

t=1
qλα
α,Wt

by [26, Lemma 32]. Then

‖qλα
α,Wt

− q
λφ

φ,Wt
‖2

(a)

≤ 4D1/2

(
qλα
α,Wt

‖qλφ

φ,Wt

)

(b)

≤ 4D1/2

(
qλα
α,W[1,n]

‖qλφ

φ,W[1,n]

)

(c)
= 4D1/2

(
qα,W[1,n],n� ‖qφ,W[1,n],n�

)

(d)
≤ 8 ln

2

2− ‖qα,W[1,n],� − qφ,W[1,n],�‖
,

where (a) is by [36, Theorem 31], (b) by [36, Theorems 8 and 28], (c) because qα,W[1,n],n� = qλα
α,W[1,n]

∀α ∈ (0, 1), and (d) by [26, equation (9)]. On the other hand, the constrained Augustin center
qα,W[1,n],n� is continuous in α on (0, 1) for the total variation topology on P(Yn

1 ) by [26, Lem-
mas 23(d) and 24]. Thus, qλα

α,Wt
is a continuous function of α for the total variation topology

on P(Yt) as well. Then qλ·
·,Wt

is a transition probability from ((0, 1),B((0, 1))) to (Yt,Yt). We

define qεα,t as the Yt marginal of the probability measure uα,ε � q
λ·,W,�

·,Wt
, where uα,ε is the uniform

probability distribution on (α− εα, α + ε(1− α)):

qεα,t =
1

ε

α+(1−α)ε∫

α−αε

q
λη

η,Wt
dη, ∀t ∈ {1, . . . , n}.

Let qα,t ∈ P(Yt) and qα ∈ P(Yn
1 ) be

qα,t � n

n+ 1
qεα,t +

1

n+ 1
q1/2,Wt,n�, ∀t ∈ {1, . . . , n},

qα �
n⊗

t=1

qα,t.
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Let us denote the probability measure generated by Ψ(m), i.e.,
n⊗

t=1
Wt(Ψt(m)), by wm for brevity.

We have

Dα(w
m ‖qα)

(a)
=

n∑

t=1

Dα(Wt(Ψt(m))‖qα,t)

(b)
≤

n∑

t=1

(

ln
n+ 1

n
+Dα

(
Wt(Ψt(m))‖qεα,t

)
)

(c)

≤ 1 +
n∑

t=1

Dα
(
Wt(Ψt(m))‖qεα,t

)

(d)

≤ 1 +
n∑

t=1

1

ε

α+(1−α)ε∫

α(1−ε)

Dα

(
Wt(Ψt(m))‖qλη

η,Wt

)
dη

(e)
= 1 +

1

ε

α+(1−α)ε∫

α(1−ε)

Dα
(
wm ‖qλη

η,W[1,n]

)
dη

(f)

≤ 1 +
1

ε

α+(1−α)ε∫

α(1−ε)

(

1 ∨ 1− η

η

α

1− α

)

Dη
(
wm ‖qλη

η,W[1,n]

)
dη

(g)
≤ 1 +

1

ε

α+(1−α)ε∫

α(1−ε)

(

1 ∨ 1− η

η

α

1− α

)
(
C

λη

η,W + λη · �n
)
dη

(h)
= 1 + C̃ε

α,W,�, (60)

where (a) is by [36, Theorem 28]; (b) by [26, Lemma 1], because
n

n+ 1
qεα,t ≤ qα,t; (c) by ln τ ≤ τ−1;

(d) by the Jensen’s inequality and [36, Theorem 12]; (e) by [36, Theorem 28] and [26, Lemma 32];
(f) by [36, Theorem 3 and Proposition 2]; (g) by [26, Theorem 2], because ρ[1,n](Ψ(m)) ≤ n�; and
(h) by (39) and (59). Let vmα be the order α tilted probability measure between wm and qα defined

in (2). Then vmα is a probability measure of the form vmα =
n⊗

t=1
[Wt]

qα,t
α (Ψt(m)) as a result of the

product structure of wm and qα. Let the random variables ξmα,t and ξmα be

ξmα,t � ln
d[Wt(Ψt(m))]ac

dqα,t
−Evmα

[

ln
d[Wt(Ψt(m))]ac

dqα,t

]

,

ξmα �
n∑

t=1

ξmα,t,

where [Wt(Ψt(m))]ac is the component of Wt(Ψt(m)) that is absolutely continuous in qα,t. Then for
all κ ∈ R+ and α ∈ (0, 1)

Evmα [|ξmα,t|κ]1/κ
(a)

≤ 31/κ
[(1− α)Dα(Wt(Ψt(m))‖qα,t)] ∨ κ

α(1 − α)

(b)

≤ 31/κ

[
(1− α)Dα

(
Wt(Ψt(m))‖q1/2,Wt ,n�

)
+ (1− α) ln(1 + n)

]
∨ κ

α(1 − α)

(c)
≤ 31/κ

[
D1/2

(
Wt(Ψt(m))‖q1/2,Wt,n�

)
+ (1− α) ln(1 + n)

]
∨ κ

α(1 − α)
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(d)
≤ 31/κ

[
C1/2,Wt,n� + (1− α) ln(1 + n)

]
∨ κ

α(1 − α)
,

where (a) is by [25, Lemma 17]; (b) by [26, Lemma 1], because
q1/2,Wt,n�

n+ 1
≤ qα,t; (c) by [36, Theorem 3

and Proposition 2]; and (d) by [26, Theorem 1], because ρt(Ψt(m)) ≤ n�. Then, using the definition
of γ given in (54), we get

[
n∑

t=1

Evmα

[
|ξmα,t|κ

]
]1/κ

≤ γ

3α(1 − α)
, ∀α ∈ [φ, 1). (61)

The rest of the proof is analogous to the proof of Lemma 9 and (45) after (49). The differences
that might worth mentioning are that bounds given in (60) and (61) are invoked instead of (48)

and (49), and q̃t =
n

n+ 1
qε̃
α̃,t

+
1

n+ 1
q1/2,Wt,� is used instead of q̃t =

n

n+ 1
qε̃
α̃,t

+
1

n+ 1
q
1/2,U

(n)
A

. �

Proof of Lemma 11. The proof is identical to that of Lemma 10 and (56) except for the

definition of qα,t and the bound on Evmα

[
|ξmα,t|κ

]1/κ
. In particular, we set qα,t ∈ P(Yt) to be

n

n+ 1
qεα,t +

1

n+ 1
q
λ1/2

1/2,Wt
for all t ≤ n and bound Evmα

[
|ξmα,t|κ

]1/κ
as follows:

Evmα

[
|ξmα,t|κ

]1/κ (a)

≤ 31/κ
[(1− α)Dα(Wt(Ψt(m))‖qα,t)] ∨ κ

α(1− α)

(b)

≤ 31/κ

[
(1− α)Dα

(
Wt(Ψt(m))‖qλ1/2

1/2,Wt

)
+ (1− α) ln(1 + n)

]
∨ κ

α(1− α)

(c)

≤ 31/κ

[
D1/2

(
Wt(Ψt(m))‖qλ1/2

1/2,Wt

)
+ (1− α) ln(1 + n)

]
∨ κ

α(1 − α)

(d)

≤ 31/κ

[
C

λ1/2

1/2,Wt
+ λ1/2 · ρt(Ψt(m)) + (1− α) ln(1 + n)

]
∨ κ

α(1− α)
,

where (a) is by [25, Lemma 17]; (b) by [26, Lemma 1], because
q
λ1/2

1/2,Wt

n+ 1
≤ qα,t; (c) by [36, Theorem 3

and Proposition 2]; and (d) by [26, Theorem 2]. Then, using the definition of γ given in (57), we get
[

n∑

t=1

Evmα

[
|ξmα,t|κ

]
]1/κ

≤ γ

3α(1 − α)
, ∀α ∈ [φ, 1).

The rest of the proof is identical to that of Lemma 10 and (56).

If Wt = W and ρt = ρ for all t ∈ [1, n], then Cα,W[1,n],n� = nCα,W,� for all � ∈ Γρ and

Cλ
α,W[1,n]

= nCλ
α,W for all λ ∈ R

�
≥0 by [26, Lemmas 28 and 32]. Then (58) follows from Cα,W,� =

C
λα,W,�

α,W + λα,W,� · �, established in [26, Lemma 29(c)]. �

4. EXAMPLES

As a result of Sections 2.4 and 3, we can conclude that the SPE governs the exponential decay
rate of the error probability of channel codes with list decoding on memoryless channels under
rather mild hypotheses. The calculation of the SPE itself, however, is a separate issue that is
essential from a practical standpoint. In this section, we derive the SPE for various Gaussian and
Poisson channels and demonstrate that it is possible to obtain parametric forms for these channels
similar to the one given in Lemma 2 for Esp(R,W, p). We believe these parametric forms are more
straightforward and intuitive than commonly used equivalent parametric forms that were previously
derived.
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4.1. Gaussian Channels

We denote the probability density function of the zero mean Gaussian random variable with
variance σ2 by ϕσ2 , i.e.,

ϕσ2(z) � 1√
2πσ

e−
z2

2σ2 , ∀z ∈ R.

With a slight abuse of notation, we denote the corresponding probability measure on B(R) by ϕσ2

as well.

Example 1 (scalar Gaussian channel). Let W be the scalar Gaussian channel with noise vari-
ance σ2 and the associated cost function ρ be the quadratic one:

W (E |x) =
∫

E

ϕσ2(y − x) dy, ∀E ∈ B(R),

ρ(x) = x2, ∀x ∈ R.

The cost constrained Augustin capacity and center of this channel are determined in [26, Example 4]:

Cα,W,� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α�

2(αθα,σ,� + (1− α)σ2)
+

1

α− 1
ln

(θα,σ,�)
α/2σ(1−α)

√
αθα,σ,� + (1− α)σ2

, α ∈ R+ \ {1},

1

2
ln

(

1 +
�

σ2

)

, α = 1,

(62)

qα,W,� = ϕθα,σ,�, (63)

θα,σ,� � σ2 +
�

2
− σ2

2α
+

√
(�

2
− σ2

2α

)2
+ �σ2. (64)

It is worth mentioning that Cα,W,� = Iα(ϕ�;W ) and qα,W,� = qα,ϕ� for all positive orders α, i.e.,
zero mean Gaussian distribution with variance � is the optimal input distribution for all orders.
Thus, Esp(R,W, �) = Esp(R,W,ϕ�).

The SPE of the scalar Gaussian channel can be characterized using Lemma 4. To see how, first
note that for any θ > 0 and the corresponding the Gaussian probability measure ϕθ, the order α
tilted channel Wϕθ

α , defined in (3), is given by

Wϕθ
α (E |x) =

∫

E

ϕ σ2θ
αθ+(1−α)σ2

(

y − αθ

αθ + (1− α)σ2
x

)

dy, ∀E ∈ B(R). (65)

Since θα,σ,� is a root of the equality θ2−θ
[
�+
(
2− 1

α

)
σ2
]
+
(
1− 1

α

)
σ4 = 0 for θ by [26, equation (132)

and (133)], one can confirm using [26, equation (131)] by substitution that

D1
(
W

ϕθα,σ,�
α ‖ϕθα,σ,� |p

)
=

α2θα,σ,�
2(αθα,σ,� + (1− α)σ2)2

(Ep[ρ]− �)

+
1

2
ln

αθα,σ,� + (1− α)σ2

σ2
, (66)

D1
(
W

ϕθα,σ,�
α ‖W |p

)
=

(1− α)2σ2

2(αθα,σ,� + (1− α)σ2)2
(Ep[ρ]− �)

+
(1− α)�

2(αθα,σ,� + (1− α)σ2)
+

1

2
ln

αθα,σ,� + (1− α)σ2

θα,σ,�
. (67)

Thus, for each α ∈ (0, 1), Vp = W
ϕθα,σ,�
α satisfies the hypotheses of Lemma 4 given in (21) and (22)

for R =
1

2
ln

αθα,σ,� + (1 − α)σ2

σ2
as a result of (62) and the constraint Ep[ρ] ≤ �. Furthermore,
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f(α) � 1

2
ln

αθα,σ,� + (1− α)σ2

σ2
is a continuous and increasing function of α satisfying lim

α↓0
f(α) = 0

and f(1) = C1,W,�. Thus, the SPE can be written in the following parametric form in terms of
α ∈ [0, 1] for all rates in [0, C1,W,�]:

R =
1

2
ln

αθα,σ,� + (1− α)σ2

σ2
, (68)

Esp(R,W, �) =
(1− α)�

2(αθα,σ,� + (1− α)σ2)
+

1

2
ln

αθα,σ,� + (1− α)σ2

θα,σ,�
. (69)

Using (66) and (67), we can express both the rate and the SPE in terms of the tilted chan-
nel W

ϕθα,σ,�
α . On the other hand, ϕθα,σ,� is the output distribution for the input distribution ϕ�

on W
ϕθα,σ,�
α , because ϕθα,σ,� is the Augustin mean qα,ϕ� for the input distribution ϕ� satisfying the

fixed point property Tα,ϕ�(qα,ϕ�) = qα,ϕ� as well. Thus, we can rewrite (68) and (69), using (66)
and (67), as follows:

R = I1
(
ϕ�;W

ϕθα,σ,�
α

)
, (70)

Esp(R,W, �) = D1
(
W

ϕθα,σ,�
α ‖W |ϕ�

)
. (71)

To obtain an expression for the SPE that does not depend on θα,σ,� explicitly, we first note that
(64) and (68) imply

α =
e2R − 1

2

⎛

⎝

√

1 +
4σ2

�

e2R

e2R − 1
− 1

⎞

⎠ . (72)

On the other hand, ϕθα,σ,� is the output distribution for the input distribution ϕ� on channel

W
ϕθα,σ,�
α . Thus, (65) implies

σ2θα,σ,�
αθα,σ,� + (1 − α)σ2

+

(
αθα,σ,�

αθα,σ,� + (1− α)σ2

)2

� = θα,σ,�.

Thus,
σ2

θα,σ,�
= 1− α�

αθα,σ,� + (1− α)σ2

= 1− �α

σ2e2R
, (73)

where (73) follows from (68).

Using first (68) and (73) in (69), and then invoking (72), we get the following expression for the
SPE:

Esp(R,W, �) =
1

2

(1− α)�

σ2e2R
+R+

1

2
ln
(
1− α�

σ2e2R

)

=
�

4σ2

⎡

⎣1 +
1

e2R
−
(
1− 1

e2R

)
√

1 +
4σ2

�

e2R

e2R − 1

⎤

⎦

+
1

2
ln

⎡

⎣e2R − �

σ2

(
e2R − 1

2

)⎛

⎝

√

1 +
4σ2

�

e2R

e2R − 1
− 1

⎞

⎠

⎤

⎦ . (74)

The expression given in (74) for the SPE is equivalent to [8, equation (7.4.33)].

The parametric characterization given in (68) and (69) can be obtained by a more direct approach
using the differentiability of θα,σ,� and Cα,W,� in α as well. In particular, since θα,σ,� is a root of the
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equality θ2 − θ
[
�+
(
2− 1

α

)
σ2
]
+
(
1− 1

α

)
σ4 = 0 for θ, we get the following closed form expression

for the derivative of the Augustin capacity with respect to the order:

∂

∂α
Cα,W,� =

1

2(1 − α)2

[
(1− α)�

αθα,σ,� + (1− α)σ2
+ ln

αθα,σ,� + (1− α)σ2

θα,σ,�

]

+
θ2α,σ,� − θα,σ,�

[
�+
(
2− 1

α

)
σ2
]
+
(
1− 1

α

)
σ4

2(αθα,σ,� + (1− α)σ2)2

[
α

1− α
+

α2

θα,σ,�

∂

∂α
θα,σ,�

]

=
1

2(1 − α)2

[
(1− α)�

αθα,σ,� + (1− α)σ2
+ ln

αθα,σ,� + (1− α)σ2

θα,σ,�

]

. (75)

Using first (75) and then (62), we get

d

dα

1− α

α
(Cα,W,� −R)

=
1− α

α

(
1

2(1 − α)2

[
(1− α)�

αθα,σ,� + (1− α)σ2
+ ln

αθα,σ,� + (1− α)σ2

θα,σ,�

])

− 1

α2
(Cα,W,� −R)

=
1

α2

(

R− 1

2
ln

αθα,σ,� + (1 − α)σ2

σ2

)

.

Then the derivative test implies the parametric form given in (68) and (69) as a result of (62).

Example 2 (parallel Gaussian channels). Let W[1,n] be the product of scalar Gaussian channels
with noise variance σ2

i for i ∈ {1, . . . , n} and the cost function ρ[1,n] be additive and quadratic, i.e.,

W[1,n](E |xn1 ) =
∫

E

[
n∏

i=1

ϕσ2
i
(yi − xi)

]

dyn1 , ∀E ∈ B(Rn),

ρ[1,n](x
n
1 ) =

n∑

i=1

x2i , ∀xn1 ∈ R
n.

The constrained Augustin capacity and center of W[1,n] were determined in [26, Example 5]:

Cα,W[1,n],� =
n∑

i=1

Cα,Wi,�α,i , (76)

qα,W[1,n],� =
n⊗

i=1

ϕθα,σi,�α,i
, (77)

�α,i =

∣
∣α− 2σ2

i λα

∣
∣+

2λα
(
α+ 2(α− 1)σ2

i λα
) , (78)

where θα,σ,� is defined in (64) and λα is determined by
∑

i
�α,i = � uniquely.7 Furthermore, θα,σi,�α,i

can be expressed in terms of σi and λα without explicitly referring to �α,i as follows:

θα,σi,�α,i = σ2
i +

∣
∣
∣
∣
∣

1

2λα
− σ2

i

α

∣
∣
∣
∣
∣

+

. (79)

7 The constraint
∑

i

�α,i = � determines λα uniquely, because the expression on the right-hand side of (78)

is a nonincreasing function of λα.
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On the other hand,
d

d�i
Cα,Wi,�i

∣
∣
∣
�i=�α,i

= λα for all i with a positive �α,i and
d

d�i
Cα,Wi,�i

∣
∣
∣
�i=�α,i

≤ λα

for all i. Then, using the chain rule of derivatives together with (75) and (62), we get

d

dα

1− α

α

(
Cα,W[1,n],� −R

)

=
1− α

α

n∑

i=1

[
∂

∂φ
Cφ,Wi,�α,i

∣
∣
∣
∣
φ=α

+
∂

∂�
Cα,Wi,�

∣
∣
∣
∣
�=�α,i

d

dα
�α,i

]

− 1

α2

(
Cα,W[1,n],� −R

)

=
1

α2

[

R− 1

2

n∑

i=1

ln
αθα,σi,�α,i + (1 − α)σ2

i

σ2
i

]

+
1− α

α
λα

n∑

i=1

d

dα
�α,i

=
1

α2

[

R− 1

2

n∑

i=1

ln
αθα,σi,�α,i + (1 − α)σ2

i

σ2
i

]

.

Thus, we obtain the following parametric form for Esp(R,W[1,n], �) in terms of α for all R ∈
[0, Cα,W[1,n],�]:

R =
1

2

n∑

i=1

ln
αθα,σi,�α,i + (1− α)σ2

i

σ2
i

, (80)

Esp(R,W[1,n], �) =
1

2

n∑

i=1

[
(1− α)�α,i

αθα,σi,�α,i + (1− α)σ2
i

+ ln
αθα,σi,�α,i + (1− α)σ2

i

θα,σi,�α,i

]

. (81)

Thus, Esp(R,W[1,n], �) = D1(Vα ‖W[1,n] |Φα) for R = I1(Φα;Vα) where the input distribution Φα

is the zero mean Gaussian distribution with the diagonal covariance matrix whose eigenvalues are
�α,1, . . . , �α,n and Vα is the order α tilted channel between W[1,n] and qα,Φα.

If σ2
i ≥ α

2λα
for an i, then �α,i = 0, and the corresponding terms in the sums given in (80)

and (81) are zero. In [19], Ebert provided an alternative parametric form for the SPE relying on
this observation. To obtain Ebert’s characterization, first note that

αθα,σi,�α,i + (1− α)σ2
i =

α

2λα
∨ σ2

i , ∀i ∈ {1, . . . , n}

by (79). Thus, (79)–(81) and the constraint
∑

i
�α,i = � imply the following parametric form in

terms of N =
α

2λα
, which is equivalent to Ebert’s characterization [8, equations (7.5.28), (7.5.32),

and (7.5.34)], [18, p. 294], [19, equation (20)]:

R =
1

2

∑

i: σ2
i ≤N

ln
N

σ2
i

, (82)

� =
1

α

n∑

i=1

∣
∣N − σ2

i

∣
∣+

1 + (α− 1)
σ2
i
N

, (83)

Esp(R,W[1,n], �) =
(1− α)�

2N
+

1

2

∑

i: σ2
i ≤N

ln
αN

N − (1− α)σ2
i

. (84)

Note that one does not need to determine λα or invoke N =
α

2λα
in the above expressions. One can

first determineN using (82) and then determine α using (83) in order to determine Esp(R,W[1,n], �),
as was noted by Ebert in [18,19].
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4.2. Poisson Channels

Let T ∈ R+ and a, b ∈ R≥0 such that a ≤ b. Then for the Poisson channel Λ : F → P(Y), the
input set F is the set of all measurable functions of the form f : (0, T ] → [a, b], the output set Y

is the set of all nondecreasing, right-continuous, integer valued functions on (0, T ], the σ-algebra
of the output events Y is the Borel σ-algebra for the topology generated by the Skorokhod metric
on Y, and Λ(f) is the Poisson point process with deterministic intensity function f for all f ∈ F.
With a slight abuse of notation, we denote the Poisson process with constant intensity γ by Λ(γ).
The cost function ρ : F → R≥0 is

ρ(f) � 1

T

T∫

0

f(t) dt.

In [27, Section V-C], the (unconstrained) Rényi capacities and centers of various Poisson channels
are determined. These expressions are equal to the corresponding Augustin capacities and centers,
because C0

α,W = Cg0
α,W for any W and q0α,W = qg0α,W for any W with finite C0

α,W by [26, Theorems 2
and 3].

Example 3 (Poisson channels with given average intensity). [27, Example 9] considers channels
Λ� : F� → P(Y), where F� = {f ∈ F : ρ(f) = �} and Λ�(f) = Λ(f) for all f ∈ F�. The
Rényi capacity and center of Λ�—hence the Augustin capacity and center of Λ�—are given in [27,
equations (73) and (74)] to be

Cα,Λ� =

⎧
⎪⎪⎨

⎪⎪⎩

α

α− 1
(ζα,� − �)T, α �= 1,

(
�− a

b− a
b ln

b

�
+

b− �

b− a
a ln

a

�

)

T, α = 1,
(85)

qα,Λ� = Λ(ζα,�), (86)

ζα,� �
(
�− a

b− a
bα +

b− �

b− a
aα
)1/α

. (87)

Since the expression for Cα,Λ� is differentiable in α, we obtain the following parametric expression
for the SPE using the derivative test:

R =

(
�− a

b− a
bαζ1−α

α,� ln
bαζ1−α

α,�

ζα,�
+

b− �

b− a
aαζ1−α

α,� ln
aαζ1−α

α,�

ζα,�

)

T, (88)

Esp(R,Λ�) =

(

�− ζα,� +
�− a

b− a
bαζ1−α

α,� ln
bαζ1−α

α,�

b
+

b− �

b− a
aαζ1−α

α,� ln
aαζ1−α

α,�

a

)

T. (89)

There is an alternative parametric characterization, which is considerably easier to remember in
terms of the tilted channels. In order to derive that expression, first note that [27, equations (66)
and (68)] and the definition of the tilted channel given in (3) imply that

ΛΛ(g)
α (f) = Λ

(
fαg(1−α)). (90)

Then, using [27, equation (68)] and (86)–(89), we get

R = D1
(
Λ
qα,Λ�

α (fopt)‖qα,Λ�

)
, (91)

Esp(R,Λ�) = D1
(
Λ
qα,Λ�

α (fopt)‖Λ(fopt)
)
, (92)

where fopt is any {a, b} valued function in F�, i.e., any function fopt : (0, T ] → {a, b} satisfying
ρ(fopt) = �.
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Example 4 (Poisson channels with constrained average intensity). Let us first confirm that the
constrained Augustin capacity Cα,Λ,� and the constrained Augustin center qα,Λ,� are given by8

Cα,Λ,� = Cα,Λ�∧�α , (93)

qα,Λ,� = qα,Λ�∧�α , (94)

where Cα,Λ� and qα,Λ� are determined by (85)–(87) and �α is a decreasing function of the order α
defined as

�α �

⎧
⎪⎨

⎪⎩

α
α

1−α

( b− a

bα − aα

) 1
1−α

+
abα − baα

bα − aα
, α �= 1,

e−1b
b

b−a a−
a

b−a , α = 1.

(95)

To establish (93) and (94), first note that Cα,Λ�∧�α ≤ Cα,Λ,�, because Cα,Λ�∧�α = Cα,Λ,P(F�∧�α)

and P(F�∧�α) ⊂ A(�), where A(�) = {p ∈ P(F) : Ep[ρ(f)] ≤ �}. On the other hand, invoking
first [27, equation (82)] and then [27, equation (76)], we get

Dα
(
Λ(f)‖Λ(ζα,�∧�α )

)

≤ b− ρ(f)

b− a
Dα
(
Λ(a)‖Λ(ζα,�∧�α )

)
+

ρ(f)− a

b− a
Dα
(
Λ(b)‖Λ(ζα,�∧�α )

)

= Cα,Λ�∧�α +
� ∧ �α − ρ(f)

b− a

[
Dα

(
Λ(a)‖Λ(ζα,�∧�α )

)
−Dα

(
Λ(b)‖Λ(ζα,�∧�α )

)]
, ∀f ∈ F.

Since Dα(Λ(a)‖Λ(ζα,�α )) = Dα(Λ(b)‖Λ(ζα,�α )) by [27, equations (83) and (84)], we get

Dα
(
Λ(f)‖Λ(ζα,�∧�α )

)

≤ Cα,Λ�∧�α + 1{�<�α}
�− ρ(f)

b− a

[
Dα
(
Λ(a)‖Λ(ζα,�)

)
−Dα

(
Λ(b)‖Λ(ζα,�)

)]
, ∀f ∈ F.

On the other hand, Dα(Λ(a)‖Λ(ζα,�)) ≤ Dα(Λ(b)‖Λ(ζα,�)) for all � ≤ �α by [27, equation (83)];
consequently, we have

Dα
(
Λ(f)‖Λ(ζα,�∧�α) |p

)
≤ Cα,Λ�∧�α , ∀p : Ep[ρ] ≤ �.

Thus, (93) and (94) follow from [26, Lemma 25], because Λ(ζα,�∧�α) = qα,Λ�∧�α by (86).

Since the expression for Cα,Λ,� given in (93) is differentiable in α, we can use the derivative test
to determine optimal order for the SPE defined in (10). We obtain the following parametric form
as a result:

R =

(
� ∧ �α − a

b− a
bαζ1−α

α,�∧�α ln
bαζ1−α

α,�∧�α
ζα,�∧�α

+
b− � ∧ �α

b− a
aαζ1−α

α,�∧�α ln
aαζ1−α

α,�∧�α
ζα,�∧�α

)

T, (96)

Esp(R,Λ, �) =

(

� ∧ �α − ζα,�∧�α +
� ∧ �α − a

b− a
bαζ1−α

α,�∧�α ln
bαζ1−α

α,�∧�α
b

+
b− � ∧ �α

b− a
aαζ1−α

α,�∧�α ln
aαζ1−α

α,�∧�α
a

)

T. (97)

Using [27, equation (68)], (86), (90), (94), (96), and (97), we get the following parametric charac-
terization:

R = D1
(
Λ
qα,Λ,�
α (fα)‖qα,Λ,�

)
, (98)

Esp(R,Λ, �) = D1
(
Λ
qα,Λ,�
α (fα)‖Λ(fα)

)
, (99)

8 Note that Cα,Λ,� = Cα,Λ≤� and qα,Λ,� = qα,Λ≤� for the Poisson channel Λ≤� : {f ∈ F : ρ(f) ≤ �} → P(Y)
considered in [27, Example 10].
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where fα is any {a, b} valued function in F�∧�α , i.e., any function fα : (0, T ] → {a, b} satisfying
ρ(fα) = � ∧ �α.

5. DISCUSSION

We have applied Augustin’s method to derive SPBs for two families of memoryless channels.
For the stationary memoryless channels with convex composition constraints, the novel observation
behind Augustin’s method is:

lim
φ→α

sup
p∈A

Dα(W ‖qφ,W,A |p) = Cα,W,A, ∀α ∈ (0, 1). (100)

Note that the results established for the convex composition constrained stationary memoryless
channels also hold for the cost constrained stationary memoryless channels, because any cost con-
straint on a stationary memoryless channel can be expressed as a convex composition constraint
as well. For the nonstationary cost constrained memoryless channels we have employed (100) to-
gether with the convex conjugation techniques. Theorem 2 improves a similar result by Augustin,
i.e., [24, Theorem 36.6], in terms of the approximation error terms. The prefactor of Theorem 2
is of the form e−O(lnn), rather than e−O(

√
n) similar to [24, Theorem 36.6]. Also, unlike [24, The-

orem 36.6], Theorem 2 does not assume the cost functions to be bounded and thus holds for the
Gaussian models considered in [17–20] as well.

For classical-quantum channels, the SPB was established in [40]. Following this breakthrough,
there has been a reviewed interest in the SPB for classical-quantum channels [41–44]. Augustin’s
method, however, has not been applied to any quantum information theoretic model. Successful
applications of Augustin’s method will allow us to get rid of the stationarity, and finite input set
hypotheses, at the very least.

The Augustin’s variant of Gallager’s bound discussed in Section 2.4 is not widely known. Our
main aim in Section 2.4 was to present this approach in its simplest form. Thus, while bounding
E[Pe], we were content with passing from (29) to (30). Using more careful analysis and bounding

the deviation of the order α A-L information random variable, i.e., ln
fx
hx

for q = qα,p, one can

obtain sharper bounds similar to the ones in [45–47]. The random coding bound for the classical-
quantum channels has been established in [48]. It is suggested in [42, p. 5606] that the reliance
of [48] on the codes generated with i.i.d. symbols might make it hard to modify the proof to the
constant composition, i.e., composition constrained, case. We think that the Augustin’s variant of
Gallager’s bound might be helpful in overcoming this issue.

As a side note, let us point out that Sections 2.4 and 3 imply that SPE is the reliability function
for certain fading channels, i.e., for certain channels with state, provided that the list decoding
is allowed, even in the nonstationary case. In particular, both the fast fading channels with no
state information (i.e., with statistical state information) and the fast fading channels with state
information only at the receiver are cost constrained memoryless channels. Thus, for the channels
considered in [20] and the ones considered in [49, Section 4] the reliability function under list de-
coding is equal to the SPE. This is the case for the models with per antenna power constraints
considered in [50–52] as well, because the channels considered in [50–52] are cost constrained mem-
oryless channels, albeit with multiple constraints. The determination of the SPE for these channels,
however, is a separate issue, as we have noted in Section 4.

The optimal prefactor of the SPB was known for specific channels since the early days of infor-
mation theory; see, for example, [3, 4, 17]. In recent years, there has been a reviewed interest in
establishing such sharp SPBs under various symmetry hypotheses [5, 6, 13,21,22]. The parametric
characterization of the SPE given in (13) and (14) is used to establish such bounds for constant
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composition codes in [14]. A refined SPB can be established in every single one of the cases consid-
ered in [3–6, 13, 17, 21, 22] using analogous parametric characterizations, as demonstrated by [28].
This is one of the reasons for us to present the parametric characterizations given in (70), (71), (91),
(92), (98), and (99). It turns out that one can strengthen the strong converses in terms of their
prefactors using analogous parametric characterizations under appropriate symmetry hypothesis as
well; see [53].

APPENDIX A: BLAHUT’S APPROACH

In [31], Blahut derives a lower bound to the error probability of the channel codes without using
constant composition arguments. Blahut claims that the exponential decay rate of his bound is
equal to the SPE, see [31, Theorem 19]. Blahut claims the equality of the aforementioned exponent
and the SPE in other publications too, see [32, Lemma 1] and [33, Theorem 10.1.4]. We show in
the following that for the Z-channel the exponent of the Blahut’s bound is infinite for any rate
less than the channel capacity. Hence, [31, Theorem 19], [32, Lemma 1], and [33, Theorem 10.1.4]
are all incorrect. More importantly, we show that even the best bound that can be obtained using
Blahut’s method is strictly inferior to the SPB in terms of its exponential decay rate with the block
length.

For any W : X → P(Y) and R ∈ [0, C1,W ], let G(R,W, p, q) be

G(R,W, p, q) � inf
V :D1(V ‖q |p)≤R

D1(V ‖W |p), ∀p ∈ P(X), q ∈ P(Y).

Since D1(V ‖ (pV ) |p) = I1(p;V ), where (pV ) =
∑

x
p(x)V (x), from the alternative expression for

Esp(R,W ) given in (20) it follows that

Esp(R,W ) = sup
p∈P(X)

inf
q∈P(Y)

G(R,W, p, q), ∀R ∈ [0, C1,W ]. (A.1)

Thus, the max-min inequality implies

Esp(R,W ) ≤ inf
q∈P(Y)

sup
p∈P(X)

G(R,W, p, q), ∀R ∈ [0, C1,W ].

The initial part of the proof of [31, Theorem 19] establishes the following bound on the error
probability of the codes on a stationary product channel with the component channel W whose
input set X and output set Y are finite:

Pmax,n
e ≥ O(1)e

−o(n)−n sup
p∈P(X)

G(R,W,p,q)

, ∀q ∈ P(Y). (A.2)

The second half of the proof of [31, Theorem 19] claims that sup
p∈P(X)

G(R,W, p, qαR ,pR) is equal to

Esp(R,W ) for some (αR, pR) pair satisfying the following equalities9:

Esp(R,W ) = Esp(R,W, pR)

=
1− αR

αR
(IαR

(pR;W )−R).

When considered together with (A.1), the second half of the proof of [31, Theorem 19] asserts that

sup
p∈P(X)

G(R,W, p, qαR ,pR)
?
= sup

p∈P(X)
inf

q∈P(Y)
G(R,W, p, q). (A.3)

9 Blahut mentions only the first equality explicitly.
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Note that [32, Lemma 1] and [33, Theorem 10.1.4] imply the same equality when considered together
with (A.1) as well. In order to disprove (A.3), we consider the Z-channel, which is a discrete channel
with the input set X = {1, 2} and the output set Y = {a, b} such that

W =

[
1 0
ε 1− ε

]

.

We determine the order α Augustin capacity and the order α Augustin center using the identities
Cα,W = Dα(W (1)‖qα,W ) and Cα,W = Dα(W (2)‖qα,W ):

Cα,W = ln

(

1 +

(
1− εα

(1− ε)α

) 1
1−α

)

, (A.4)

qα,W (a) =
(1− ε)

α
1−α

(1− ε)
α

1−α + (1− εα)
1

1−α

. (A.5)

Then for q = qα,W the tilted channel W q
α defined in (3) is

W
qα,W
α =

[
1 0
εα 1− εα

]

.

Furthermore, one can confirm by substitution that the order α Augustin center qα,W is the fixed
point of the order α Augustin operator defined in (4) for the prior pα,W satisfying

pα,W (1) =
(1− ε)

α
1−α − εα(1− εα)

α
1−α

(1− ε)
α

1−α + (1− εα)
1

1−α

.

Thus, the order α Augustin center qα,W is equal to the order αAugustin mean for the prior pα,W , i.e.,
qα,W = qα,pα,W

, by [26, Lemma 13(c),(d)] and Iα(pα,W ;W ) = Dα(W ‖qα,W |pα,W ). Consequently,
Iα(pα,W ;W ) = Cα,W as well.

Note that Cα,W given in (A.4) is a differentiable function of α such that

∂

∂α
Cα,W =

qα(b)

(1− α)2

(

ln
1− εα

1− ε
+

εα

1− εα
ln

εα

ε

)

=
1

(1− α)2
D1

(
W

qα,W
α ‖W |pα,W

)
.

Then, using first the identity Iα(pα,W ;W ) = Cα,W and then [26, equation (35)], we get

∂

∂α

1− α

α
(Cα,W −R) =

1

α2

(

R− Cα,W + (1− α)α
∂

∂α
Cα,W

)

=
1

α2

(

R− Iα(pα,W ;W ) +
α

1− α
D1
(
W

qα,W
α ‖W |pα,W

)
)

=
1

α2

(
R− I1

(
pα,W ;W

qα,W
α
))

.

One can confirm numerically that I1(pα,W ;W
qα,W
α ) is an increasing function of α for any ε ∈ (0, 1).

Thus, we can express the rate and the corresponding SPE in the following parametric form:

R(α) = I1
(
pα,W ;W

qα,W
α
)
,

Esp(R(α),W ) = D1
(
W

qα,W
α ‖W |pα,W

)
.
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Thus, for R = R(φ) we have (αR, pR) = (φ, pφ,W ) and qαR,pR = qφ,W . Then

sup
p∈P(X)

G(R,W, p, qαR ,pR) ≥ G(R,W, p, qαR ,W )|p: p(1)=1

= inf
v:D1(v‖qαR,W )≤R

D1(v ‖W (1)).

On the other hand, v(b) > 0 for all v satisfying D1(v ‖qαR,W ) ≤ R, because D1(v ‖qαR ,W ) =

ln
1

qαR,W (a)
= CαR,W whenever v(b) = 0 and CαR,W > R. Furthermore, D1(v ‖W (1)) = ∞

whenever v(b) > 0. Thus,

inf
v:D1(v‖qαR,W )≤R

D1(v ‖W (1)) = ∞.

Thus, the bound established in the initial part of the proof of [31, Theorem 19], i.e., (A.2), is trivial
for q = qαR,pR. Furthermore, [31, Theorem 19], [32, Lemma 1], and [33, Theorem 10.1.4] are all
incorrect, because Esp(R,W ) < ∞ for all R ∈ [0, C1,W ] for the Z-channels.10

Using other values of q, one can obtain nontrivial bounds from (A.2); those bounds, however,
do not imply the SPB either. If q(a) < e−R, then sup

p∈P(X)
G(R,W, p, qαR ,pR) = ∞ as a result of the

analysis presented above. We analyze the case q(a) ≥ e−R in the following:

sup
p∈P(X)

G(R,W, p, q) ≥ inf
V :D1(V ‖q |pR)≤R

D1(V ‖W |pR)

≥ inf
V

D1(V ‖W |pR) +
1− αR

αR
(D1(V ‖q |pR)−R)

(a)
=

1− αR

αR
(DαR

(W ‖q |pR)−R)

(b)

≥ 1− αR

αR
(IαR

(pR;W ) +DαR
(qαR,pR ‖q) −R)

= Esp(R,W ) +
1− αR

αR
DαR

(qαR,pR ‖q)

(c)

≥ Esp(R,W ) +
1− αR

2
‖q − qαR,pR‖2,

where (a) is by [36, Theorem 30], (b) by [26, Lemma 13(c)], and (c) by [36, Theorem 31]. On the
other hand, qαR,pR(a) < e−R, because qαR,pR = qαR,W and CαR,W > R. Thus,

inf
q∈P(Y)

sup
p∈P(X)

G(R,W, p, q) ≥ Esp(R,W ) + 2(1− αR)(e
−R − qαR,W (a))2

= sup
p∈P(X)

inf
q∈P(Y)

G(R,W, p, q) + 2(1 − αR)(e
−R − qαR,W (a))2.

Hence, it is not possible to derive the SPB using Blahut’s method, as it is presented in [31]. When
the input set is finite, one can overcome this problem by employing composition based expurgations.
But that approach had been presented by Haroutunian in [10], before [31].

10 Recently, Yang argued that Blahut’s method can be used to derive the SPB if the minimax equality given in
[54, equation (3.63)] holds. Thus, as a result of our analysis we can conclude that [54, equation (3.63)] does
not holds in general. This fact can be derived using the absence of the minimax equality for G(R,W, p, q)
without relying on the reasoning in [54] as well.
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APPENDIX B : R-G INFORMATION MEASURES

The order one R-G information measures are equal to the corresponding order one A-L infor-
mation measures by definition. Thus, our discussion will be confined to orders other than one.

Definition 12. For any α ∈ R+\{1}, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

p ∈ P(X), and λ ∈ R
�
≥0, the order α Rényi–Gallager (R-G) information for the input distribution p

and the Lagrange multiplier λ is

Igλα (p;W ) � inf
q∈P(Y)

Dα

(
p � We

1−α
α

λ·ρ ‖p ⊗ q
)
.

If λ is a vector of zeros, then the R-G information is the Rényi information. Similarly to the
Rényi information, the R-G information has a closed form expression, described in terms of a mean
achieving the infimum in its definition.

Definition 13. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

p ∈ P(X), and λ ∈ R
�
≥0, the order α mean measure for the input distribution p and the Lagrange

multiplier λ is

dμλ
α,p

dν
�
[
∑

x

p(x)e(1−α)λ·ρ(x)
(
dW (x)

dν

)α]
1
α

. (B.1)

The order α Rényi–Gallager (R-G) mean for the input distribution p and the Lagrange multi-
plier λ is

qgλα,p �
μλ
α,p

‖μλ
α,p‖

.

Both μλ
α,p and qgλα,p depend on the Lagrange multiplier λ for α ∈ R+ \{1}. Furthermore, one can

confirm by substitution that

Dα
(
p � We

1−α
α

λ·ρ ‖p ⊗ q
)
= Igλα (p;W ) +Dα

(
qgλα,p ‖q

)
, α ∈ R+ \ {1}.

Then as a result of [26, Lemma 2] we have

Igλα (p;W ) = Dα
(
p � We

1−α
α

λ·ρ ‖p ⊗ qgλα,W
)

=
α

α− 1
ln ‖μλ

α,p‖, α ∈ R+ \ {1}. (B.2)

Using the definitions of the A-L information and the R-G information together with the Jensen’s
inequality and the concavity of the natural logarithm function, we get

Iλα(p;W ) ≥ Igλα (p;W ), α ∈ (0, 1], (B.3)

Iλα(p;W ) ≤ Igλα (p;W ), α ∈ [1,∞). (B.4)

Definition 14. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0, and

λ ∈ R
�
≥0, the order α Rényi–Gallager (R-G) capacity for the Lagrange multiplier λ is

Cgλ
α,W � sup

p∈P(X)
Igλα (p;W ). (B.5)

Although inequalities in (B.3) and (B.4) are strict for most input distributions, as a result
of [26, Theorem 3], we have

Cgλ
α,W = Sλ

α,W . (B.6)
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Thus, Cgλ
α,W = Cλ

α,W by (9). This is the reason why in terms of determining the optimal performance
either family can be used. The following lemma is, in essence, a restatement of [29, Theorem 8],
which is the result that popularized the use of R-G information measures in cost constrained
problems; see [18–20].

Lemma 12. For any �,M,L ∈ Z+ such that L < M , W : X → P(Y), ρ : X → R
�
≥0, p ∈ P(X),

B ⊂ X, and α ∈
[ 1

1 + L
, 1
)
there exists an (M,L) channel code with an encoding function of the

form Ψ : M → B such that

lnPe ≤
α− 1

α

[

Igλα (p;W ) +
(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

− ln p(B)

α
. (B.7)

Proof of Lemma 12. We follow the proof of Lemma 6 up to (30). As a result of (26) and (30),
we have

lnE[Pe] ≤ lnEq

⎡

⎢
⎣

⎛

⎝
∑

x∈B

p(x)

p(B)
e(1−α)λ·ρ(x)

(
dW (x)

dq

)α
⎞

⎠

1
α

⎤

⎥
⎦

+
α− 1

α

[(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

≤ lnEq

⎡

⎢
⎣

⎛

⎝
∑

x∈X
p(x)e(1−α)λ·ρ(x)

(
dW (x)

dq

)α
⎞

⎠

1
α

⎤

⎥
⎦

+
α− 1

α

[(
inf
x∈B

λ · ρ(x)
)
− ln

(M − 1)e

L

]

− ln p(B)

α
.

Since there exists a code with Pe less than or equal to E[Pe], the existence of a code satisfying (B.7)
with an encoding function of the form Ψ : M → B follows from (B.1) and (B.2). �

APPENDIX C : OMITTED PROOFS

Proof of Lemma 1. Esp(R,W,A) is convex in R, because the pointwise supremum of a family

of convex functions is convex and
1− α

α
(Cα,W,A−R) is convex in R for any α ∈ (0, 1). Esp(R,W,A)

is nonincreasing in R as a result of an analogous argument. The continuity and finiteness claims
are proved while establishing (11).

Recall that Cα,W,A is a nondecreasing function of the order α by [26, Lemma 23(a)].

• If C0+,W,A = ∞, then C1/2,W = ∞ and Esp(R,W,A) = ∞ for all R ∈ R≥0. On the other hand,
R < C0+,W,A for all R ∈ R≥0. Hence, (11) holds, and claims about the continuity and the
finiteness of Esp(R,W,A) are void.

• If C0+,W,A < ∞ and C0+,W,A = C1,W,A, then Esp(R,W,A) = ∞ for all R ∈ [0, C1,W,A) and
Esp(R,W,A) = 0 for all R ≥ C1,W,A. Hence, (11) and claims about the continuity and the
finiteness of Esp(R,W,A) hold.

• If C0+,W,A < ∞ and C0+,W,A �= C1,W,A, then Esp(R,W,A) = ∞ for all R ∈ [0, C0+,W,A). For

R ≥ C0+,W,A, the nonnegativity of
1− α

α
(Cα,W,A −R) imply the restrictions given in (11).

As a result of (11), Esp(R,W,A) is finite for all R > lim
φ↓0

Cφ,W,A. Thus, Esp(R,W,A) is continuous

on (C0+,W,A,∞) by [35, Theorem 6.3.3]. In order to extent the continuity to [C0+,W,A,∞), note

that the function
1− α

α
(Cα,W,A−R) is decreasing and continuous in R for each α in (0, 1). Thus,

Esp(R,W,A) is a nonincreasing and lower semicontinuous function of R. Hence, Esp(R,W,A)
is continuous from the right, and hence at R = C0+,W,A. �
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Proof of Corollary 2.
1− α

α

(

Cα,W[1,n],n� − ln
M

L

)

≥ Esp

(
ln

M

L
,W[1,n], n�

)
− 1

n
for an α ∈

(η, 1) by Lemma 1. There exists a p ∈ P(X̃n
1 ) of the form p =

n⊗

t=1
pt satisfying Ep[ρ[1,n]] ≤ n(�̃− δ).

Let �̂ � � − 3eς

n
. There exists a p̃ ∈ P(X̃n

1 ) of the form p̃ =
n⊗

t=1
p̃t satisfying both Iα

(
p̃; W̃[1,n]

)
≥

C
α,W̃[1,n],n�̂

− ε and Ep̃[ρ[1,n]] ≤ n�̂ by [26, Lemmas 14 and 28]. Let Ŵ[1,n] : X̂
n
1 → P(Yn

1 ) be a

product channel satisfying Ŵ[1,n](x
n
1 ) = W[1,n](x

n
1 ) for all xn1 ∈ X̂n

1 and X̂t = supp p̃t ∪ supppt for
all t ∈ {1, . . . , n}. Then C

α,Ŵ[1,n],n�̂
≥ C

α,W̃[1,n],n�̂
− ε and �̃ ≤ �̂ by the construction. There exists

a p̂ ∈ P(X̂n
1 ) satisfying both Iα

(
p̂; Ŵ[1,n]

)
= C

α,Ŵ[1,n],n�̂
and Ep̂[ρ[1,n]] ≤ n�̂ by [26, Lemma 19],

because X̂n
1 is finite. Furthermore, we can assume that p̂ is of the form p̂ =

n⊗

t=1
p̂t without loss of

generality by [26, Lemma 14], because the cost function ρ[1,n] is additive.

Note that Ep̂t

[∣∣
∣ρt −Ep̂t

[ρt]
∣
∣
∣
κ]1/κ ≤ ς for all κ ∈ R+ and t ∈ {1, . . . , n}, because ρt is positive

and less than ς with probability one under p̂t. Then, using [25, Lemma 19] for κ = lnn, we get

p̂
(∣∣
∣ρ[1,n](x)−Ep̂[ρ[1,n]]

∣
∣
∣ < 3ςe

)
≥ 1

2
√
n
.

On the other hand, there exists a λ̂ = λ
α,Ŵ[1,n],n�̂

satisfying C
α,Ŵ[1,n],n�̂

= C λ̂
α,Ŵ[1,n]

+ λ̂n�̂ by [26,

Lemma 29(c)], because n�̂ is in the interior of the feasible cost constraints Ŵ[1,n] by the construction.

Furthermore, I λ̂α
(
p̂; Ŵ[1,n]

)
= C λ̂

α,Ŵ[1,n]

by [26, Lemma 29(d)], because Iα
(
p̂; Ŵ[1,n]

)
= C

α,Ŵ[1,n],n�̂

and Ep̂[ρ[1,n]] ≤ n�̂. As a result, Dα
(
W[1,n](x

n
1 )‖qα,p̂

)
− λ̂ρ[1,n](x

n
1 ) = C λ̂

α,Ŵ[1,n]

for all xn1 ∈ supp p̂

and λ̂n�̂ = λ̂Ep̂[ρ[1,n]]. Applying Lemma 6 for B =
{
xn1 ∈ supp p̂ :

∣
∣
∣ρ[1,n](x

n
1 )−Ep̂[ρ[1,n]]

∣
∣
∣ < 3ςe

}

we can conclude that there exists an (M,L) channel code satisfying

lnPe ≤
α− 1

α

[

C λ̂
α,Ŵ[1,n]

+ inf
xn
1∈B

λ̂ρ[1,n](x
n
1 )− ln

(M − 1)e

L

]

+
ln 4n

2α

≤ α− 1

α

[

C
α,Ŵ[1,n],n�̂

− 3ςeλ̂− ln
(M − 1)e

L

]

+
ln 4n

2α
.

Since C
α,Ŵ[1,n],n�̂

+ λ̂n(�− �̂) ≥ C
α,Ŵ[1,n],n�

by [26, Lemma 27(b)], we get

lnPe ≤ −Esp

(
ln

M

L
,W[1,n], �

)
+

1

n
+

1− α

α

(
6ςeλ̂+ 2ε+ 1

)
+

ln 4n

2α
.

Then (25) holds, because
1− α

α
Cα,W[1,n],n� is nonincreasing in α by [26, Lemma 23(b)], provided

that λ̂ ≤
Cα,W[1,n],n�

nδ
. In order to see why such a bound holds first note that �̂ ≤ � by definition

and thus C
α,Ŵ[1,n],n�̂

≤ C
α,Ŵ[1,n],n�

. Furthermore,

C
α,Ŵ[1,n],n�̂

= inf
λ≥λ̂

Cλ
α,Ŵ[1,n]

+ λn�̂

> nδλ̂+ inf
λ≥λ̂

Cλ
α,Ŵ[1,n]

+ nλ(�̂− δ)

≥ nδλ̂+ C
α,Ŵ[1,n],n(�̂−δ)

≥ nδλ̂. �
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Proof of Lemma 8. Cα,W,A ≤ C̃ε
α,W,A by (39) and [26, Lemma 23(a),(b)]. Then, as a result of

the expressions for Esp(R,W,A) given in (11) and the definition of Ẽε
sp(R,W,A) given in (40), we

have
Esp(R,W,A) ≤ Ẽε

sp(R,W,A), ∀R ∈ R≥0. (C.1)

Let us proceed with bounding Ẽε
sp(R,W,A)−Esp(R,W,A) from above for R ∈ [Cφ,W,A,∞). First,

1− α

α

(
C̃ε
α,W,A −R

)

=
1

ε

α+ε(1−α)∫

α−εα

(
1− α

α
∨ 1− η

η

)

Cη,W,A dη − 1− α

α
R

=
1

ε

1− α

α

α+ε(1−α)∫

α

(Cη,W,A −R) dη +
1

ε

α∫

α−εα

1− η

η
(Cη,W,A −R) dη +

R

ε

α∫

α−εα

α− η

ηα
dη

≤ 1

ε

1− α

α

α+ε(1−α)∫

α

(Cη,W,A −R) dη +
1

ε

α∫

α−εα

1− η

η
(Cη,W,A −R) dη +

ε

1− ε
R. (C.2)

We bound Ẽε
sp(R,W,A) by bounding the expression in (C.2) separately on two intervals for α.

To bound the expression in (C.2) for α ∈ [φ, 1), we use the fact that sup
η∈(0,1)

1− η

η
(Cη,W,A −R) =

Esp(R,W,A). We have

1− α

α

(
C̃ε
α,W,A −R

)

≤ 1

ε

1− α

α

α+ε(1−α)∫

α

(Cη,W,A −R)dη +
1

ε

α∫

α−εα

1− η

η
(Cη,W,A −R)dη +

ε

1− ε
R

≤ 1

ε

1− α

α

α+ε(1−α)∫

α

η

1− η
Esp(R,W,A)dη +

1

ε

α∫

α−εα

Esp(R,W,A)dη +
ε

1− ε
R

≤ Esp(R,W,A) +
ε

1− ε

1− α

α
Esp(R,W,A) +

ε

1− ε
R.

Since (1− α)Esp(R,W,A) + αR ≤ (R ∨ Esp(R,W,A)) for all α ∈ (0, 1), we have

1− α

α

(
C̃ε
α,W,A −R

)
≤ Esp(R,W,A) +

ε

1− ε

R ∨ Esp(R,W,A)

φ
, α ∈ [φ, 1). (C.3)

In order to bound the expression in (C.2) for α ∈ (0, φ], recall that Cα,W,A is nondecreasing in α
by [26, Lemma 23(a)]. Thus, for any R ≥ Cφ,W,A we have

1− α

α

(
C̃ε
α,W,A −R

)

≤ 1

ε

1− α

α

α+ε(1−α)∫

φ

η

1− η
Esp(R,W,A) dη 1{α∈[φ−ε

1−ε
,φ]} +

ε

1− ε
R

≤ 1

ε

α+ ε(1− α)

α(1− ε)

α+ε(1−α)∫

φ

Esp(R,W,A) dη 1{α∈[φ−ε
1−ε

,φ]} +
ε

1− ε
R
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=

[
α(1 − ε) + 2ε− φ

ε
− φ− ε

α(1− ε)

]

Esp(R,W,A)1{α∈[φ−ε
1−ε

,φ]} +
ε

1− ε
R

≤ (1− φ)Esp(R,W,A) +
ε

1− ε

(1− φ)Esp(R,W,A) + φR

φ
, α ∈ (0, φ]. (C.4)

Now (41) follows from (C.1), (C.3), and (C.4).

On the other hand, Cα,W,A is nondecreasing and
1− α

α
Cα,W,A is nonincreasing in α by [26,

Lemma 23(a),(b)]. Then, as a result of the expression for Esp(R,W,A) given in (11), we have

Esp(R,W,A) ≤ 1− φ

φ
R for all R ∈ [Cφ,W,A,∞). Hence,

R ∨ Esp(R,W,A) ≤ R/φ, ∀R ∈ [Cφ,W,A,∞). (C.5)

Now (42) follows from (41) and (C.5). �
Proof of Theorem 1. We prove Theorem 1 using Lemmas 8 and 9. We are free to choose

different values for κ and ε for different values of n provided that the hypotheses of Lemmas 8
and 9 are satisfied.

As a result of Assumption 1, there exists a K ∈ [1,∞) and an n0 ∈ Z+ such that

max
t: t≤n

C
1/2,U

(t)
A

≤ K ln(n), ∀n ≥ n0.

Let κn be κn = K ln(1 + n). Then

γn ≤ 40(K + 1) ln(1 + n), ∀n ≥ n0. (C.6)

Cα,W,A is nondecreasing in α by [26, Lemma 23(a)] and
1− α

α
Cα,W,A is nonincreasing in α on (0, 1)

by [26, Lemma 23(b)]. Thus, we can bound C̃ε
α,W,A using its definition given in (39):

C̃ε
α,W,A =

1

ε

α+ε(1−α)∫

α−εα

[

1 ∨
(

α

1− α

1− η

η

)]

Cη,W,A dη

≤ 1

ε

α+ε(1−α)∫

α−εα

[

1 ∨
(

α

1− α

1− η

η

)] [

1 ∨
(
1− α

α

η

1− η

)]

Cα,W,A dη

=
Cα,W,A

ε

α+ε(1−α)∫

α−εα

[(
α

1− α

1− η

η

)

∨
(
1− α

α

η

1− η

)]

dη

≤
(

1 +
ε

1− ε

α2 + (1− α)2

α(1 − α)

)

Cα,W,A.

Then, for εn = 1/n, (C.6) imply that

nC̃ε
φ,W,A +

γn
1− φ

+ ln
8e3n1.5

ε

≤ nCφ,W,A +
n

n− 1

Cφ,W,A

φ(1− φ)
+

40(K + 1) ln(1 + n)

1− φ
+ 3 ln(2en), ∀n ≥ n0. (C.7)

Thus, the hypothesis of Theorem 1 implies the hypothesis of Lemma 9 for all n large enough.
Consequently, for all n large enough Lemma 9 and (C.6) implies that

Pe ≥
(
(1 + n)−80(K+1)

8e3n2.5

)1/φ

e−nẼεn
sp

(
1
n
ln Mn

Ln
,W,A
)

. (C.8)
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On the other hand, Lemma 8, (31), and the monotonicity of Cα,W,A in α imply that for n large
enough

Ẽεn
sp

( 1

n
ln

Mn

Ln
,W,A

)
≤ Esp

( 1

n
ln

Mn

Ln
,W,A

)
+

Cα1,W,A

(n− 1)φ2
. (C.9)

Now (32) follows from (C.8) and (C.9). �
Proof of Theorem 2. We prove Theorem 2 using Lemmas 8 and 10. We are free to choose

different values for κ and ε for different values of n provided that the hypotheses of Lemmas 8
and 10 are satisfied.

As a result of Assumption 2, there exists a K ∈ [1,∞) and an n0 ∈ Z+ such that

max
t: t≤n

C1/2,Wt,n� ≤ K lnn, ∀n ≥ n0. (C.10)

Let κn be κn = K ln(1 + n). Then

γn ≤ 40(K + 1) ln(1 + n), ∀n ≥ n0. (C.11)

Cα,W,� is nondecreasing in α by [26, Lemma 23(a)] and
1− α

α
Cα,W,� is nonincreasing in α on (0, 1)

by [26, Lemma 23(b)]. Thus, we can bound C̃ε
α,W,� using its definition given in (39):

C̃ε
α,W[1,n],n�

≤
(

1 +
ε

1− ε

α2 + (1− α)2

α(1− α)

)

Cα,W[1,n],n�.

Then for εn =
1

n
, (C.10), (C.11), and [26, Lemmas 23(a),(b), 27(a), and 28] imply that

C̃ε
α,W[1,n],n�

+
γn

1− φ
+ ln

8e3n1.5

ε

≤ Cα,W[1,n],n� +
n

n− 1

K ln(n)

φ(1 − φ)
+

40(K + 1) ln(1 + n)

1− φ
+ 3 ln(2en), ∀n ≥ n0. (C.12)

Thus, the hypothesis of Theorem 2 implies the hypothesis of Lemma 10 for all n large enough.
Consequently, for all n large enough Lemma 10 and (C.11) implies that

Pe ≥
(
(1 + n)−80(K+1)

8e3n2.5

)1/φ

e−Ẽεn
sp

(
ln Mn

Ln
,W[1,n],n�

)

. (C.13)

On the other hand, Lemma 8, (33), and the monotonicity of Cα,W,� in α imply that for n large
enough

Ẽεn
sp

(
ln

Mn

Ln
,W[1,n], n�

)
≤ Esp

(
ln

Mn

Ln
,W[1,n], n�

)
+

Cα1,W[1,n],n�

(n− 1)φ2
. (C.14)

Note that Cα,W[1,n],n� is nondecreasing in α by [26, Lemma 23(a)] and
1− α

α
Cα,W[1,n],n� is nonin-

creasing in α on (0, 1) by [26, Lemma 23(b)]. Thus,

Cα1,W[1,n],n� ≤ (
α1

1− α1
∨ 1)C1/2,W[1,n],n�. (C.15)

Since Cα,W,� is nondecreasing in � by [26, Lemma 27(a)], (C.10) and [26, Lemma 28] imply for all n
large enough

C1/2,W[1,n],n� ≤ Kn lnn. (C.16)

For n large enough, (C.14)–(C.16) imply

Ẽεn
sp

(
ln

Mn

Ln
,W[1,n], n�

)
≤ Esp

(
ln

Mn

Ln
,W[1,n], n�

)
+

2

φ2

( α1

1− α1
∨ 1
)
K lnn. (C.17)

Now (34) follows from (C.13) and (C.17). �
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