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The Mutual Information In The Vicinity of
Capacity-Achieving Input Distributions

Barış Nakiboğlu, Member, IEEE, and Hao-Chung Cheng, Member, IEEE,

Abstract—On small neighborhoods of the capacity-achieving
input distributions, the decrease of the mutual information with
the distance to the capacity-achieving input distributions is
bounded below by a linear function of the square of the distance
to the capacity-achieving input distributions for all channels with
(possibly multiple) linear constraints and finite input sets using an
identity due to Topsøe and Pinsker’s inequality. Counter examples
demonstrating non-existence of such a quadratic bound are
provided for the case of infinite many linear constraints and the
case of infinite input sets. Using a Taylor series approximation,
rather than Pinsker’s inequality, the exact characterization of the
slowest decrease of the mutual information with the distance to
the capacity-achieving input distributions is determined on small
neighborhoods of the capacity-achieving input distributions.
Analogous results are established for classical-quantum channels
whose output density operators are defined on a separable Hilbert
spaces. Implications of these observations for the channel coding
problem and applications of the proof technique to related
problems are discussed.

I. INTRODUCTION

In his seminal paper [1], Strassen proved for channels with
finite input and output sets that there exist positive constants
γ and δ for which the mutual information satisfies

I (p;W ) ≤ C − γ ∥p − p∗∥2 if ∥p − p∗∥ ≤ δ (1)

where p∗ is the projection of p to the set of all capacity-
achieving input distributions Π in the underlying Euclidean
space, and hence ∥p − p∗∥ is the distance of p to Π. Strassen’s
brief and elegant argument relies implicitly on the fact that
for any p /∈ Π, the direction p−p∗ cannot be simultaneously
orthogonal to the gradient of mutual information at p∗, i.e.,
orthogonal to D(W ∥qW ), and in the kernel of the linear
transformation relating the input distributions to the output
distributions, i.e., in KW . We believe one of the claims in
Strassen’s proof, which holds trivially for some channels,
requires a more nuanced justification to be valid for all
channels with finite input and output alphabets. Nevertheless,
the claim can be established as is using polyhedral convexity
as we discuss in more detail in Appendix A.

Strassen’s bound (1), plays an important role in establishing
sharp impossibility results for the channel coding theorem, see
[1]–[3]. Determining an explicit expression for (δ, γ) pair for
which (1) holds is also worthwhile because of this role.
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One of the claims of Polyanskiy, Poor, and Verdú in [2]
is to establish (1) with an explicit coefficient γ. They apply
an orthogonal decomposition to assert p − p∗ = v0 + v⊥,
where v0 is the projection of p−p∗ to KW . Then they argue
⟨v0,D(W ∥qW )⟩ ≤−Γ ∥v0∥ for some Γ > 0, see [2, (500)].
This claim, however, is wrong for some p’s on certain channels
as we demonstrate trough a particular channel in Appendix B.

In our judgment, the issue overlooked in [2] is the following.
The projection of p−p∗ to the subspace of KW can have a
non-zero component that is also orthogonal to D(W ∥qW );
the principle used by Strassen in [1] asserts merely that this
component cannot be the p−p∗ vector itself. This principle can
be strengthened using polyhedral convexity to assert that the
angle between the p−p∗ vector and the subspace of KW that is
orthogonal to D(W ∥qW ) cannot be less than a positive con-
stant, determined by the channel. In §III, we establish this fact
for the case with multiple linear constraints. In §IV, we use this
observation together with Pinsker’s inequality to prove (1) with
explicit expressions for γ and δ for channels with finitely many
linear constraints and finite input sets using an orthogonal
decompositions, similar to [2]. Using the trace norm in place
of the total variation norm the proof presented in §IV applies
to classical-quantum channels with finite input sets whose
density operators are defined on a separable Hilbert spaces,
as later demonstrate in §VI-A. The orthogonal decomposition
idea itself can be strengthened by considering the orthogonal
decomposition to a closed convex cone and its polar cone,
via Moreau’s decomposition theorem. In §V, we employ such
a decomposition together with a Taylor series expansion to
determine the order and the coefficient of the leading term
characterizing the qualitative behavior of the slowest decay
of the mutual information in the vicinity of the capacity-
achieving input distributions. In other words, we determine
the largest γ1 satisfying I (p;W ) ≤ C − γ1 ∥p − p∗∥ for all
p and for the cases when the largest γ1 is zero, we determine
the best γ coefficient for Strassen’s bound in (1) for the cases
when the slowest decrease is quadratic. In §VI-B we extend
this result to classical-quantum channels with finite input sets.

Recently in [4], Cao and Tomamichel presented a proof
of (1), in the spirit of [1]. First the cone generated by the
vectors p−p∗ for p /∈ Π is proved to be closed, and then a
second-order Taylor series expansion for the parametric family
of functions {I (p∗ + τ(p − p∗);W )}p /∈Π at τ = 0 with a
uniform approximation error term for all p /∈ Π is obtained.
Then (1) is established using the extreme value theorem, the
fact that p−p∗ cannot be an element of KW that is orthogonal
to D(W ∥qW ), and the Taylor series expansion. Cao and
Tomamichel, later generalized their analysis to the case with
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finitely many linear constraints, in [5].
In §II, we introduce our notation and review fundamental

observations about the Kullback–Leibler divergence, mutual
information, Shannon capacity and Shannon center.

In §III, we review essential concepts and results from
convex analysis and prove the positivity of the aforementioned
minimum angle. In §IV we prove (1) for any channel with
possibly multiple linear constraints and a finite input set using
the Pinsker’s inequality and the minimum angle. Unlike [1],
[2], [4], [5], we will not need to assume that the channel has
a finite output set. In §IV, we demonstrate the necessity of
finiteness of the input set and finiteness of the number of
linear constraints for (1) by providing two finite output set
channels violating (1). Example 1 describes a channel with
three input letters and infinitely many linear constraints for
which quadratic decrease does not hold. Example 2 describes
a channel with a countably infinite input set for which the ca-
pacity can be achieved by input distributions that are bounded
away from Π.

In §V, we use Moreau’s decomposition theorem together
with a Taylor series expansion to characterize the slowest
decay of the mutual information with the distance to the
capacity-achieving input distributions by determining the order
and the coefficient of the leading term of its Taylor expansion.
Example 3 describes a channel with a finite input set and a
countably infinite output set for which one cannot use the
Taylor series expansion to establish (1); nevertheless, one can
establish (1) using Pinsker’s inequality as in §IV.

In §VI, we first recall the quantum information-theoretic
framework and review the fundamental observations about
quantum information-theoretic quantities in a way analogous
to our discussion in §II. Then in §VI-A we prove (1) for
any classical-quantum channels with possibly multiple linear
constraints, a finite input set, and a separable Hilbert space
using the quantum Pinsker’s inequality and the minimum
angle, similar to §IV. In §VI-B we characterize the slowest
decay of the quantum mutual information around the capacity-
achieving input distributions for the above mentioned channel
in a way analogous to §VI-B.

In §VII, we discuss the implications of the analysis pre-
sented and possible applications of the proof techniques to
some related problems.

II. INFORMATION THEORETIC PRELIMINARIES

We denote the set of all probability mass functions on
countable subsets of a set X by P(X) and the set of probability
measures on a measurable space (Y,Y) by P(Y). A w ∈ P(Y)
is said to be absolutely continuous in a q ∈ P(Y), i.e., w≺q ,
if w(E) = 0 for all E ∈ Y satisfying q(E) = 0.

The Kullback–Leibler divergence D(w∥q) is defined for any
w , q ∈ P(Y) as

D(w∥q):=


∫ (

dw
dq ln dw

dq

)
dq w≺q

∞ w⊀q
. (2)

The Kullback–Leibler divergence is a non-negative function
and D(w∥q)=0 iff w=q . Furthermore, the Kullback–Leibler

is bounded from below in terms of the total variation norm
via Pinsker’s inequality, [6],

D(w∥q) ≥ 1
2 ∥w − q∥21 . (3)

where ∥·∥1 is the total variation norm defined for all signed
measures µ on (Y,Y), i.e. for all µ ∈ M(Y), as

∥µ∥1:=
∫ ∣∣∣dµdν ∣∣∣dν,

where ν is any reference measure satisfying µ≺ν. On the other
hand the Kullback–Leibler divergence is bounded above by χ2

divergence, see [7, Theorem 5.1], [8, Theorem 5],

χ2(w∥q) ≥ ln
(
1 + χ2(w∥q)

)
≥ D(w∥q) (4)

where χα divergence is introduced by Vajda, see [9, p. 246],
[10], [11]. For α > 1 case χα divergence between finite
signed measure w (i.e., w ∈ M(Y)) satisfying ∥w∥1 < ∞
and probability measure q (i.e., q ∈ P(Y)) is defined as

χα(w∥q):=


∫ ∣∣∣dwdq − 1

∣∣∣αdq w≺q

∞ w⊀q
. (5)

Note that χα(w∥q)≥0 and the equality holds iff w=q . Using
a standard Taylor series analysis D(w∥q) can be bounded in
terms of χ2(w∥q) and χ3(w∥q) as follows

1
2χ

3(w∥q) ≥ D(w∥q)− 1
2χ

2(w∥q)≥− 1
6χ

3(w∥q) (6)

provided that χ3(w∥q)<∞; see Appendix C for a proof.
A channel W is a P(Y) valued function defined on the input

set X, where Y is the σ-algebra of the output space (Y,Y),
i.e., a channel is a function of the form W : X → P(Y). For
any W : X → P(Y) and p ∈ P(X) we define the conditional
Kullback–Leibler divergence D(W ∥q |p) as

D(W ∥q |p):=
∑

x
p(x )D(W (x )∥q) ∀p ∈ P(X).

For any channel W : X → P(Y) and p ∈ P(X), the mutual
information I (p;W ) is defined as

I (p;W ):=D(W ∥qp |p) , (7)

where qp ∈ P(Y) is the output distribution induced by the
input distribution p, for any p ∈ P(X), which is defined
more generally for any v : X → R with a countable support
satisfying

∑
x |v(x )| < ∞ as

qv :=
∑

x
v(x )W (x ). (8)

The following identity, due to Topsøe [12], can be confirmed
by substitution

D(W ∥q |p) = I (p;W ) +D(qp∥q) (9)

for all p∈P(X) and q∈P(Y).
For any convex constraint set A ⊂ P(X), the Shannon

capacity CA and the set of all capacity-achieving input distri-
butions in A, i.e., ΠA, are defined as

CA:= supp∈A I (p;W ) , (10)

ΠA:= {p ∈A : I (p;W ) = CA} . (11)



3

With a slight abuse of notation, we denote CP(X) and ΠP(X)

by CW and ΠW .
If CA<∞ then, by [13], [14], there exists a unique Shannon

center qA∈P(Y) satisfying,

D(W ∥qA|p) ≤ CA ∀p∈A. (12)

Furthermore, D(qp∗∥qA)=0 and thus qp∗ = qA for any p∗ ∈
ΠA by (3) and (9).

For the rest of this section, we assume that the input set
X is finite and the constraint set A is closed. Then CA < ∞
because CA ≤ ln |X| and thus a unique Shannon center qA
exists. Furthermore, as a result of the extreme value theorem,
the supremum in (10) is achieved, i.e. ΠA ̸= ∅, because
I (p;W ) is continuous in p and A is closed and bounded,
i.e., compact. Furthermore, ΠA is a closed set because it is
the preimage of a closed set, for a continuous function.

We interpret real valued functions on a finite set X as the
elements of a Euclidean vector space RX. For any |X|-by-|X|
positive semidefinite matrix Λ, we define the inner product
⟨·, ·⟩Λ : RX × RX → R and the norm ∥·∥Λ : RX → R≥0 as

⟨f , g⟩Λ :=f TΛg ∀f , g ∈ RX,

∥f ∥Λ :=
√
⟨f , f ⟩Λ ∀f ∈ RX.

When Λ is the identity matrix, we denote the inner product
and the norm by ⟨·, ·⟩ and ∥·∥, respectively.

The non-negativity of the mutual information, (9), and (12),
imply D(qp∥qA) ≤ CA < ∞. Thus for any p∗∈ΠA and p∈A

as a result of (9) we have

I (p;W )=D(W ∥qA|p)−D(qp∥qA)
=I (p∗;W )+⟨p−p∗,D(W ∥qA)⟩−D(qp∥qA)
= CA + ⟨p − p∗,D(W ∥qA)⟩ −D(qp∥qA) , (13)

where D(W ∥qA) is a column vector whose rows are
D(W (x )∥qA)’s. The second term in (13) is non-positive by
(12) and its kernel is Kd

A defined as follows

Kd
A:=

{
v ∈ RX : ⟨v ,D(W ∥qA)⟩ = 0

}
. (14)

The third term is non-positive by (3) and its kernel is the
Kernel of the channel, i.e., KW defined1 in the following,
because qp = qp−p∗+qA and the Kullback–Leibler divergence
is zero iff its arguments are equal;

KW :=
{
v ∈ RX :

∥∥∥∑
x
v(x )W (x )

∥∥∥
1
= 0
}
. (15)

The Shannon center not only allows us rewrite (13), but also
allows us to characterize ΠA as the elements of A satisfying
certain linear constraints. To see why first note that qp = qA
and D(W ∥qA|p) = CA imply I (p;W ) = CA by (7). The
existence of a unique Shannon center implies that the converse
statement is true as well, i.e., I (p;W ) = CA implies qp = qA
and D(W ∥qA|p) = CA. Hence,

ΠA = A ∩ SA, (16)

where SA is an affine subset of RX defined below

SA:=
{
v ∈RX : ⟨v ,D(W ∥qA)⟩ = CA and qv = qA

}
, (17)

1Note that the total variation norm can be replaced by any norm on M(Y).

for qv is defined in (8).
We define δ neighborhood Πδ

A of the set of all capacity-
achieving input distributions ΠA as

Πδ
A:=

{
p∈A : minp∗∈Π

A
∥p − p∗∥ ≤ δ

}
. (18)

Note that we can use minimum instead of infimum in the
definition because ∥·∥ is a continuous function and ΠA is a
closed and bounded, i.e., compact, set.

III. PRELIMINARIES ON CONVEX ANALYSIS

Let A be a closed convex subset of the Euclidean space Rn .
Then by [15, Proposition A.5.2.1], the tangent cone of A at
p∗∈A is a closed convex cone that that can be expressed as
the closure of the cone generated by {p−p∗ : p∈A}:

TA (p∗) = cl (cone (A− p∗)) . (19)

The normal cone of A at a point p∗ ∈ A is

NA (p∗):={s ∈ Rn : ⟨s, p − p∗⟩ ≤ 0, ∀p∈A}. (20)

Thus the normal cone NA (p∗) is a closed convex cone, as
well. Furthermore,

TA (p∗) ∩NA (p∗) = {0} ∀p∗ ∈ A. (21)

because the normal cone is the polar of the tangent cone, i.e.,
NA (p∗) = TA (p∗)

◦, by [15, Proposition A.5.2.4], where the
polar of a convex cone C is defined as, [15, A.3.2.1]

C◦:={s ∈ Rn : ⟨s, v⟩ ≤ 0, ∀v ∈ C}. (22)

Let Π be a closed convex set in Rn , then the projection of
a point p∈Rn onto Π is the unique point PΠ (p) satisfying

PΠ (p) = arg min
p∗∈Π

∥p − p∗∥ ∀p ∈ Rn ,

see [15, p. 46]. Then by [15, Theorem A.3.1.1]

p∗ = PΠ (p) ⇐⇒ ⟨p − p∗, s − p∗⟩ ≤ 0 ∀s ∈ Π.

In other words, p∗ = PΠ (p) iff p − p∗ ∈ NΠ (p∗) for the
normal cone defined in (20). On the other hand, if Π ⊂ A for
a closed convex set A, then p−p∗ ∈ TA (p∗) for the tangent
cone defined in (19) for all p∈A, as well. Thus

p∗=PΠ (p) ⇐⇒ p − p∗ ∈ NA
Π (p∗) ∀p∈A. (23)

where NA
Π (p∗) is defined as

NA
Π (p∗):=TA (p∗) ∩NΠ (p∗) . (24)

For all p ∈A, a necessary and sufficient condition for p∗ =
PΠ (p) is p−p∗ ∈ NA

Π (p∗). This, however, does not ensure
the existence of a p∈A satisfying p=p∗+τv for a τ >0 for
all v ∈NA

Π (p∗) because v might not be a feasible direction at
p∗ for A, i.e., v might not be an element of cone (A−p∗). If
TA (p∗)=cone (A−p∗) for a p∗∈Π, then for all v ∈NA

Π (p∗),
there exists τ > 0 satisfying p∗ + τv ∈ A. The polyhedral
convexity discussed in the following ensures that TA (p∗) =
cone (A−p∗) for all p∗∈A.

Let us define NA
Π as the union of all NA

Π (p∗)’s for p∗ ∈ Π
defined in (24), i.e.,

NA
Π :=

⋃
p∗∈Π

NA
Π (p∗) . (25)
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A. Polyhedral Convexity And The Minimum Angle

Any closed convex set in Rn can be expressed as the
intersection closed half spaces, see [15, §A.4.2.b]; when this
description can be done with a finitely many half spaces they
are called polyhedral. In other words, a closed convex set
A ⊂ Rn is polyhedral iff there exists a finite index set IA,
vectors {fı ∈ Rn}ı∈IA , and constants {bı ∈ R}ı∈IA such that

A = {p ∈ Rn : ⟨fı, p⟩ ≤ bı ∀ı ∈ IA}. (26)

We denote the set of active constraints at p∗ by JA (p∗), i.e.,

JA (p∗):={ı ∈ IA : ⟨fı, p∗⟩ = bı} ∀p∗ ∈ A. (27)

Then the tangent cone and the normal cone at any p∗ ∈ A can
be characterized via JA (p∗) as follows, see [15, p. 67],

TA (p∗) = {p ∈ Rn : ⟨fı, p⟩ ≤ 0 ∀ı ∈ JA (p∗)}, (28)
NA (p∗) = cone ({fı : ı ∈ JA (p∗)}) . (29)

Thus both TA (p∗) and NA (p∗) are closed convex polyhedral
sets, as well.

S is an affine subspace iff there exists a finite index set IS ,
vectors {fı}ı∈IS , and constants {bı}ı∈IS such that

S = {p ∈ Rn : ⟨fı, p⟩ = bı ∀ı ∈ IS}. (30)

Thus an affine subspace S can be interpreted as a closed
convex polyhedral set for which all constraints are active at all
points p∗ ∈ S . Hence, the tangent cone and the normal cone
will not change from one point of S to the next and they can
be denoted by TS and NS instead of TS (p∗) and NS (p∗). If
S is non-empty then TS and NS are

TS = {p ∈ Rn : ⟨fı, p⟩ = 0 ∀ı ∈ IS}, (31)
NS = span ({fı : ı ∈ IS}) , (32)

where span ({fı : ı ∈ IS}) is the subspace spanned by fı
vectors for ı ∈ IS .

Lemma 1. Let A be a closed convex polyhedral subset of Rn ,
S be an affine subspace, Π be their intersection, and θ be the
minimum angle between TS and NA

Π , i.e.,

Π:=A ∩ S, (33)

θ:=


π
2 NA

Π = {0}
inf

v∈NA
Π :∥v∥=1

arccos∥PTS (v)∥ NA
Π ̸= {0} . (34)

Then θ is a positive angle that is equal to the minimum angle
between TS and NA

Π (p∗) for some p∗ ∈ Π, which is uniquely
determined by the active constraints at p∗ for A and S, i.e. by
{fı}ı∈JA(p∗) and {fı}ı∈IS . Furthermore,

TΠ (p∗) = TA (p∗) ∩ TS ∀p∗ ∈ Π, (35)
NΠ (p∗) = NA (p∗) +NS ∀p∗ ∈ Π, (36)

NA
Π (p∗) ∩ TS = {0} ∀p∗ ∈ Π. (37)

Proof of Lemma 1. Note that Π is a closed convex polyhedral
set because any affine subspace is a closed convex polyhedral
set and intersection of two closed convex polyhedral sets is
again a closed convex polyhedral set. Furthermore,

JΠ (p∗) = JA (p∗) ∪ JS (p∗) ∀p∗ ∈ Π. (38)

(35) follows from (28), (31), and (38). The identity in (36)
follows from (29), (32), and (38). Furthermore, (37) follows
from (24) and (35) because TΠ (p∗)∩NΠ (p∗) = {0} by (21).

Using (25), we can express θ defined in (34) as

θ = infp∗∈Π θ(p∗), (39)

where θ(p∗) is the minimum angle between TS and NA
Π (p∗),

i.e.

θ(p∗):=


π
2 NA

Π (p∗)={0}
inf

v∈NA
Π (p∗):∥v∥=1

arccos∥PTS (v)∥ NA
Π (p∗) ̸={0} . (40)

Let us proceed with establishing the positivity of θ(p∗). If
NA

Π (p∗)= {0}, then θ(p∗)=
π
2 ; else v = PTS (v) + PNS (v)

and ∥PNS (v)∥ ≠ 0 for any v in NA
Π (p∗) satisfying ∥v∥ > 0,

because v /∈ TS by (37). Thus ∥PTS (v)∥ < ∥v∥ whenever
v ∈ NA

Π (p∗) and ∥v∥ > 0. On the other hand,

sup
v∈NA

Π (p∗):∥v∥=1

∥PTS (v)∥ = max
v∈NA

Π (p∗):∥v∥=1
∥PTS (v)∥ ,

by the extreme value theorem because norm and projection
are continuous and supremum is over a compact set. Thus
θ(p∗) > 0 for all p∗ ∈ Π.

There are only finitely many distinct possible TA (p∗) sets
for p∗ ∈ A and finitely many distinct possible NΠ (p∗) sets
for p∗ ∈ Π because both A and Π are polyhedral. Thus
there are only finitely many distinct θ(p∗) values for p∗∈Π.
Consequently the infimum in (39) is a minimum, θ is positive,
and θ = θ(p∗) for some p∗ ∈ Π. On the other hand the
angle θ(p∗), defined in (40), is uniquely determined by the
active constraints at p∗ for A and S, i.e. by {fı}ı∈JA(p∗) and
{fı}ı∈IS .

B. Moreau’s Decomposition Theorem: Projection To A Closed
Convex Cone and Its Polar

A linear subspace S of Rn and the linear subspace S⊥

defines an orthogonal decomposition for vectors in Rn . The
closed convex cones and their polar cones enjoy an analo-
gous property commonly known as Moreau’s decomposition
theorem.

Lemma 2 ([15, Theorem A.3.2.5]). Let C be a closed convex
cone. For the three elements v , v1, and v2 in Rn , the properties
below are equivalent:

(i) v = v1 + v2 with v1 ∈ C, v2 ∈ C◦, and ⟨v1, v2⟩ = 0;
(ii) v1 = PC (v) and v2 = PC◦ (v).

IV. A SIMPLE AND GENERAL PROOF VIA PINSKER’S
INEQUALITY

In this section we will establish the quadratic decay of the
mutual information on small neighborhoods of the capacity-
achieving input distributions using Pinsker’s inequality given
in (3) together with Lemma 1. For any p ∈A and p∗ ∈ΠA,
we can bound I (p;W ) from above using (3), (8), and (13),

I (p;W )≤ CA+⟨p−p∗,D(W ∥qA)⟩− 1
2 ∥qp−p∗∥

2
1 . (41)
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If p∗ is the projection of p to ΠA then p−p∗ is in NA
Π

A
(p∗) by

(23). If X is a finite set and A is polyhedral, then NA
Π

A
(p∗) is a

closed convex polyhedral cone for each p∗∈ΠA because both
TA (p∗) and NΠ

A
(p∗) are closed convex polyhedral cones

for each p∗ ∈ ΠA and NA
Π

A
(p∗) is their intersection. On the

other hand, there are only finitely many distinct NA
Π

A
(p∗)’s

for p∗ ∈ ΠA because there are only finitely many distinct
TA (p∗)’s and NΠ

A
(p∗)’s for p∗ ∈ ΠA. Thus NA

Π
A

, defined as
the union NA

Π
A
(p∗)’s for p∗ ∈ ΠA in (25), is a closed cone, as

well. Since NA
Π

A
is closed there is a minimum angle between

vectors in NA
Π

A
and TS

A
which is equal to the subspace of

the intersection of the kernels of the last two terms in (41).
This minimum angle has to be positive because otherwise one
could move from p∗ in this direction and stay in ΠA to reach
a point that is closer to p as a result of (13), for some p.
Thus the norm of PTS

A
(p − p∗) is guaranteed to be larger

than a certain fraction of ∥p − p∗∥. This observation, which
essentially is what is established in Lemma 1, is at the core
of bound presented in Theorem 1.

We will need the following bound on ∥qv∥ in terms of ∥v∥
to obtain explicit approximation error terms.

∥qv∥1 =
∥∥∥∑

x
v(x )W (x )

∥∥∥
1

≤
∑

x
∥v(x )W (x )∥1

=
∑

x
|v(x )| ∥W (x )∥1

= ∥v∥1
≤ ∥v∥ ·

√
|X| ∀v ∈ RX, (42)

where the first inequality follows from the triangle inequality,
and the second inequality follows from the general upper
bound on the ℓ1 norm in terms of the ℓ2 norm for RX.

Theorem 1. Let W : X → P(Y) be a channel with a finite
input set X and A ⊂ P(X) be a closed convex polyhedral
constraint set, i.e., a constraint set that can be characterized
by a finite number of linear constraints, then

I (p;W ) ≤ CA − γ
∥∥p−PΠ

A
(p)
∥∥2 ∀p ∈ Πδ

A, (43)

for the set Πδ
A defined in (18) and positive constants β, γ, and

δ defined as follows

β:=


π
2 NA

Π
A
={0}

inf
v∈NA

Π
A
:∥v∥=1

arccos
∥∥∥PTS

A
(v)
∥∥∥ NA

Π
A
̸={0} , (44a)

γ:= sin2 β
2 inf

v∈Kd
A
∩NS

A
:∥v∥=1

∥qv∥21 , (44b)

δ:=
(
|X|+ γ

sin2 β

)−1

∥D(W ∥qA)∥ . (44c)

Proof of Theorem 1. Since (16) holds for any closed convex
constraint set A, affine subspace SA defined in (17), and
ΠA defined in (11), the hypotheses of Lemma 1 holds for
(A,S,Π) → (A,SA,ΠA). Thus β defined in (44a) (i.e., the
minimum angle between NA

Π
A

and TS
A

), is positive because A

is polyhedral (i.e., A is determined by finite number of linear
constraints). Consequently,∥∥∥PTS

A
(v)
∥∥∥ ≤ ∥v∥ cosβ ∀v ∈ NA

Π
A
, (45)

Let v ∈ RX be p−PΠ
A
(p), and v1, v2, v3 be its projections to

the orthogonal subspace TS
A

, Kd
A ∩NS

A
, and {τD(W ∥qA) :

τ ∈ R}:

v :=p − PΠ
A
(p) , (46a)

v1:=PTS
A
(v) , (46b)

v2:=PKd
A
∩NS

A

(v) (46c)

v3:=
⟨v ,D(W ∥qA)⟩
∥D(W ∥qA)∥2 D(W ∥qA) . (46d)

Note that span
(
TS

A
,Kd

A ∩NS
A
,D(W ∥qA)

)
= RX. Thus

v = v1 + v2 + v3. (47)

Thus the upper bound on I (p;W ) for any p∈A in (41) is

I (p;W )≤ CA+⟨v ,D(W ∥qA)⟩− 1
2 ∥qv∥

2
1 . (48)

Let us proceed with bounding the terms in (48). Note that the
sign of the inner product ⟨v ,D(W ∥qA)⟩ cannot be positive
because otherwise (12) would be violated. Thus

⟨v ,D(W ∥qA)⟩ = ⟨v3,D(W ∥qA)⟩
= −∥v3∥ ∥D(W ∥qA)∥ . (49)

On the other hand,

∥qv∥21 = ∥qv2 + qv3∥
2
1

(a)

≥ (∥qv2∥1 − ∥qv3∥1)
2

≥ ∥qv2∥
2
1 − 2 ∥qv2∥1 · ∥qv3∥1

(b)

≥ ∥qv2∥
2
1 − 2|X| · ∥v2∥ · ∥v3∥

(c)

≥ 2γ
sin2 β

∥v2∥2 − 2|X| · ∥v2∥ · ∥v3∥

= 2γ
sin2 β

∥v2+v3∥2−2
(

γ∥v3∥
sin2 β

+|X| ∥v2∥
)
∥v3∥

(d)

≥ 2γ
sin2 β

∥v2+v3∥2−2 ∥v∥ ∥D(W ∥qA)∥
δ ∥v3∥

(e)

≥ 2γ ∥v∥2 − 2 ∥v∥ ∥D(W ∥qA)∥
δ ∥v3∥ , (50)

where (a) follows from the triangle inequality, (b) follows
from (42), (c) follows from the definition of γ given in (44b),
(d) follows from (44c) and ∥v2∥∨∥v3∥ ≤ ∥v∥, and (e) follows
from (45), which implies ∥v2 + v3∥ ≥ ∥v∥ sinβ.

(43) holds for all p ∈ Πδ
A as a result of (48), (49), and (50).

We are left with establishing the positivity of γ. Note that
{v ∈ Kd

A ∩NS
A
: ∥v∥ = 1} is a closed and bounded set, i.e.,

a compact set, thus the infimum in the definition of γ given
in (44b) is a minimum, i.e., it is achieved by some v∗. If the
minimum value in (44b) is zero then v∗ ∈ KW by (8) and
(15); on the other hand v∗ ∈ Kd

A, for Kd
A defined in (14), by

hypothesis. Thus v∗ ∈ TS
A

because

TS
A
= Kd

A ∩ KW , (51)

as a result of (17) and (31). This, however, is a contradiction
because v∗ ∈ NS

A
by hypothesis. Hence γ is positive.
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Theorem 1 assumes A to be polyhedral and input set X to
be finite; both of these assumptions are necessary to establish
a quadratic bound on the worst case decrease of the mutual
information with the Euclidean distance to ΠA. Example 1 in
the following describes a channel with a finite input set and
a convex constraint set A that is not polyhedral for which the
decrease of the mutual information with the distance to ΠA is
proportional to the fourth power of the distance to ΠA, which
is much slower. Example 2 describes a channel with countably
infinite input set and finite output set for which, if

I (p;W ) ≤ CW − f (
∥∥p − PΠ (p)

∥∥) ∀p ∈ Πδ, (52)

for some f : R → R , then f (z ) = 0 for all z ∈ [0, δ].

Example 1. Let the channel W with three input letters and
two output letters and convex constrain set A be

W =

1 0
0 1
0 1

 A =
{
p∈P(X) : ∥p − s∥ ≤ 1

2
√
6

}
s =

[
2
3

1
6

1
6

]T
Then CA = ln 2, ΠA =

{[
1
2

1
4

1
4

]T}
, and qA =

[
1
2

1
2

]T
.

Furthermore, the boundary A can be described parametrically
as follows ∂A = {pτ : τ ∈ (−π, π]}, where the parametric
family of input distributions pτ is

pτ = 1
6

 4− cos τ
1 + sin(π6 + τ)
1 + sin(π6 − τ)

 = s + 1
12

 −2 cos τ

cos τ +
√
3 sin τ

cos τ −
√
3 sin τ

 .

One can confirm by substitution the following closed-form
expressions for ∥pτ − p0∥ and I (pτ ;W )

I (pτ ;W ) = ln 2−D(qpτ
∥qp0

) , qpτ
= 1

6

[
3 + 2 sin2 τ

2

3− 2 sin2 τ
2

]
,

∥pτ − p0∥ = 1√
6

∣∣sin τ
2

∣∣ ΠA = {p0} .

Thus

limτ↓0
CA−I(pτ ;W )

∥pτ−PΠ
A
(pτ )∥4 = 8

Hence, the decrease of mutual information with the distance
from ΠA is proportional with forth power of the distance,
rather than the second power for the points on ∂A, i.e., on
the boundary of A. Thus (1) does not hold for any positive
constants γ and δ.

Example 2. Let us consider the channel W whose input set
is the set of all non-zero integers and whose output set is has
only two elements.

W (1) =

[
1
0

]
, W (−1) =

[
0
1

]
,

W (x ) = 1
2

[
1 + tanh x
1− tanh x

]
for x /∈ {−1, 1},

Then CW = ln 2 and Π = {p1} where pı is the uniform
distribution on the input letter ı and −ı for all ı ∈ Z+ . Then∥∥pı − PΠ (pı)

∥∥ = 1 for all ı ∈ Z+ and I (pı;W ) ↑ CW . Thus
as a result of the concavity of mutual information in the input
distribution, and Jensen’s inequality, we have

I ((1− τ)p1 + τpı;W ) ≥ (1− τ)CW + τI (pı;W ) .

On the other hand,∥∥(1− τ)p1 + τpı − PΠ ((1− τ)p1 + τpı)
∥∥ = τ

because Π = {p1}. Thus (52) holds for a δ > 0 iff f (z ) = 0
for all z ∈ [0, δ].

V. EXACT CHARACTERIZATION

The positivity of the minimum angle between NA
Π

A
, i.e.,

the cone of directions that one can move away from ΠA, and
the subspace of the intersection of the kernel of the channel
and the kernel of the gradient of mutual information, i.e., β
defined in (44a), is sufficient to establish the quadratic decrease
of the mutual information in directions pointing away from
ΠA. One can even determine whether the slowest decay is
linear or quadratic in the distance to ΠA using the extreme
value theorem and the fact that NA

Π
A

is closed. To determine
the tightest coefficient in quadratic decrease case, however,
the minimum angle idea by itself is not sufficient; projections
to closed convex cones via Moreau’s decomposition theorem
rather than projections to subspaces needs to be considered.
Recall that NA

Π
A
(p∗) is a closed convex polyhedral cone

for each p∗ ∈ ΠA, whenever X is a finite set and A is
polyhedral. As we have discussed in §IV, NA

Π
A

defined in
(25) as the union of NA

Π
A
(p∗)’s for p∗ ∈ ΠA, is a closed

cone. However, NA
Π

A
is not necessarily convex. Hence we can

apply Moreau’s decomposition theorem, i.e. Lemma 2, to each
NA

Π
A
(p∗) separately but not necessarily to NA

Π
A

itself.
We will use the minimum angle idea by invoking Lemma 1

in our analysis in this section too, though in a more nuanced
manner. Let Υ(p∗) be

Υ(p∗):=NA
Π

A
(p∗)∩Kd

A ∀p∗∈ΠA. (53)

Let us assume that Υ(p∗) ̸= {0} for a p∗ ∈ ΠA. Then
any v ∈ NA

Π
A
(p∗) can be decomposed into two orthogonal

components: v∗ in Υ(p∗), and v−v∗ in Υ(p∗)
◦ by Lemma

2 because Υ(p∗) is a closed convex cone. Applying Lemma
1 for the case (A,S,Π) → (NA

Π
A
(p∗) ,Kd

A,Υ(p∗)), we can
assert the positivity of the minimum angle ϕ(p∗) between v−v∗
and TKd

A
for all v ∈NA

Π
A
(p∗), whenever Υ(p∗) ̸= {0}. Thus

using the fact that TKd
A
= Kd

A we can conclude that∥∥∥PKd
A
(v−v∗)

∥∥∥≤∥v−v∗∥ cos(ϕ(p∗)) ∀v ∈NA
Π

A
(p∗) (54)

where v∗ = PΥ(p∗) (v), and ϕ(p∗) is defined as

ϕ(p∗):=


π
2 if B(p∗)={0}

min
u∈B(p∗):∥u∥=1

arccos
∥∥∥PKd

A
(u)
∥∥∥ if B(p∗) ̸={0} (55)

for B(p∗):=N
NA

Π
A
(p∗)

Υ(p∗)
whenever Υ(p∗) ̸={0}.

As we did in §IV, we will establish (1) by invoking
(13) first. Instead of bounding D(qp∥qA) using the Pinsker’s
inequality given in (3), however, we will use (6) together
with Hilbert spaces structure induced by the existence and
uniqueness of the Shannon center on the minimal affine
subspace of A.
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A. A Taylor Series Expansion Of Kullback–Leibler Divergence

For any channel W : X → P(Y) and convex constraint
set A ⊂ P(X) satisfying CA < ∞, let us define the subset
of the input set XA and the extended real valued function
ΛA : XA × XA → [0,∞] as

XA:={x ∈X : ∃p∈A s.t. p(x ) > 0}, (56)

ΛA(x , z ):=

∫ (
dW (x)
dqA

)(
dW (z)
dqA

)
dqA ∀x , z ∈XA. (57)

(2) and (12) imply W (x )≺qA, and hence the existence of
the Radon-Nikodym derivative dW (x)

dqA
for all x ∈ XA. This,

however, does not imply the finiteness of ΛA(x , z ) as demon-
strated by Example 3 for a channel with a finite input set and
countable output set. This is possible because finiteness of CA

implies the finiteness of D(qp∥qA) for all p ∈A via (3), (9),
and (12), but not the finiteness of χ2(qp∥qA) for all p ∈ A

and for all p∈P(XA) we have∑
x ,z

p(x )ΛA(x , z )p(z )=1+χ2(qp∥qA) . (58)

When XA is a finite set and maxx ,z ΛA(x , z ) is finite, then
ΛA is a positive semi-definite matrix because

vTΛAv =

∫ (
dqv
dqA

)2
dqA ∀v ∈ RXA .

Thus ΛA defines an inner product on RXA . Furthermore, the
resulting norm is related to the χ2 divergence as follows:

χ2(qp∥qA) = ∥p − p∗∥2ΛA
(59)

for all p ∈ RXA and p∗∈RXA satisfying qp∗ =qA for qp∗ is
defined in (8).

On the other hand, for all p ∈ RXA and p∗∈RXA satisfying
qp∗ =qA, the Cauchy–Schwarz inequality implies∣∣∣ dqpdqA

− 1
∣∣∣ = ∣∣∣∑

x
(p(x )− p∗(x ))

dW (x)
dqA

∣∣∣
≤ ∥p − p∗∥

√∑
x∈XA

(
dW (x)
dqA

)2
.

Thus

χ3(qp∥qA) ≤ ∥p − p∗∥3 (κA)
3 (60)

for all p ∈ RXA and p∗∈RXA , where κA is defined as follows

κA:=
3

√∫ (∑
x∈XA

(
dW (x)
dqA

)2)3/2

dqA. (61)

Applying (6) for w = qp and q = qA, and invoking (59) and
(60), we get the following lemma.

Lemma 3. For any W : X → P(Y) with a finite input set X
and convex constraint set A ⊂ P(X) satisfying κA < ∞, we
have

D(qp∥qA) ≥ 1
2 ∥p − p∗∥2ΛA

− κ3
A

6 ∥p − p∗∥3 , (62a)

D(qp∥qA) ≤ 1
2 ∥p − p∗∥2ΛA

+
κ3
A

2 ∥p − p∗∥3 . (62b)

Using Jensen’s inequality and the convexity of function z
3/2

in z we can bound κA from below by
√
Tr [ΛA], where

Tr [ΛA] is the trace of the |XA|-by-|XA| matrix ΛA. On the

other hand, we can bound κA from above using the general
bound on ℓ2 in terms of ℓ3 norm, i.e. ∥v∥2 ≤ |XA|

1/6 ∥v∥3.
Thus

3

√√
|XA|

∑
x∈XA

∫ (
dW (x)
dqA

)3
dqA ≥ κA ≥

√
Tr [ΛA]. (63)

For channels with finite input and output sets κA < ∞, i.e.,
the hypothesis of Lemma 3 is always satisfied. For channels
with finite input sets and infinite output sets, however, even
ΛA(x , z ) can be infinite for some x , z ∈XA.

Example 3. Let the discrete channel W : X → P(Z+) with
the finite input set X = {0, 1, . . . ,n} be

W (y |x )=

{
(y−n)−2

ζ(2) 1{y>n} if x=0
1
21{y=x} +

(y−n)−3

2ζ(3) 1{y>n} if x ∈{1, 2, . . . ,n}

where ζ(s) :=
∑

y∈Z+
y−s , i.e., the Riemann zeta function.

If n ≥
(

2ζ(3)
ζ(2)

)2
e
2
∑

y∈Z+
y−2

ζ(2)
ln y

, then we have

CW = ln
√
n,

qW (y) = 1
2n1{y≤n} +

(y−n)−3

2ζ(3) 1{y>n},

D(W (·|0)∥qW ) = ln 2ζ(3)
ζ(2) +

∑
y∈Z+

y−2

ζ(2) ln y ≤ CW .

The diagonal entry of the matrix ΛW corresponding to the
input letter 0 itself is infinite:

ΛW (0, 0) =
∑

y∈Z+

qW (y)
(

W (y|0)
qW (y)

)2
≥ 2ζ(3)

(ζ(2))2

∑
y>n

1
y−n

= ∞.

Then κW is infinite , as well because κW ≥
√

Tr [ΛW ]. Thus
for this channel Lemma 3 is mute.

In our analysis we will need an operator-norm bound
analogous to (42). We bound ∥v∥ΛA

above by the product of
∥v∥ and the trace of ΛA using the Cauchy–Schwarz inequality:

∥v∥2ΛA
=

∫ (∑
x
v(x )dW (x)

dqA

)2
dqA

≤
∫

∥v∥2
(∑

x∈XA

(
dW (x)
dqA

)2)
dqA

=∥v∥2 Tr [ΛA] . (64)

The following discussion is not used in the rest of the paper;
nevertheless (67) is just too beautiful to ignore in the name of
utilitarianism. Note that (59) and χ2(0∥qA) = 1 implies,

∥p∗∥2ΛA
= 1 (65)

for all p∗∈RXA satisfying qp∗ =qA. On the other hand,

∥p∥2ΛA
= 1 + χ2(qp∥qA) (66)

for all p ∈RXA satisfying ⟨p,1⟩ = 1, where 1∈RXA is the
vector whose entries are all ones. Equations (59), (65), and
(66) gives us the following “Pythagorean Theorem”

∥p∥2ΛA
= ∥p∗∥2ΛA

+ ∥p − p∗∥2ΛA
(67)

for all p∈RXA satisfying ⟨p,1⟩=1, and p∗∈RXA satisfying
qp∗ =qA.
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B. Exact Characterization Of The Slowest Decay

Theorem 2. For a channel W : X → P(Y) with a finite input
set X, a closed convex polyhedral constraint set A ⊂ P(X)
satisfying κA < ∞, let γ1 be

γ1:=minv∈NA
Π
A
:∥v∥=1 −⟨v ,D(W ∥qA)⟩ (68)

for NA
Π

A
and κA defined in (25) and (61). Then

I (p;W )≤CA−γ1 ∥vp∥ ∀p∈A. (69)

where vp :=p−PΠ
A
(p) and there exists a p∈A\ΠA satisfying

I (p+τvp ;W )≥CA−γ1 ∥τvp∥−Tr [ΛA] ∥τvp∥2 (70)

for all τ ∈(0, 1).
Furthermore, if γ1 = 0, then

I (p;W )≤CA−γ2 ∥vp∥2+ κ3
A

6 ∥vp∥3 ∀p∈Πδ
A (71)

for positive constants γ2 and δ defined in terms of NA
Π

A
(p∗),

Υ(p∗), and ϕ(p∗) defined in (24), (53), and (55), as follows

γ2:=
1
2 minv∈NA

Π
A
∩Kd

A
:∥v∥=1 ∥v∥

2
ΛA

, (72a)

δ:= min
p∗∈Π

A

δp∗ , (72b)

δp∗ :=

 min
v∈NA

Π
A
(p∗):∥v∥=1

− ⟨v ,D(W ∥qA)⟩
γ2

if Υ(p∗)={0}

sin(ϕ(p∗))
Tr[ΛA]+γ2

∥D(W ∥qA)∥ if Υ(p∗) ̸={0}
, (72c)

and there exists a p∈A \ΠA satisfying for all τ ∈(0, 1)

I (p+τvp ;W )≥CA−γ2 ∥τvp∥2− κ3
A

2 ∥τvp∥3 . (73)

Proof of Theorem 2. First note that (68) can be stated as a
minimum rather than an infimum by the extreme value theorem
because NA

Π
A

is closed and thus the minimization in (68) is
that of a continuous function over a closed and bounded (i.e.,
compact) set.

Note that vp ∈ NA
Π

A
(p∗) by (23) where p∗ is the projection

of an p ∈ A onto ΠA , i.e., p∗ = PΠ
A
(p). Then (13) and

D(qp∥qA) ≥ 0 imply

I (p;W )≤ CA+⟨vp ,D(W ∥qA)⟩
≤ CA+∥vp∥ max

v∈NA
Π
A
(p∗):∥v∥=1

⟨v ,D(W ∥qA)⟩, (74)

for all p∈A. Then (69) holds by (25).
Let v⋆ be a minimizer for minimization defining γ1 in (68).

Then there exists a p⋆
∗ ∈ΠA satisfying v⋆∈NA

Π
A
(p⋆

∗) by (25).
Furthermore, there exists a p⋆∈A \ΠA such that PΠ

A
(p⋆)=

p⋆
∗ by (23) and (24) because TA (p⋆

∗) = cone (A−p⋆
∗) as a

result of polyhedral convexity of A. Then

I (p⋆;W )=CA+⟨v⋆,D(W ∥qA)⟩ −D
(
qp⋆

∥∥qA) by (13),

=CA−γ1 ∥v⋆∥ −D
(
qp⋆

∥∥qA) by (68),

≥CA−γ1 ∥v⋆∥ − χ2
(
qp⋆

∥∥qA) by (4),

=CA−γ1 ∥v⋆∥ − ∥v⋆∥2ΛA
by (59),

≥CA−γ1 ∥v⋆∥ − Tr [ΛA] ∥v⋆∥2 by (64).

Then (70) holds for p = p⋆ by Jensen’s inequality and the
concavity of I (p;W ) in p.

Let us proceed with the claims for γ1 =0 case. First note
that, NA

Π
A
∩Kd

A ̸={0} because ⟨v⋆,D(W ∥qA)⟩=0. Since NA
Π

A

and Kd
A are closed so is NA

Π
A
∩Kd

A. Thus (72a) can be stated
as a minimum rather than an infimum by the extreme value
theorem. Let v† be the minimizer of (72a). Then there exists a
p†
∗∈ΠA satisfying v†∈NA

Π
A

(
p†
∗

)
∩Kd

A by (25). Furthermore,

there exists a p† ∈A \ ΠA such that PΠ
A

(
p†)= p†

∗ by (23)

and (24) because TA
(
p†
∗

)
= cone

(
A−p†

∗

)
as a result of

polyhedral convexity of A. Then

I
(
p†;W

)
=CA+⟨v†,D(W ∥qA)⟩−D

(
qp†
∥∥qA) by (13),

=CA−D
(
qp†
∥∥qA) by v†∈Kd

A

≥CA−χ2
(
qp†
∥∥qA) by (4),

=CA−
∥∥v†∥∥

ΛA
by (59),

=CA−2γ2
∥∥v†∥∥2 by (72a).

Then γ2 is positive because otherwise p† ∈ ΠA would hold,
but p† ∈ A \ ΠA by construction. Invoking (62b) instead of
(4) we get

I
(
p†;W

)
≥CA− 1

2

∥∥v†∥∥
ΛA

− κ3
A

2

∥∥v†∥∥3
=CA−γ2

∥∥v†∥∥2− κ3
A

2

∥∥v†∥∥3 by (72a).

Then (73) holds for p = p† by Jensen’s inequality and the
concavity of I (p;W ) in p.

Furthermore, δp∗ is positive for all p∗ ∈ ΠA by definition
because ϕ(p∗) is positive whenever Υ(p∗) ̸= {0} for Υ(p∗)
defined in (53). On the other hand there are only finitely
many distinct NA

Π
A
(p∗) cones, and hence only finitely many

distinct Υ(p∗) cones and δp∗ values, for p∗ ∈ ΠA. Thus the
minimization defining δ given in (72b) can be written as a
minimum rather than an infimum and δ is positive whenever
γ1=0, as well.

When γ1 = 0, there are two groups of p’s we need to
consider those for which Υ(p∗) = {0} and the rest. For p’s
for which Υ(p∗) = {0}, the inequality (71) follows from
(72b), (72c), and (74). Let us proceed with p’s for which
Υ(p∗) ̸= {0}. Since Υ(p∗) is a closed convex cone the
projection on Υ(p∗) and the projection on its polar cone
Υ(p∗)

◦ form an orthogonal decomposition by Lemma 2, i.e.,

vp = v∗
p + up and ⟨v∗

p , up⟩ = 0, (75)

where v∗
p and up are

v∗
p :=PΥ(p∗) (vp) , and up :=PΥ(p∗)

◦ (vp) . (76)

Furthermore, NA
Π

A
(p∗) is not only a closed convex cone but

also a polyhedral cone; thus we can apply Lemma 1 to assert
that the angle between up and Kd

A is bounded below by ϕ(p∗)
defined in (55).

On the other hand ⟨v∗
p ,D(W ∥qA)⟩ = 0 because v∗

p ∈ Kd
A

by construction. Thus (75) implies

⟨vp ,D(W ∥qA)⟩ = ⟨up ,D(W ∥qA)⟩
≤ −∥D(W ∥qA)∥ · ∥up∥ sin(ϕ(p∗)). (77)

To see why the last inequality holds, first note that the angle
between up and D(W ∥qA) lies either in

[
0, π

2 −ϕ(p∗)
]

or in
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[
π
2 +ϕ(p∗), π

]
because the minimum angle between up and

Kd
A is ϕ(p∗)∈

[
0, π

2

]
. One the other hand, ⟨vp ,D(W ∥qA)⟩≤0

by (12); thus the angle between up and D(W ∥qA) has to lie
in
[
π
2 , π

]
. Thus the angle between up and D(W ∥qA) lies

in
[
π
2 +ϕ(p∗), π

]
and its cosine is bounded from above by

−sin(ϕ(p∗)).
Furthermore,

∥vp∥2ΛA
=
∥∥v∗

p + up
∥∥2
ΛA

,

(a)

≥
(∥∥v∗

p

∥∥
ΛA

− ∥up∥ΛA

)2
,

≥
∥∥v∗

p

∥∥2
ΛA

− 2
∥∥v∗

p

∥∥
ΛA

· ∥up∥ΛA
,

(b)

≥
∥∥v∗

p

∥∥2
ΛA

− 2Tr [ΛA]
∥∥v∗

p

∥∥ · ∥up∥ ,
(c)

≥ 2γ2
∥∥v∗

p

∥∥2 − 2Tr [ΛA]
∥∥v∗

p

∥∥ · ∥up∥ ,
(d)
= 2γ2 ∥vp∥2 − 2

(
Tr [ΛA]

∥∥v∗
p

∥∥ + γ2 ∥up∥
)
∥up∥ ,

(e)

≥ 2γ2 ∥v∥2 − 2
∥v∥∥D(W ∥qA)∥ sin(ϕ(p∗))

δp∗
∥up∥ , (78)

where (a) follows from the triangle inequality, (b) follows
from (64), (c) follows from (72a), (d) follows from (75), (e)
follows from

∥∥v∗
p

∥∥ ∨ ∥up∥ ≤ ∥vp∥ and the definition of δp∗

given in (72c). For p’s satisfying Υ(p∗) ̸= {0}, the inequality
(71) follows from (13), (62a), (72b), (72c), (77), and (78).

VI. QUADRATIC DECAY FOR QUANTUM MUTUAL
INFORMATION

In this section, we present the analysis for the Quantum
Mutual Information between the input and the output of a
classical-quantum channel with a finite input set. We will first
introduce the quantum information-theoretic framework and
quantities. In §VI-A, we extend the analysis in §IV to establish
the quadratic decay for the quantum mutual information on
classical-quantum channels whose Hilbert spaces at the output
are separable. In VI-B, we characterize the slowest decay of
quantum mutual information with the distance to the capacity-
achieving input distributions on classical-quantum channels
with finite-dimensional output Hilbert spaces.

Let H be a separable Hilbert space, i.e., a complete inner
product space that has a countable orthonormal basis. We
denote the set of all bounded operators on H, i.e., all con-
tinuous linear mappings of the form T : H → H, by L(H).
The operator absolute value |T | ∈ L(H) of a bounded linear
operator T is defined in terms of its adjoint operator T ∗ as

|T |:=
√
T ∗T ∀T ∈ L(H). (79)

An operator T is selfadjoint iff T ∗ = T . We denote a non-
commutative quotient for selfadjoint operator T and positive
definite operator M as

T

M
:=M− 1

2TM− 1
2 . (80)

A gentle introduction to separable Hilbert spaces can be found
in [16, Chapter 1].

We denote the set of all density operators, i.e., positive
semidefinite operators with unit trace, on a separable Hilbert

space H by S(H). The eigenvalues of a density operator in
S(H) correspond to a probability mass function, [16, Theorem
2.5]. The quantum relative entropy, a quantum generalization
of the Kullback–Leibler divergence, D(ρ∥σ) is defined for any
ρ, σ ∈ S(H) as, see [17],

D(ρ∥σ):=

{
ρ≺σ

∞ ρ⊀σ
, (81)

where Tr is the standard trace, and ρ≺σ means that the support
of ρ is contained in that of σ. Furthermore, the quantum
relative entropy, is bounded from below in terms of the trace-
norm via quantum Pinsker’s inequality [18, Theorem 3.1]:

D(qp∥qA) ≥ 1
2 ∥qp − qA∥21 , (82)

where ∥·∥1 is the trace-norm, i.e., the trace of the operator
absolute value of a bounded operator:

∥T∥1:=Tr [|T |] ∀T ∈ L(H). (83)

On the other hand, the quantum relative entropy is bounded
above by the quantum χ2 divergence, see [19, Theorem 8] for
a proof for finite dimensional Hilbert spaces,

χ2(ρ∥σ) ≥ D(ρ∥σ) (84)

where χα divergence is defined for α > 1 as,

χα(ρ∥σ):=

(α− 1)

∫ ∞

0

Tr

[(
|ρ− σ|
σ + uI

)α]
du ρ≺σ

∞ ρ⊀σ

, (85)

where I stands for the identity operator on H.
When ρ and σ commute, i.e. when they have the same set

of eigenvectors, the definition in (85) reduces to the one in
(5), as expected.

We can also bound D(ρ∥σ) in terms of χ2(ρ∥σ) and
χ3(ρ∥σ) (as in (6) for the classical setting, but in a slightly
different way) as follows

D(ρ∥σ)− 1
2χ

2(ρ∥σ) ≥ − 1
6χ

3(ρ∥σ) , (86a)

D(ρ̃τ∥σ)− 1
2χ

2(ρ̃τ∥σ) ≤ 1
6(1−τ)2χ

3(ρ̃τ∥σ) , (86b)

for all ρ, σ ∈ S(H), τ ∈ [0, 1), where ρ̃τ :=τρ + (1 − τ)σ,
provided that χ3(ρ∥σ)<∞; see Appendix D for a proof.

A classical-quantum channel W : X → S(H) maps letters
of the input alphabet X to a density operator on the output
Hilbert space H. For any W : X → S(H) and p ∈P(X), the
mutual information I (p;W ) is defined as

I (p;W ):=
∑

x
p(x )D(W ∥qp) , (87)

where qp ∈ S(H) is the output density operator induced by
the input distribution p, for any p ∈ P(X), which is defined
more generally for any v : X → R with a countable support
satisfying

∑
x |v(x )| < ∞ as

qv :=
∑

x
v(x )W (x ). (88)

Note that (9) can be confirmed for the quantum case by
substitution using (88), instead of (8). Furthermore, all of the
properties of the Shannon capacity and center discussed in
§II hold for the classical-quantum channels, as well, see for
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example [20, Theorem 2] discussing the case of image-additive
quantum channels, which covers as a special case the classical
to quantum channels, with a finite dimensional H. Thus, (13)
holds for classical-quantum channels, i.e., for any p∗ ∈ ΠA

and p∈A,

I (p;W ) = CA + ⟨p − p∗,D(W ∥qA)⟩ −D(qp∥qA) , (89)

where qA ∈ S(H) is the Shannon center for the classical-
quantum channel W for the convex constraint set A, satisfying
qA = qp∗ for all p∗∈ΠA.

Without loss of generality, we assume that S(H) equals to
the union of the supports of all the channel outputs W (x )’s;
otherwise, we may restrict the underlying Hilbert space to this
union. Such a consideration ensures that the Shannon center
qA to have full support.

A. A Simple Proof for Separable Hilbert Spaces via Pinsker’s
inequality

Using (82) and (89), we can confirm that (41) for classical-
quantum channels, as well. Thus for any p∈A and p∗∈ΠA,
we have

I (p;W )≤ CA+⟨p−p∗,D(W ∥qA)⟩− 1
2 ∥qp−p∗∥

2
1 . (90)

On the other hand, by following the reasoning as in (42),
we can translate the trace-norm on the quantum output space
back to the ℓ2 norm on the classical input space:

∥qv∥1 ≤ ∥v∥ ·
√

|X| ∀v ∈RX. (91)

We can follow the argument in the proof of Theorem 1
given in §IV by invoking (90) and (91) in place of (41) and
(42) to get the following result on the quadratic decay of the
quantum mutual information for a classical-quantum channel.

Theorem 3. Let W : X → S(H) be a classical-quantum
channel with a finite input set X and separable Hilbert space
H, and A ⊂ P(X) be a closed convex polyhedral constraint
set, i.e. a constraint set that can be characterized by a finite
number of linear constraints, then

I (p;W ) ≤ CA − γ
∥∥p−PΠ

A
(p)
∥∥2 ∀p ∈ Πδ

A, (92)

for the set Πδ
A defined in (18) and positive constants β, γ, and

δ defined in (44).

B. Exact Characterization Of The Slowest Decay

We define the Bogoliubov–Kubo–Mori inner product with
respect to some positive definite operator σ ∈ L(H) on
bounded operator space L(H) over field C [21, §7.5] as

⟨ρ, ω⟩σBKM:=

∫ ∞

0

Tr

[
ρ∗

σ + uI

ω

σ + uI

]
du ∀ρ, ω∈L(H).

For any classical-quantum channel W : X → S(H) with
a finite-dimensional H and convex constraint set A ⊂ P(X),
we define the set XA using (56) and the extended real valued
function ΛA : XA ×XA → [0,∞] via the Bogoliubov–Kubo–
Mori inner product:

ΛA(x , z ):=⟨W (x ),W (z )⟩qABKM ∀x , z ∈XA. (93)

For the case when W (x ), W (z ), and qA mutually commute
the definition in (93) reduces to the one in (57) given in §V-A,
as expected.

When XA is a finite set and maxx ,z ΛA(x , z ) is finite, then
ΛA is a positive semi-definite matrix because

vTΛAv =

∫ ∞

0

Tr

[(
qv

qA + uI

)2
]
du ≥ 0 ∀v ∈ RXA .

Thus ΛA defines an inner product on RXA for classical-
quantum channels, as well. Furthermore, the resulting norm
is related to the quantum χ2 divergence as follows:

χ2(qp∥qA) = ∥p − p∗∥2ΛA
(94)

for all p ∈ RXA and p∗∈RXA satisfying qp∗ =qA for qp∗ is
defined in (88).

On the other hand we can bound the operator absolute value
qv for any v with finite ∥v∥ as follows. First note that the
formula of the operator perfect square and its positive semi-
definiteness, imply the following operator inequality

(qv )
2
=
(∑

x∈XA

v(x )W (x )
)2

≤ ∥v∥2 ·
(∑

x∈XA

W (x )2
)
.

Since the square-root is operator monotone (see e.g., [21, §4]),
we have

|qv | ≤ ∥v∥ ·
√∑

x∈XA

W (x )2. (95)

Then as a result of the monotonicity of the map Tr
[
(·)3
]

we
have

χ3(qp∥qA) ≤ ∥p − p∗∥3 (κA)
3, (96)

for all p ∈ RXA and p∗∈RXA , where κA is defined as follows

κA:=
3

√√√√√√∫ ∞

0

Tr



√∑

x∈XA
W (x )2

qA + uI

3du. (97)

When {W (x )}x∈XA
mutually commute κA defined in (97)

reduces to the one in (61).
As in §V-A, applying (86) for ρ = qp and σ = qA, and

invoking (94) and (96), we obtain the following lemma for
classical-quantum channels.

Lemma 4. For any classical-quantum channel W : X→S(H)
with a finite input set X and finite-dimensional Hilbert space
H and convex constraint set A ⊂ P(X), we have

D(qp∥qA)− 1
2 ∥vp∥

2
ΛA

≥ −κ3
A

6 ∥vp∥3 , (98a)

D
(
qp+τvp

∥∥qA)− 1
2 ∥τvp∥

2
ΛA

≤ κ3
A

6(1−τ)2 ∥τvp∥
3
, (98b)

for vp :=p − p∗ all p∈A, p∗ ∈ ΠA, and τ ∈ [0, 1].

In our analysis on classical-quantum channels, we will need
an operator-norm bound analogous to (42), as well. To that end
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we invoke (95), and bound ∥v∥ΛA
from above in terms of ∥v∥

for an arbitrary v ∈ RXA , as follows

∥v∥2ΛA
=

∫
Tr

[(
qv

qA + uI

)2
]
du

≤
∫

∥v∥2 Tr



√∑

x∈XA
W (x )2

qA + uI

2du

=∥v∥2 Tr [ΛA] . (99)

We apply the analysis of Theorem 2 given in §V by invoking
Lemma 4, (84) and (99) in place of Lemma 3, (4), and (64) to
obtain the following result of the exact characterization of the
slowest decay for quantum mutual information on classical-
quantum channels with finite-dimensional Hilbert space H.

Theorem 4. For a classical-quantum channel W : X → S(H)
with a finite input set X and a finite-dimensional Hilbert space
H, a closed convex polyhedral constraint set A ⊂ P(X),

I (p;W )≤CA−γ1 ∥vp∥ ∀p∈A (100)

for γ1 defined in (68), where vp :=p−PΠ
A
(p), and there exists

a p∈A \ΠA satisfying

I (p+τvp ;W )≥CA−γ1 ∥τvp∥−Tr [ΛA] ∥τvp∥2 (101)

for all τ ∈(0, 1). Furthermore, if γ1 = 0, then

I (p;W )≤CA−γ2 ∥vp∥2+ κ3
A

6 ∥vp∥3 ∀p∈Πδ
A (102)

for positive constants γ2, δ, κA defined in (72a), (72b), (97)
for ΛA given in (93), and there exists a p∈A \ΠA satisfying
for all τ ∈(0, 1)

I (p+τvp ;W )≥CA−γ2 ∥τvp∥2− κA

6(1−τ)2 ∥τvp∥
3
. (103)

VII. DISCUSSION

We have extend Strassen’s observation in (1) and bound the
mutual information from above by a function that is decreasing
quadratically with the distance to the set of all capacity-
achieving input distributions, for channels with finite input sets
and with a finite number of linear constraints in Theorem 1,
using Pinsker’s inequality (i.e., (3)), Topsøe identity (i.e., (9)),
and positivity of the minimum angle implied by the polyhedral
convexity (i.e., Lemma 1). We have also shown that same tools
suffice to establish (1) for quantum mutual information on
classical-quantum channels whose output Hilbert spaces are
separable (possibly infinite dimensional) in Theorem 3. For
general convex constraint sets that may not be expressed as a
finite number of liner constraints (1) might not hold; Example
1 demonstrates it for a channel with three input letters and
two output letters. If input set is infinite then the only function
f : [0, δ] → R≥0 satisfying I (p;W ) ≤ C − f (∥p − p∗∥) for
all ∥p − p∗∥ ≤ δ for a positive δ can be f (z ) = 0; Example
2 demonstrates this for a channel with a countable input set
and two output letters.

We have also determined the exact leading term in the
Taylor series expansion of the slowest decay of the mutual
information around the capacity-achieving input distributions

for channels with finite input sets and with a finite number
of linear constraints in Theorem 1, using a Taylor series
expansion of Kullback–Leibler divergence (i.e, (6)), Topsøe
identity (i.e., (9)), and Moreau’s decomposition theorem (i.e.,
Lemma 2). We have also shown that same tools suffice to
determine the leading terms in the Taylor series expansion of
the slowest decay of the quantum mutual information around
capacity-achieving distributions on classical-quantum channels
whose output Hilbert spaces are finite dimensional in Theorem
4. We have worked with the Euclidean distance, i.e., ℓ2, norm;
but the same tools and analysis can be applied to determine
the leading term in Taylor series expansion when distance is
measure using another norm on the affine space including the
convex constraint set A, e.g., when we work with ∥·∥1 instead
of ∥·∥.

Under appropriate technical assumptions, one can obtain (1)
for Augustin information [22]–[25] using the same framework,
as well.
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APPENDIX A
GAP IN STRASSEN’S ARGUEMENT

The first two terms of the Taylor expansion characterizing
the change of the mutual information around any capacity-
achieving input distribution is determined in [1] to be

f (v) = ⟨v ,D(W ∥qW )⟩ + 1
2 ∥v∥

2
ΛW

∀v ∈ RX.

[1, (4.41)] asserts that for small enough δ there exits a γ > 0
satisfying

f (p−p∗) ≤ −γ ∥p−p∗∥2 ∀p ∈ Πδ, (4.41)

where p∗ is the projection of p to Π. To establish (4.41)
Strassen asserts that if (4.41) does not hold then there must
exist a sequence {pȷ}ȷ∈Z+ ⊂ Πδ satisfying

lim infȷ f (pȷ−pȷ,∗) ≥ 0. (104)

Furthermore, Strassen asserts since ⟨p−p∗,D(W ∥qW )⟩ ≤ 0
for all p ∈ P(X), one can assume

∥pȷ−pȷ,∗∥ = δ ∀ȷ ∈ Z+ . (105)

We agree with this assertion because of the following rea-
soning: If Π is the in the relative interior of the probability
simplex, i.e., Π ∩ ∂P(X) = ∅, then for small enough δ any
point p on the boundary Πδ will satisfy ∥p − p∗∥ = δ and the
identity ⟨p − p∗,D(W ∥qW )⟩ ≤ 0 for all p ∈ P(X) implies

f (p−p∗) ≤
∥p−p∗∥2

δ2 f
(

p−p∗
∥p−p∗∥ δ

)
∀p ∈ Πδ. (106)

Thus if the sequence satisfying (104) does not satisfy (105),
then we can replace each pȷ with p̃ȷ = pȷ,∗+

pȷ−pȷ,∗
∥pȷ−pȷ,∗∥ δ to get a

sequence satisfying both (104) and (105). Note that p̃ȷ,∗ = pȷ,∗
by construction.
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However, for certain channels Π might have points out-
side the relative interior of the probability simplex, i.e.,
Π ∩ ∂P(X) ̸= ∅. The unconstrained version of the channel
considered in Example 1 is such a channel. The argument
we have for Π ∩ ∂P(X) = ∅ case will not work as is in
this case because there might not be a positive δ for which
infinitely many p̃ȷ’s are guaranteed to be in the probability
simplex P(X), and hence in Πδ . Nevertheless, a sequence
satisfying both (104) and (105) exists as claimed by Strassen.
To see why first recall that the projection of a p ∈ P(X) to
Π is p∗ iff p−p∗∈NA

Π (p∗); see (23) and (24). Furthermore,
both {NΠ (p∗) : p∗∈Π} and {TP(X) (p∗) : p∗∈Π} are finite
sets as a result of the polyhedral convexity of Π and P(X).
Thus the set S = {NA

Π (p∗) : p∗ ∈Π} is finite and for each
s∈S there exists at least one (often uncountably many) p∗∈Π
satisfying s =NA

Π (p∗). For each s ∈ S we choose a ps ∈ Π

satisfying s=NA
Π (ps). Among {NA

Π (pȷ,∗)}ȷ∈Z+ at least one
s∗ ∈ S will be repeated infinitely often. Let {pıȷ}ȷ∈Z+ be
a subsequence satisfying NA

Π

(
pıȷ,∗

)
= s∗ for all ȷ ∈ Z+ . If

p̂ȷ = ps∗+
pıȷ−pıȷ,∗

∥pıȷ−pıȷ,∗∥
δ, then the projection of p̂ȷ onto Π is ps∗

for all ȷ ∈ Z+ , because p̂ȷ − ps∗ ∈NA
Π (ps∗). Furthermore, as

a result of the polyhedral convexity of P(X) for each p∗ ∈ Π,
there exists a δ(p∗) > 0 such that{

p∗+δv : v ∈ NA
Π (p∗) and δ ≤ δ(p∗)

}
⊂ P(X).

Thus (105) holds for p̂ȷ by construction for δ=mins∗∈S δ(ps∗)
and (104) holds for p̂ȷ by (106).

APPENDIX B
A COUNTER-EXAMPLE FOR [2, (500)]

Example 4. Let W be a channel with 9 input letters and 8
output letters given in the following

W =


ε/315×1

ε/315×1
ε/315×1 (1− ε)I5

1/2 1/3 1/6 01×5
1/6 1/2 1/3 01×5
1/3 1/6 1/2 01×5
1/3 1/2 1/6 01×5

 ,

where 15×1 is a column vector of ones, I5 is 5-by-5 identity
matrix, 01×5 is a row vector of zeros, and ε is the unique
solution of the equation

√
3 3
√
0.002 = ε5−ε on ε ∈ (0, 1/2).

With a slight abuse of notation when A = P(X), we denote
the Shannon capacity by CW and the Shannon center by qW .
Let us assume A = P(X). Then the capacity-achieving input
distribution is unique and it is the uniform distribution on the
first 5 input letters. Furthermore,

CW = (1− ε) ln 5 and qW =
[
ε
3

ε
3

ε
3

1−ε
5 11×5

]T
.

Note that D(W (x )∥qW ) = CW for all input letters x .
On the other hand KW = {τs : τ ∈ R} where the vector s

is given by

s =
[
01×5 2 2 −1 −3

]T
.

Note that ⟨s,D(W ∥qW )⟩ = 0. Thus ⟨v0,D(W ∥qW )⟩ = 0 for
any p, where v0 is the projection of p−p∗ onto KW considered
in [2]. On the other hand if p puts non-zero probability only on

one of the last four input letters then ∥v0∥ ≠ 0. Consequently,
⟨v0,D(W ∥qW )⟩ ≤ −Γ ∥v0∥, i.e., [2, (500)], cannot be true
for any positive Γ.

APPENDIX C
PROOF OF (6)

As a result of the Taylor series expansion of the function
z ln z around z =1 we know that for each z ∈ (0,∞) there
exists a number z̄ between z and 1 such that

z ln z = z − 1 + 1
2 (z − 1)2 − 1

6
(z−1)3

z̄2 , (107)

≥ z − 1 + 1
2 (z − 1)2 − 1

6

∣∣(z − 1)3
∣∣+.

where |z |+ = z ∨ 0.

D(w∥q) ≥
∫ (

1
2

(
dw
dq − 1

)2
− 1

6

∣∣∣∣(dw
dq − 1

)3∣∣∣∣+
)
dq

≥
∫ (

1
2

(
dw
dq − 1

)2
− 1

6

∣∣∣∣(dw
dq − 1

)3∣∣∣∣)dq

= 1
2χ

2(w∥q)− 1
6χ

3(w∥q)

Note that by (107) we know that

z ln z ≤ z − 1 + 1
2 (z − 1)2 z > 1. (108)

On the other hand, as a result of Taylor series expansion of the
function ln z around z =1 we know that for each z ∈ (0,∞)
there exists a number z̄ between z and 1 such that

ln z = z − 1− 1
2
(z−1)2

z̄2

Thus for all z ∈ (0, 1) we have,

ln z ≤ z − 1− 1
2 (z − 1)2

z ln z ≤ z (z − 1)− z
2 (z − 1)2

= z − 1 + 1
2 (z − 1)2 + 1

2 (1− z )3 z ∈ (0, 1). (109)

As a result of (108) and (109) we have

z ln z ≤ z − 1 + 1
2 (z − 1)2 + 1

2 |1− z |+
3
.

Thus

D(w∥q) ≤
∫ (

1
2

(
dw
dq − 1

)2
+ 1

2

∣∣∣∣(1− dw
dq

)3∣∣∣∣+
)
dq

≤
∫ (

1
2

(
dw
dq − 1

)2
+ 1

2

∣∣∣∣(1− dw
dq

)3∣∣∣∣)dq

= 1
2χ

2(w∥q) + 1
2χ

3(w∥q) .

APPENDIX D
PROOF OF (86)

We first prove (86a). Fix an invertible density operator σ
and let δ:=ρ − σ. We consider the Taylor’s series expansion
of the map [0, 1] ∋ τ 7→ f(τ):=D(σ + τδ∥σ) around 0:

f(τ) =
∑3

n=0

f(n)(0)
n! · τn + f(4)(τ̄)

4! · τ4
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for some τ̄ ∈ [0, τ ]. By standard calculations (see e.g., [21,
§3]), we have

f (0)(τ) = f(τ),

f (1)(τ) = Tr [δ · (I + ln(σ + τδ)− lnσ)] ,

f (2)(τ) =

∫ ∞

0

Tr

[(
δ

σ + τδ + uI

)2
]
du,

f (3)(τ) = −2 ·
∫ ∞

0

Tr

[(
δ

σ + τδ + uI

)3
]
du,

f (4)(τ) = 6 ·
∫ ∞

0

Tr

[(
δ

σ + τδ + uI

)4
]
du.

For each u ≥ 0 and τ ∈ [0, 1],

Tr

[(
δ

σ + τδ + uI

)3
]
≤ Tr

[(
|δ|

σ + τδ + uI

)3
]

by the operator inequality δ ≤ |δ|, because the map T (·)T ∗

is a positive map for any bounded operator T ∈ L(H) (see
e.g., [16, §4]), and the map Tr

[
(·)3
]

is monotone.
Moreover, the fourth-order term is non-negative for all

τ, τ̄ ∈ [0, 1], we immediately obtain

f(τ) ≥
∑3

n=0

f(n)(0)
n! · τn.

Letting τ = 1, we conclude the lower bound (86a).
Next, we prove the upper bound (86b). Again, we use

Taylor’s series expansion of the map [0, 1] ∋ τ 7→ f(τ) around
0, but now up to the third order:

f(τ) =
∑2

n=0

f(n)(0)
n! · τn + f(3)(τ̄)

3! · τ3

for some τ̄ ∈ [0, τ ]. It remains to upper bound the third-order
term. For each u ≥ 0, we have,

−Tr

[(
δ

σ + τ̄ δ + uI

)3
]

(a)

≤ Tr

[(
|δ|

σ + τ̄ δ + uI

)3
]

(b)
= Tr

[(
|δ|

1
2 (σ + τ̄ δ + uI)

−1 |δ|
1
2

)3]
(d)

≤ Tr

[(
|δ|

1
2 ((1− τ)σ + uI)

−1 |δ|
1
2

)3]
= 1

(1−τ)3 Tr

[(
|δ|

σ + ūI

)3
]
,

where ū:= u
1−τ and (a) follows from the operator inequality

−δ ≤ |δ|, because the map T (·)T ∗ is a positive map and
the map Tr

[
(·)3
]

is monotone, (b) follows from the cyclic
property of trace, (c) follows from the operator inequality σ+
τ̄ δ = τ̄ ρ+(1− τ̄)σ ≥ (1− τ̄)σ ≥ (1−τ)σ because the inverse
is operator monotone decreasing.

After re-parameterizing and integrating on u ∈ (0,∞), we
get the upper bound (86b).
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